Iterated Majority Voting

Stéphane Airiau¹ Ulle Endriss²

¹LAMSADE – Université Paris Dauphine ²ILLC – University of Amsterdam

Workshop on Iterative Voting and Voting Games Departement of Mathematics, Padova Goal: Study a generic model of sequential decision making

- Set of *n* agents *N*.
- Set of *m* alternatives (or outcomes, or states of the world) $\mathfrak X$
- There is a current alternative $x(t) \in \mathfrak{X}$
- An agent proposes a different alternative $x^{\star} \in \mathfrak{X}$
- The agents vote between x(t) and x^{\star}

 x^* wins: update of the current state $x(t+1) \leftarrow x^*$ x(t) wins: the current state remains the same: status quo: $x(t+1) \leftarrow x(t)$

- Can this process lead to a "good" outcome?
 - communication may be reduced (no need to submit the entire preferences)
 - decision may be easier to make?

- What voting rule?
 - majority?
 - unanimity?
- Are some properties guaranteed ?
 - Pareto Optimality?
 - Fairness?
 - Termination?
 - Cycles?

Related topic: tournaments voting rules based on the majority graph

Solution Concepts	
• Copeland solution (C)	
• the Long Path (LP)	Methods for ranking
 Markov solution (MA) 	
• Slater solution (SL)	
 Uncovered set (UC) 	Based