Analysis of Inheritance Anomaly in
Object-Oriented Concurrent Programming Languages”

— Draft: Not for Wide Distribution —

Satoshi Matsuoka and Akinori Yonezawal
Department of Information Science, The University of Tokyo

Abstract

It has been pointed out that inheritance and synchronization constraints in concur-
rent object systems often conflict with each other, resulting in inheritance anomaly where
re-definitions of inherited methods are necessary in order to maintain the integrity of concur-
rent objects. The anomaly is serious, as it could nullify the benefits of inheritance altogether.
Several proposals have been made for resolving the anomaly; however, we argue that those
proposals suffer from the incompleteness which allows room for counterexamples. We give
an overview and the analysis of inheritance anomaly, and review several proposals for mini-
mizing the unwanted effect of this phenomenon. In particular, we propose (partial) solutions
using (1) computational reflection, and (2) transactions in OOCP languages.

1 Introduction

Inheritance is the prime language feature in sequential OO (Object-Oriented) languages, and
is especially important for code re-use. Another important feature is concurrency; although
many OO languages in use today (such as C++ and Smalltalk) are sequential, it is natural
to consider objects as being a unit of concurrency. A recent breed of OOCP (Object-Oriented
Concurrent Programming) languages attempt to provide maximum computational and modeling
power through concurrency of objects; in particular, our current prototype ABCL/onEM-4
language exhibits a real-life message passing latency of a mere 6 pseconds for two concurrent
objects located on a separate physical node of a multicomputer[40].

Several researchers, however, have pointed out (albeit fragmentarily) the conflicts between
inheritance and concurrency in OO languages[3, 17, 32, 35, 9]. More specifically, concurrent
objects and inheritance seemingly have conflicting characteristics, thereby inhibiting their simul-
taneous use without heavy breakage of encapsulation. We have coined such a phenomenon as
inheritance anomaly in OOCP. Its ‘inauspicious’ presence has persuaded OOCP languages not
to support inheritance as a fundamental language feature. Some of the examples are families of
Actor languages[18], POOL/T[3], Procol[37], and also, ABCL/1[42, 41]. There are other OOCP
languages that do provide inheritance, yet are not concerned with the problems of conflicts —
for those languages, we believe that the difficulties presented in this paper are unavoidable in
practice.

*To be published in a forthcoming book on concurrent OO-computing edited by Gul Agha.
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Inheritance anomaly entails a severe drawback for the development of large-scale and com-
plex systems in OOCP languages, because there, the greatest benefits of using the OO frame-
work are inheritance and encapsulation. It is therefore essential that clean amalgamation of
inheritance and concurrency be achieved in order for large-scale systems to be constructed with
OOCP languages. Unfortunately, previous work have largely neglected the proper analysis of
the problem, and merely proposed ad-hoc solutions that are applicable for certain types of
problems, but as we will see, are inapplicable for others. Instead, we argue that we must first
analyze and categorize the conflicts, and based on the analysis, explore if an ideal solution is in
fact possible.

The remainder of the paper is organized as follows: First, we give an overview of inheritance
anomaly. We will then present non-trivial examples where the (rather simplistic) previous
proposals for solutions are limited in their applicability. Next we will analyze and categorize the
cause inheritance anomaly more generally. Finally, we examine some latest proposals for either
solving or controlling the inheritance anomaly problem; in particular, we ourselves propose a
scheme which utilizes a special form of computational reflection in OOCP.

2 Inheritance Anomaly in OOCP

One of the prime concerns in OOCP is synchronization of concurrent objects: when a concur-
rent object is in a certain state, it can accept only a subset of its entire set of messages in
order to maintain its internal integrity. We call such a restriction on acceptable messages the
synchronization constraint of a concurrent object. For example, consider a bounded buffer with
methods put() and get(), where put() stores an item in the buffer and get() removes the
oldest one; then, the synchronization constraint is that one cannot get() from a buffer whose
state is empty and cannot put () into a buffer whose state full is likewise prohibited.

In most OOCP languages, the programmer explicitly programs the methods to control the
set of acceptable messages for each object, in order to implement the object behavior that satisfy
the synchronization constraint. Synchronization code is the term we use to refer to the portion
of the method code where object behavior with respect to synchronization is controlled. The
synchronization code must always be consistent with the synchronization constraint of an object;
otherwise the object might accept a message that it really should not accept, resulting in a se-
mantical error during program execution!. Here, in order to program the synchronization code,
the programming language must provide some primitives for object-wise synchronization, such
as semaphores, guards, etc.; we refer to the scheme for achieving object-wise synchronization
using those primitives in the language as the synchronization scheme of the language.

Unfortunately, it has been pointed out that synchronization code cannot be effectively inher-
ited without non-trivial class re-definitions. This conflict, which we have coined as inheritance
anomaly in OOCP, has been identified by several researchers[17, 32, 35], although a compre-
hensive analysis has not been given yet to our knowledge. Inheritance anomaly is more severe
than the violation of class encapsulation in sequential OO-languages that has been pointed out
by Snyder[34], because in some of the schemes it is possible to create a general counterexample
where NONE of the parent methods can be inherited. We will defer the more detailed analysis
of inheritance anomaly until the latter sections; here, we identify the following situations where
the benefits of inheritance is lost:

1Such a distinction between the synchronization constraints as a specification versus the behavior of the actual
code that implements it, have not been clearly addressed in the previous literatures to our knowledge; in fact,
the term ‘synchronization constraints’ has been confusingly used to mean both in various contexts.



1. Definition of a new subclass K’ of class K necessitates re-definitions of methods in K as
well as those in its ancestor classes.

2. Modification of a new method m of class K within the inheritance hierarchy incur mod-

ification of the (seemingly unrelated) methods in both parent and descendent classes of
K.

3. Definition of a method m might force the other methods (including those to be defined
at the subclasses in the future) to follow a specific protocol which would not have been
required had that method not existed. Encapsulated definition of miz-in classes would
thus be very difficult.

One notable fact is that the occurrence of inheritance anomaly depends on the synchro-
nization scheme of the language; in other words, re-definitions would be required for classes
in an OOCP language that adopted a certain synchronization scheme, while the (semantically
identical) classes could be safely inherited in another language that provids an entirely different
synchronization scheme. This implies that the heart of the problem is the semantical conflicts
between the descriptions of object-wise synchronization and inheritance within the language,
and not on how the language features are implemented underneath. Moreover, it is not imme-
diately obvious whether previous techniques developed in concurrent/distributed languages and
systems are applicable.

3 Inheritance Anomalies in the Previous Proposals

Recently, several proposals have been made for effectively allowing synchronization code to be
inherited based on various synchronization schemes (examples are [2, 12, 17, 35, 30], among
others). Some (although not all) of these proposals emphasized strong control over the conflicts
a.k.a. inheritance anomaly, effectively claiming that synchronization code can be inherited for
all common and/or necessary cases. Unfortunately, it is possible to show that such proposals
still suffer from inheritance anomaly — in this section, we fortify this claim by presenting the
actual (counter)examples of anomaly occurrence.

Before we proceed, however, we make a point that the proposals selected here are consid-
ered to be representative of certain classes of synchronization schemes, and the intention of
the (counter)examples is to illustrate what type of inheritance anomaly would occur for such
schemes. We do NOT intend to claim that a particular proposal is useless — as a matter of a
fact, some do embody good ideas that could be used as a basis of a more complete solution.

3.1 Simple Examples of Inheritance Anomaly — Caused by ‘Body’s, Explicit
Message Reception within Methods, Path Expressions, Direct Key Spec-
ifications

In order to gain the reader’s insight into the problem, we first present simple examples of
inheritance anomalies occurring in OOCP languages. Some of these cases have already been
pointed out by the previous researchers.

3.1.1 Bodies

Some OOCP languages allow each object to have a so called ‘body’, an internal method with
its own thread of control. The body thread remains active irrespective of the external message



reception. The body is typically used to control message receptions, usually in the fashion of
Ada’s select statement. After receiving a message, the body thread takes on the responsibility
of invoking the method corresponding to the message. In some languages, the body thread
suspends during method processing, while in others the body thread runs independently of the
threads for message processing.

America[3] discusses the difficulty of integrating inheritance with languages that allow bod-
ies: On defining a subclass from another class, the definition of the subclass usually require total
re-definition of the body. This is rather obvious, because otherwise the newly added features
cannot be used. America points out that this poses difficulty in programming because having a
different body means that the dynamic behavior of such a new object may be totally different
from the old ones, thus severely interfering with formal reasoning about the program. America
states that, after initial experiments with inheritance in the OOCP language POOL/T, it was
decided not to adopt inheritance as a primitive language feature?. Another related difficulty
we point out is that such re-definitions require total knowledge of and access to the synchro-
nization code of the ancestor classes. Thus, not only that they cannot be inherited, but also
encapsulation of class implementation is broken with respect to synchronization constraints.

As an example of the ‘body’ anomaly, consider a first-in first-out bounded buffer class as
illustrated in Figure 1. It has two public methods, put() and get(); put() stores an item in
the buffer and get() removes the oldest one. Two instance variables in and out count the
total numbers of items inserted and removed, respectively, and act as indices into the buffer
— the location of the next item to be put is indexed by (in mod size) and that of the oldest
item by (out mod size). Upon creation, the buffer is in the empty state, and the only message
acceptable is put(); arriving get() messages are not accepted but kept in the message queue
un-processed. When a put () message is processed, the buffer is no longer empty and can accept
both put () and get() messages, reaching a ‘partial’ (non-empty and non-full) state. When the
buffer is full, it can only accept get(), and after processing the get() message, it becomes
partial again.

A Bounded-Buffer Object
. )
get() g out 1n
put() g l l
\_ W,

Figure 1: A Bounded Buffer Object

Figure 2 is a definition of class b=buf which implements the above described behavior, given
with an extended syntax of C4++ for reader familiarity. (Note that, some liberty is taken with
the syntax and semantics — for instance, C++ does not provide the Smalltalk-80 style super
pseudo variable, whose meaning should be obvious to those familiar in OO programming.).
Explicit message reception is made within the body using the select and accept statements.
The get() message is accepted by the first accept statement in the body if the buffer is not
empty; then the actual process_get() method is invoked with the start statement. Upon its

2The recent version of POOL called POOL/I incorporates inheritance. Proper body re-definition is left as the
responsibility of the programmer.



termination, the result of the method invocation is directly returned to the caller. Here, it is
quite obvious that in any subclasses of b-buf, the entire body () must be re-defined in order to
account for the newly added method definitions.

Class b-buf: ACTOR {// b-buf is an Actor
int in, out, buf[SIZE];
public:
void b-buf() {
in = out = 0;

}
void process_put() { //store an item
in++;
} //the argument of the call is omitted
int process_get() { //remove an item
out++;
} //the return value of the call is omitted
void body() {
loop {
select {
accept get() when (!(in == out))
start process_get();
or
accept put() when (!(out = in + SIZE))
start process_put();
333}

Figure 2: Definition of Bounded Buffer Class with Body (The code related to accessing the local
array storage for insertion and removal is omitted for brevity.)

There are several languages that allow body within objects ([7, 12]. [13] also essentially
allows bodies when the ‘low level’ scheme is utilized).

3.1.2 Explicit Message Receptions

An analogous situation occurs if a language allows explicit (interior) reception of messages
within a method, in that the newly added method definitions cannot be entirely accounted
for. Therefore it would be difficult to incorporate inheritance into languages that allow interior
message receptions. Examples of such languages are ABCL/1[42, 41] and CSSA[29].

There are also languages that extends existing sequential OO languages with explicit message
reception statements in order to achieve inter-object concurrency, such as Concurrent C++4[15],
Buhr et. al.’s extension to C++[10], or Tuple Space Smalltalk[22]. For these languages, however,
the messages explicitly received are not processed via the normal method dispatch mechanism
of the base language. As a result, inheritance and communication are totally separated from
the beginning, causing heavy breakage of encapsulation.

3.1.3 Path Expressions

Again, a similar problem occurs for languages with synchronization schemes expressed in vari-
ants of Path Expressions[11]. Additionally, the original path expression suffers the limitation



that is imposed by the expressive power of Path Expressions with respect to complex syn-
chronization constraints of objects. For instance, the textual length of the path expression
of the above bounded buffer example would be enormous for a large SIZE, because one must
account for every possible combinations of interleaved puts and gets; more specifically, the
expressive power of the original Path Expressions is limited to the regular expression, whereas
the bounded buffer require a more powerful language class for concise description. This can be
resolved with augmenting the terms in the path expression with guards and thereby allowing
conditional synchronization[6]. An example OOCP language with augmented Path Expression
is Procol[37]. Nevertheless, the original problem is not resolved, because one still cannot account
for the newly added methods in the subclass unless the entire path expression is re-defined.

3.1.4 Direct Key Specifications

One very important classification of inheritance anomaly is its occurrence in the synchronization
schemes involving operations with message keys. We refer to this as the direct key specification
anomaly. The primary reason for anomaly is that the newly added keys in the subclasses
cannot be accounted for in the synchronization scheme of the methods inherited from the
parent methods. Languages employing this type of synchronization schemes such as SINA[36]
or OTM[16] would suffer from the inheritance anomaly if they were to be extended to incorporate
inheritance. (For the example of the anomaly occurring with bounded buffers, see[17].)

3.2 Problems with Behavior Abstractions

Kafura et. al’s proposal called the behavior abstraction[17] attempts to solve the above problems,
especially the problem with direct key specifications, in the context of their language ACT++.
The essence of their proposal is to assign identifiers to accept sets, namely, the set of keys of
messages that can be accepted by an object.

Figure 3 is the definition of the bounded-buffer object with behavior abstractions. We
basically adopt a simple Actor-like language, whereby:

e Fach object is single threaded i.e., an object can only accept one message at a time.
e Message passing is asynchronous, and pending messages are placed in the message queue.
e The next ‘behavior’ of the object is specified with the become primitive (see below).

The behavior statements declare three sets of keys named empty, partial, and full as-
signed to {put}, {put,get}, and {get}, respectively. The synchronization scheme employs the
become statement to designate a set of method keys acceptable in the next state. We call such
a set the next accept set. This set is not a first-class value; rather, another key is designated to
each next accept set at the first part of a class definition.

Kafura describes in[17] how behavior abstraction serves as a clean solution to the anomaly
exhibited in the x-buf example; there, x-buf has one additional method last that is similar
to get — the difference is that it removes the last item previously put into the buffer instead of
the first. In Figure 3, neither put nor get need to be re-defined in x-buf, whereas re-definitions
of all the methods were necessary for the comparative language that could only specify the
method keys.

? Although SINA does not support inheritance, there is an extension called Sina/ST[2] which employs pattern
matching of method names and arguments in the similar manner as the path expression. Inheritance and
delegation are simulated using this scheme. The path expression anomaly we have discussed in Section 3.1.3
would occur for this scheme.



Class b-buf: ACTOR {// b-buf is an Actor
int in, out, buf[SIZE];

behavior:
empty = {put};
partial = {put, get};
full = {get};
public:

void b-buf() {
in = out = 0;
become empty;
}
void put() {
in++; //store an item
if (in == out + size) become full;
else become partial;
}
void get() {
out++; //remove an item

if (in == out) become empty;
else become partial;
}
}
Class x-buf: b-buf {// extends b-buf
behavior:
x_empty = renames empty;
x_partial = {put,get,last} redefines partial;
x_full = {get,last} redefines full;
public:
void x-buf() {
}
int last() {
in-- ; //remove the last item
if (in == out) become x_empty;
else become x_partial;
}

Figure 3: B-buf and x-buf with Behavior Abstractions




Unfortunately, it is possible to create a non-trivial counterexample of inheritance anomaly
with behavior abstractions. Consider creating a class x-buf2, a subclass of b-buf. x-buf2 has
one additional method get2, which removes the two oldest items from the buffer simultaneously.
(Notice that this cannot be done with successive messages sends of get, because get messages
from different objects may be interleaved.) The corresponding synchronization constraint for
get2 requires that at least two items exist. As a consequence, the partial state must be par-
titioned into two — the state in which exactly one item exists, and the remaining states. To
maintain consistency with the new constraint, we need another accept set x-one that represents
the former state (the behavior definitions in Figure 4). Then, the methods get and put must
be re-defined (Figure 4). Here, notice that NONE of the methods (except the initializer) in

b-buf can be inherited — the anomaly has occurred again?.

Class x-buf2: b-buf { // z-buf2 is a subclass of b-buf

behavior:
x_empty = renames empty;
X_one = {put,get};
x_partial = {put,get,get2} redefines partial;
x_full = {get,get2} redefines full;
public:

void x-buf2() { in = out = 0; become x-empty; }
void get2() { out += 2; //definition of get2

if (in == out) become x_empty;
else if (in == out + 1) become x_one;
else become x_partial;

}
//The following re-defines the methods in b-buf.
void get() { out++;

if (in == out) become x_empty;
else if (in == out + 1) become x_one;
else become x_partial;
}
void put() { in++;
if (in == out + size) become x_full;
else if (in == out + 1) become x_one;
else become x_partial;
}

Figure 4: Inheritance Anomaly with Behavior Abstractions

3.3 Problems with First-Classing of Accept Sets — FEnabled Sets

Tomlinson and Singh[35] propose a scheme that enhances Kafura’s in their Actor-based reflective
language called Rosette. In Rosette, the accept sets can be treated as first-class objects called
enabled sets. We show that this difference is essential, because their proposal can localize
(although not eliminate) the method re-definitions in some cases. We also show, however, that
there are still other cases that would require a considerable amount of re-definitions.

*Recently, they have proposed a more advanced scheme called behavior sets, which is similar in essence to
Tomlinson and Singh’s enable sets we discuss next.



Here is a brief overview of Rosette with respect to synchronization schemes: although its
original syntax is based on S-expressions, we will continue to use our C++ based syntax with
the following extensions:

e The become statement now specifies the next state and the next enabled set of the object:
become ({enabled-set), ((new-state)))

e An enabled set is an instance of class Enable; here the constructor adopts a special syntax
whereby a set of message keys to be enabled are specified:

Enable({message keys))

There are several operations defined for the enabled set, such as union (+), intersection
(&), etc.

e In order to specify the next enabled set for an object, we typically define a private method
for each enable-set:

Enable (method)() {return Enable((message keys)))

e There are two kinds of methods, public and private. The public methods are invoked as a
result of a message reception from an external object. Message sending is asynchronous,
and only those messages whose corresponding methods are currently ‘enabled’ by the
enabled set can be accepted. On the other hand, the private methods are internal to the
object and can be only invoked from within the public and private methods of the same
object as a function call.

Now, consider defining, in addition to get2, method empty? which checks whether the buffer
is empty or not. The method is in effect stateless, that is, it does not affect the state of the
buffer. Thus, this message should always be acceptable irrespective of object state (as long as
other methods are not executing). Then, in principle its definition should be independent of
definitions of other methods, since the effects on the object state by other methods are irrelevant
to empty?. But this is not the case — in the definitions of b-buf and x-buf2 (Figure 5), we
can observe the followings:

e We must override every single private methods that returns an enabled set so that it
enables the empty? method (all the private methods of x-buf2 in Figure 5).

e We must perform extensive case analysis of object state for the newly added method —
this is necessary even if the method itself does not affect the state of the object.

The advantage of enabled-sets over behavior abstractions is that re-definition of the parent
methods, although unavoidable, can sometimes be confined within private methods by inheri-
tance. This is seen in Figure 5, where only (all the) private methods such as empty and full are
re-defined. This possibility is due to the first-class nature of enabled sets derived naturally from
the reflective language architecture of Rosette. We feel that reflective architecture is essential
in OOCP languages[43], and this is one example of how it can be used to enhance the descrip-
tive power of OOCP languages. For enabled-sets in particular, however, there are non-trivial
cases where such re-definitions, even though confined, would nevertheless be overwhelming in
comparison to method guards we discuss in the next section.



Class b-buf: ACTOR { // b-buf is an Actor

int in, out, buf[SIZE];

private:

Enable empty() { return enable([put]) };
Enable partial() { return enable([put,get]) };
Enable full() { return enable([get]) };

public:

}

void b-buf() { in = out = 0;
become (empty() , (in,out ,buf));

}
void put() {
if (in == out + size) become(full(), (in,out,buf));
else become(partial(), (in,out,buf));
}

void get() { // Similar to put()...

// The entire private methods must be re-defined
Class x-buf2: b-buf {
private:

Enable empty() {
return Enable(empty?) + super empty()};
Enable one() {
return Enable(get,put,empty?) };
Enable partial() {
if (in == out + 1)
return super partial + Enable(empty?);
else
return super partial() + Enable(get2,empty?) };
Enable full() {
return super full() + enable(empty?) };

public:

void x-buf2() { in = out = 0; become x-empty; }
void get2() { out += 2; // addition of get2()

if (in == out) become (empty (), (in,out,buf));

else if (in == out + 1) become(one(), (in,out,buf));

else become (partial(), (in,out,buf));
}

// Painstaking case analysis is necessary

int empty?()[1 { // addition of empty?()

if (in == out) become (empty (), (in,out ,buf)) ;
else if (in == out + 1) become(one(), (in,out,buf));
else if (in == out - 1) become(full(), (in,out,buf));
else become(partial(), (in,out ,buf));

Figure 5: X-buf2 with Enabled-Sets
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Here, let us illustrate this by generalizing the method re-definitions of the enabled-sets.
The private methods returning an enable set correspond to the ‘states’ distinguished at class
K. On defining a method m at class K-sub, a subclass of K, the user needs to check, for
each ‘state’, whether addition of m incurs partitioning of that state. If so, the predicate which
determines the state may need to be partitioned. In Figure 6, this is done for the private
methods state_1 through staten. In our empty? example, since the method was always
acceptable, Enable(...,empty?,...) had to be added to ALL the private methods of x-buf2.
Furthermore, on specifying the next behavior of m, the programmer must judge which of the
states among those labeled state_1 through state n is appropriate, depending on the current
state of the object (Figure 6).

Class K-sub: K { //K-sub is a subclass of K
{Instance Variable Definitions)
private:
Enable state_1() {
if ({method) is acceptable)
return Enable({method)) + super state_1()
else
return super statel_() };
// Repeat for state_2 through state_n

public:
(type) {method)({args)...) {
return (value);
if (Object is in state 1) become(state_1(),{new state));
else if (Object is in state 2) become(state_2(),{new state));

else if (Object is in state n) become(state_n() ,(new state));
}
}

Figure 6: General Analysis of Enabled Set

Despite its limitations, we do strongly acknowledge the significance of Rosette in pointing out
that the first-classing technique provides the possibility of enlarging the class of synchronization
schemes that can be safely inherited. Later on, we will describe a more elaborate synchronization
scheme intended for (partially) resolving the inheritance anomaly.

3.4 Problems with Method Guards

A natural synchronization scheme is to attach a predicate to each method as a guard, thus
making each object a conditional critical region (for example, [14, 23] and indivisible objects
in [19]). We illustrate this for b-buf and x-buf2 in Figure 7. Here, we employ the following
syntax:

(method name)({formal arguments)) when ((guard)) { (body of method definition) }

where guardis a boolean expression whose terms are either constants or instance variables bound
to primitive values. Method m is invoked only when guard evaluates to True. For instance, in
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class b-buf, the guard (in < out + size) attached to put() assures that put() is not invoked
when the buffer is full. As shown in Figure 7, all the methods defined at b-buf are inherited
by x-buf2 without any changes to the methods or the guards.

Class b-buf: ACTOR {
int in, out, buf[SIZE];
public:
void b-buf() { in = out = 0; }
void put() when (in < out + size) { in++; }
void get() when (in >= out + 1) { out++; }
}

// z-buf is a subclass of b-buf

Class x-buf2: public b-buf {

public:
void x-buf2()
void get2() when (in >= out + 2) { out += 2; }
void empty?() when (true) { return in == out; }

}

Figure 7: B-buf and x-buf2 with Method Guards

This scheme does provide an elegant solution to the get2/empty? example. Furthermore,
although a naive implementation of guards is not usually very efficient, it can be improved
with the use of program transformation[23] and other optimization techniques; and since they
are usually invisible to the programmer, the full benefit of inheritance can be attained without
sacrifices in efficiency.

However, the problem is that the occurrence of inheritance anomaly still cannot be prevented.
This is a different kind of anomaly from the ones we have so far discussed in this paper. We will
give two examples: one is the definition of the gget() method, and the other is the definition
of the class Lock as a miz-in class.

First we consider defining gb-buf, a subclass of b-buf, adding a single method, gget ().
The behavior of gget() is almost identical to that of get(), with the sole exception that it
cannot be accepted immediately after the invocation of put. Such a condition for invocation
cannot be distinguished with method guards and the set of instance variables available in b-buf
alone; we need to define an extra instance variable after-put. As a consequence, both get()
and put () must be re-defined as in Figure 8. We note that the analogous situation also occurs
for accept set based schemes.

The reason for the anomaly occurrence is that we cannot judge the state for accepting the
gget message with the guard declarations in b-buf. To be more specific, gget is a trace-only or
history-only sensitive methods with respect to instances of b-buf; we will defer the discussion
until the next section.

We next consider the Lock class, which is an abstract miz-in class[8]. Direct instances of
Lock are not created; rather, the purpose of Lock is to be ‘mixed-into’ other classes in order to
add the capability of locking an object. In Lock, a pair of methods lock and unlock have the
following functionality: an object, upon accepting the lock message, will be ‘locked’, i.e., will
suspend the reception of further messages until it receives and accepts the unlock message. Its
synchronization constraint is localized i.e., it is not affected by methods of the class it is being
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// gb-buf is a subclass of b-buf with gget()
Class gb-buf: b-buf {

bool after-put;
public:

void gb-buf() { after-put = Falsel};

// Definition of gget()
void gget() when (!after-put && (in >= out + 1))
{ out++; after-put = False; }

// The following methods must be re-defined
void put() when (in < out + size) { in++; after-put = True; }
void get() when (in >= out + 1) { out++; after-put = False; }

Figure 8: Inheritance Anomaly with Guards — the gget method

mixed into.

When Lock is ‘mixed-into’ the definition of b-buf to create the class 1b-buf, we are likely
to assume that it would not affect the definition of other methods, since the state of the object
with respect to lock and unlock is totally orthogonal to the effect of other messages. However,
this is not the case — first, we must add an instance variable locked which indicates whether
the object is currently ‘locked’ or ‘unlocked’; this is obviously necessary since it is impossible
to distinguish between the two states otherwise. Then, the inherited methods such as put or
get must be overridden in order to account for locked (Figure 9). Furthermore, all methods
which would be defined in the subclasses of 1b-buf must also account for locked. This would
not have been necessary if we were to be defining exactly the same methods in the subclass of
b-buf. To summarize, the effect of mixing-in Lock cannot be localized in b-buf.

Why has anomaly occurred here? Again, lock and unlock are history-only sensitive meth-
ods. In addition, although neither of them cause partitioning of states, they modify the syn-
chronization constraints of the methods that are already defined, in this case both put and get.
Thus, method guards of b-buf had to be modified in order to maintain consistency with the
new constraints.

4 Analysis of Inheritance Anomaly

We have seen through examples that the previous proposals are not sufficient for avoiding the
inheritance anomaly. We believe that their shortcomings are due to insufficient analysis of the
situation; that is to say, the conflict we treat here is deeply rooted in the semantics of synchro-
nization constraint/schemes verses semantics of inheritance, and analysis is first necessary for
achieving a sufficiently clean solution.

There are three reasons why inheritance anomaly occurs, depending on what the subclass
definition entails on how the state of the object upon which the messages are acceptable are

modified:

e Partitioning of Acceptable States — get2, gget
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Class Lock: ACTOR {
bool locked;
public:
void Lock() {locked = False};
void lock() when (!locked} {lock = True};
void unlock() when (locked) {lock = False};
}

// lb-buf is a subclass of b-buf with Lock miz-in
Class 1lb-buf: b-buf,Lock {
public:
void 1b-buf();
// The following methods must be re-defined
void put() when (!locked && (in < out + size)) { in++; };
void get() when (!locked &% (in >= out + 1)) { out++; };

Figure 9: Inheritance Anomaly with Guards — the Lock class

e History-only Sensitiveness of Acceptable States — gget, lock

e Modification of Acceptable States — lock

The three causes are relatively independent; for example, the gget partitions the states as
well as being history-only sensitive.

4.1 Partitioning of States

The x-buf2 example in Section 3.2 is a anomaly caused by partitioning of acceptable states. In
object-oriented languages, an object is said to have some ‘state’. Then, one can consider the
‘set of states’ an object can have. This set can be partitioned into disjoint subsets according
to the synchronization constraint of the object; in the bounded buffer examples in Section 3,
there are three distinguishable set of states, under which respective sets of acceptable messages
can be defined: empty, partial, and full. This is conceptually illustrated by the left rectangle of
Figure 10.

Now, when a new method is added in the definition of the subclass, the partitioning of
the set of states in the parent class may need to be further partitioned in the subclass; this is
because the synchronization constraint of the new method may not be properly be accounted for
in the partitioning of the parent class. In our example, when the get2() method was added in
x-buf2, a partitioning of x-partial into x-one and x-partial was necessary in order to distinguish
the state at which only one element is in the buffer.

For accept set based synchronization schemes, this state partitioning is usually distinguished
at the termination of the methods with some conditional statements, upon which the objects
‘become’ that state. This is seen for example in the definitions of put and get methods in
Figure 3. Requirement for method re-definitions follows naturally, as we have illustrated in
Figure 4, because the new partitioning must be accounted for in all the methods. Note that,
this is not resolved by making accept sets first-class values, because this partitioning cannot be
affected by the operations upon the accept-set data.
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Figure 10: Conceptual llustration of the State Partitioning Anomaly

This partitioning is not a problem for method guards, because they are able to directly
judge whether the message is acceptable or not under the current state. Thus, even if the new
methods were added, the guards would not need be re-defined, provided that it would not affect
the partitioning of the methods in such a way that the condition denoted by a guard in a certain
method would no longer be valid; this certainly holds for most cases of inheritance.

4.2 History-only Sensitiveness of States

When two different views in modeling the ‘state’ of objects. One is the external view, where the
state is captured indirectly by the external observable behavior of the object. This view is taken
by the models of parallelism based on process calculi, such as CCS[28] and Actors[1]; there, the
equivalence of two objects are determined solely with how they respond to external experiments,
and not with how their internal structures are constructed®. Another is the internal view, where
the state is captured by the valuation of the state variables in the implementation of the object;
for example, a Cartesian point object can have a valuation such that its z-coordinate is 3, and
its y-coordinate is 5. (The actual semantics is more complicated by the fact that the valuation
could be another object, and that objects have methods with self and super references.)

The two views on state are not identical; there are set of states whose elements can be
distinguished under the external view, but is indistinguishable under the internal view. With
method guards, in particular, only the latter states are distinguishable, because guards are
usually boolean expressions consisting of constant object values, instance variables of the object,
and various arithmetic/logical operators (other syntactic categories such as message keys are
usually not allowed). Then, it follows that there exist some synchronization constraint that
cannot be specified with a given set of instance variables and method guards: this is precisely
the history information that do not manifest itself in the values of the instance variables.

When such a distinction becomes necessary, the state of the object under the internal view
must be ‘refined’ in order to match the state of the external view. For this purpose, the
methods in a parent class must be modified; that is to say, the state of the object is history-
only sensitive with respect to the internally distinguishable ones. This is illustrated in our
previous gget example in Section 8, where the state “immediately after accepting put” cannot

®To be more precise, the equivalence relation of objects are typically defined by the bisimulation relation. One
could define several classes of bisimulation relations, yielding weaker or stronger equivalences according to his
requirements, e.g. whether object congruence is required, etc.
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be distinguished with the set of instance variables available in b-buf, requiring the addition of
an instance variable after-put. Since the proper valuation of this variable must be done in
all the methods, the requirements of method modification arose (The situation is similar for
accept set based schemes in this respect, in that the gget example would require considerable
re-definitions.). Also notice that gget partitions the state as well.

4.3 Modification of Acceptable State

The methods in the Lock example in Section 9 are history-only sensitive in a similar manner
as gget. The difference from gget is that the execution of the methods in Lock modifies the
set of states under which the methods inherited from the parent could be invoked (Figure 11).
That is to say, mixing-in of Lock introduces finer-grained distinction for the set of states under
which get (or put) in 1b-buf can be invoked. This would naturally require the modification of
the method guards to account for the new synchronization constraint. (Note that, although the
history-only sensitive characteristics did not come into play for Lock, we could easily generate
a case that does so; for example, we could define a mix-in class Glock, which would only allow
locking of an object immediately after the acceptance of put.)

full full
Set of Set of
Possible ' Possible
States partial partial States
for for
b-buf 1b-buf
empty empty

Figure 11: Conceptual Illustration of the State Modification Anomaly

4.4 Examples of Analysis of Anomaly Occurrence

Given the above categorizations, we could analyze the effectiveness of the synchronization
schemes, and create an example of anomaly occurence. See Appendix A for brief analysis
on Synchronizing Actions which was recently proposed[30].

5 Proposals for Solutions to the Inheritance Anomaly

Recently, there has been much research that have proposed to minimize the effect of inheritance
anomaly in OOCP languages, effectively allowing inheritance of synchronization code in various
situations. We will briefly review them as well as provide our own proposals.
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5.1 Shibayama’s Proposal

Shibayaba proposes a scheme based on fine-grained inheritance of synchronization schemes, so
that the amount of code that must be re-defined can be minimized. In the proposed extension
of ABCL/1 [33] to incorporate inheritance, methods are categorized into primary, constraint,
and transition methods. A method of one category may have its counterparts with identical
keys in other categories, and each of them can be separately defined /inherited /overridden. The
categorization of methods are as follows:

e A primary method is responsible for the task other than object-wise synchronization.

e A constraint method acts as a method guard. Since it can be re-defined independently
of the primary methods, only the constraint methods need to be overridden in the event
that the guards of the methods of the parent class must be changed (the corresponding
primary methods are unaffected).

o A transition method determines how the messages are delegated. Its re-definition allows
dynamic modification of the delegation path.

By separating the synchronization code from other parts of method definitions, the amount of
re-definitions is minimized. Shibayama also shows in [33] that history-only sensitivity can also
be handled with a modest amount of code re-definitions in the concurrent implementation of a
2-3 tree.

5.2 Meseguer’s Proposal

Meseguer proposes a new formalism[27] for modeling concurrent systems, and an OOCP lan-
guage called Maude, which is based on this formalism. The language possesses the flexibility to
provide cleans solutions for (some of the) anomalous examples we have presented in this paper.

Meseguer’s formalism is a logic called the (concurrent) rewriting logic, which (Meseguer
states that) most models of concurrent computation can be regarded as its special instantia-
tions. A concurrent system is derived from (instantiations of) modules, that are composed of
terms and rewrite rules. Computation proceeds by simultaneous simplification of terms when
there are applicable rewrite rules. There are two types of modules, functional and system. The
rewriting in system modules are not equational, i.e., does not exhibit the Church-Rosser prop-
erty. This allows the modeling of phenomenon specific to concurrent computations, such as
non-deterministic choice. The Maude language[27], based on this framework, provides object-
oriented modules for ease of programming in concurrent object-oriented style. For actual ex-
ecution, object-oriented modules are first translated into system modules; then, computation
proceeds with concurrent rewriting according to the rewrite rules of the translated module. In-
heritance is also supported in object-oriented modules directly with Maude’s order-sorted type
structure.

Inheritance anomaly is avoided in Maude in the following way: the conditions placed on the
rewrite rules can serve as a guard; thus, state-partitioning anomaly does not arise. In addition,
rewrite rules can be very flexible, operating on the term structures as first class values[26].
Thus, there is (albeit implicit) ‘reflective’ capability in Maude, which allow history information
to be encoded within the term structure in a straightforward way. For example, it is simple to
define a parametric class which adds the locking capability to arbitrary classes. There is still
work needed to be done, however, to see the extend of applicability of Maude to other classes
of inheritance anomaly.
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5.3 Frglunds’s Proposal

Frglund proposes a framework in which mostly concentrates on synchronization code for the de-
rived (i.e., overridden) methods[20]. He proposes a design in which synchronization constraints
get increasingly restrictive in subclasses. Basically, one specifies a guard that gives the condition
under which the method cannot be accepted, i.e. a negative guard. Furthermore, the guard ex-
pressions are accumulated along the inheritance chain so that, given a method with the name m,
all the guards for the methods in the ancestor classes with the name m and were thus overridden
must evaluate to false in order for the message m to be accepted. Thus, the re-use only works
in the way to restrict the conditions under which the messages are acceptable. Frglunds points
out that this is reasonable given that it should be possible for superclass operations to work
on (all) subclass state, i.e., if an ancestor operation is not enabled in a particular state, then a
derived operation with extended behavior will also incur inconsistency in that state.

In addition, one could refer to other methods within the guard expressions; in this case, the
method itself is not invoked, but instead, its guard(s) are evaluated and the resulting boolean
value is returned. One is also able to describe synchronization constraints that should hold
uniformly for all methods to be defined in subclasses, except for a set of certain exception
methods. This allows one to program the Lock mixin-class in a similar strategy (albeit hard-
codedly) as we present below.

By all means, the problem in inheritance anomaly is that it is not only the derived oper-
ations but also seemingly unrelated methods that might inadvertently require re-definitions.
Nevertheless, Frglund’s work is valuable in pointing out that reuse may or may not be possible
without certain assumptions about how operations are derived.

5.4 Our Proposals
5.4.1 The Use of OOC-Reflective Architectures

The above proposals have identified that (1) separation of synchronization code from the method
code, and (2) ‘first-classing’ of synchronization schemes keeps code re-definitions small. Our first
proposal is along this line — by employing a reflective language, we encapsulate the different
synchronization schemes in the meta-level. FEfficiency is maintained by employing the lazy
reification mechanism of the reflective language.

As an example, we present a scheme where we make the guards first-class objects in the meta-
level. Since guards are immune to state partitioning, we attempt to either avoid or minimize
the anomaly for history-only sensitive case such as Lock. The main idea is to manipulate the
guards in a homogeneous way except for special methods in the subclasses where the exceptions
occur. We also encapsulate meta-operations on the guards in the meta-level of the object.

ABCL/R2[24], an OOCP language with a Hybrid Reflective Architecture, is employed for
this purpose. The metaobject of an object x, denoted as [meta 2], is a meta-level representation
of the structure and computation of z. Here, [meta 2] is itself a (concurrent) object® Given
x, we can manipulate the guards as a first class-object with reflective operations via [meta z].
Figure 12 illustrates how the Lock mixin class can be programmed with this strategy[25]. (Here,
we adopt an ABCL-family syntax: ‘(...)  indicates a LISP-like expression, and ‘[ ... <== ...]’
indicates a message transmission. Me is identical to self in Smalltalk.)

In order to retain the efficiency of direct message dispatching, a technique which we call the

6Note that this aspect of reflective architecture — the individual-based architecture — was first introduced

with ABCL/R[39]. ABCL/R2 also features reflection of object groups. See [24] for details.
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(class Lock
[state (Saved-Guards)]

(=> [:lock]
(Saved-Guards := [[meta Me] <== [:get-all-guards]])
;; below causes the metaobject to be coerced to {Meta-Object}.
[[meta Me] <== [:set-all-guards! ’#f]]
[[meta Me] <== [:set-guard! ’unlock ’#t]]]

;5 not invoked until the guard is set to #t with :lock
(=> [:unlock] when #f
[[meta Me] <== [:set-each-guard! Saved-Guards]]))

Figure 12: Definition of Lock Mixin Class

dynamic progression of degree of reflectivity’[25] is applied; basically, we modify the reflective
architecture of an object on demand when a more elaborate reflective operation is necessary. In
our example, the default metaobject of objects is an instance of the class Lite-Meta-0bject.
In this case, message dispatching would be very efficient, because the dispatching mechanism is
hardwired into the system with various optimization schemes. The problem, however, is that
only reification (i.e., to obtain the computational state of the object from the meta-level as a
first-class object) of the guards is possible, and it is impossible to modify and reflect (i.e., to
affect the computational state by ‘reflecting’ the data into the meta-level) the guards. This is
not sufficient, because the definition of Lock in Figure 12 requires that the guards be modified.

To achieve the capability to reflect the guards, we have the class Meta-0bject, which has
the capability at the cost of efficiency of execution. Then, :set-guard and other methods
which have side-effects on the guards in Lite-Meta-0Object dynamically coerces the metaobject
from Lite-Meta-0bject to Meta-Object on demand. This allows us to maintain the efficiency
provided by Lite-Meta-Object for most instances of subclasses of Lock. In addition, the
coercion need to be performed only once; therefore, subsequent reflective operations on the
guards (e.g., :lock) will require little overhead. For details, see [25].

5.4.2 Syntactic Elimination of Synchronization Codes

The second proposal is a totally different one, in which we attempt to syntactically minimize
the (amount of) synchronization code itself. Much of the per-object localized synchro-
nization code is employed to solve the inter-object coordination problem, where multiple objects
compete for resources encapsulated within objects (the bounded buffer is a classic example).
Here, if the inter-object consistencies are maintained transparently without the necessity for
per-object localized synchronization code, anomaly does not occur in the first place.

In our prototype OOCP language HARMONY[38], we take the approach of syntactically
reducing or eliminating the need for synchronization code with the embedded transaction feature
of the system, instead of inventing various new synchronization schemes which might cause yet
another anomaly. Distributed transactions facility supplemented with method guards are the
basic synchronization scheme of objects. One need not employ guards as often, because inter-

"This technique is also employed in optimizing compiler for ABCL/R2: for details, see[21]
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object synchronization for maintaining integrity is now implicit in the transaction facility of
the system. With such a strategy, inheritance anomaly is less likely to occur, since there is less
requirement for describing object-wise synchronization.

With a bounded buffer, for example, only the essential (guarded) put and get methods are
necessary; compound methods known to cause anomalies, such as get2, are no longer necessary.
This is because with HARMONY one can perform successive gets to the buffer with guarantee
of atomicity without any programming of synchronization code such as locking. We refer the
readers to a separate paper for the details of HARMONY[38].

(We make a note that, since the above two approaches are not contradictory, we can use
both approaches to either eliminate or at least minimize the inheritance anomaly.)

6 Conclusion and Future Work

The prime objective of OOCP languages is to provide maximum computational power through
concurrency of objects. At the same time, OOCP languages allow the system to be flexible
and dynamically configurable. This effectively captures the essential properties of concurrent
computational systems, which are highly complex and must change and evolve to adapt to the
requirements of the user. Some ideas that have flourished in the sequential OO world, particu-
larly inheritance, have similar ob jectives; but unfortunately, as we have shown, synchronization
constraints and inheritance have conflicting characteristics, and thus it is difficult to combine
them in a clean way. We have analyzed various types of inheritance anomaly and discussed
several approaches to its solution. Our two proposals in particular were (1) first-class construc-
tion of synchronization schemes with reflection in OOCP languages, and (2) incorporation of
transactions as a basic synchronization scheme which syntactically reduces or eliminates the
need for synchronization code with the embedded transaction feature of the system.

In conclusion, in order for OOCP languages to be usable for large-scale programming, the
inheritance anomaly needs more thorough theoretical analysis, plus derivation of a good solution.
We need to strive on the followings:

e Establishing a more precise and formal definition of classification of inheritance anomaly.
Although [23] made some preliminary formal analysis, it is still incomplete in that it only
treats the anomaly that occurs with state partitioning. The work towards type theory for
active objects[31], and recent work by America et. al. to separate the subtyping hierarchy
from the inheritance hierarchy in the POOL family of OOCP languages[5, 4] could serve
as a basis of more comprehensive formalism.

e Furtheridentification of a general class of synchronization schemes with respect to anomaly
classifications. Although we tried to be as comprehensive as possible by categorizing
and selecting representative synchronization schemes, formal analysis might provide more
insights for further sub-categorization.

e Proper development of languages (features) that either totally avoid or minimize inheri-
tance anomaly, based on the above two analysis.
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A Appendix — Analysis of the Synchronizing Actions

Synchronizing Actions[30] was recently proposed which extends behavior abstractions. It also supports
method guards in the form of preconditions. Figure 13 is the definition of a bounded buffer in Syn-
chronizing Actions. The four keywords in the method definition are as follows: matching, action, pre,
and post specify the guard, the pre-actions, the method body, and the post-actions, and respectively.
Synchronizing Actions supports intra-object concurrency, and behavior abstractions is used to exclude
mutually interfering operations.

Since Synchronizing Actions utilize behavior abstractions, one could conjecture that the anomalies
presented in Section 3.2 could occur. Tt is a little bit difficult, because most of the partitioning is absorbed
in the guards; it is however, possible to create a mutual exclusion condition that cannot be reflected to the
guards, thus requring re-definitions. As an example, we define a class extended-bounded-buffer2, which
extends the bounded-buffer class with a method read-middle, which returns the middle elements of the
buffer excluding the head and tail. Thus, read-middle should not be invoked when the buffer consists
of less than three elements. Furthermore, suppose that the implementation details require that there
exist five or more elements for read-middle to be mutually independent from both put and get (this
alternative partitioning cannot be reflected to the guards). Figure 13 is the resulting subclass definition
of extended-bounded-buffer2. Here, notice that not only the concurrency-control part have to be
extended, but also the methods themselves must also be re-defined (the precondition part). The required
re-definition occurs for the same reason as the original behavior abstractions — the partitioning of states.
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class bounded-buffer;
private:
const SIZE = 64;
int in = 0, out = 0, buf[SIZE];
concurrency-control:
int N = 0; //counts queued elements
behavior—-abstraction
op-on-head = { get }
op-on-tail = { put }
public:
method put(int elem);
matching ( N < SIZE );

pre { exclude op-on-tail; }
action { in++; /* add element to tail of buf */ }
post { N++; }

method int get();
matching (N>0);

pre { exclude op-on-head; }
action { /* return element from head of buf */ out++; }
post {N-—-; }

end bounded-buffer;

class extended-bounded-buffer2 inherits bounded-buffer;
concurrency-control:
behavior-abstraction // new exclusion sets for read-middle
op-on-head-and-tail-and-middle = { get, put, read-middle-elements }
op-on-head-and-middle = { get, read-middle-elements }
op-on-tail-and-middle = { put, read-middle-elements }
public:
method int[] read-middle-elements();
matching (N> 3);

pre { exclude op-on-head-and-tail-and-middle; }

action { /* return the middle elements of buf excluding two
elements from both head and tail */ }

post {N=2;1}

// re-definitions of both put and get methods in bounded-buffer
method put(int elem);
matching ( N < SIZE );

pre { if (N >= 5) exclude op-on—-tail

else exclude op-on-tail-and-middle; }
action { in++; /% add element to tail of buf */ }
post { N++; }

method int get();
matching (N>0);

pre { if (N >= 5) exclude op-on-head

else exclude op-on-head-and-middle; }
action { /* return element from head of buf */ out++; }
post {N--; }

end bounded-buffer;

Figure 13: Inheritance Anomaly in Synchronizing Actions
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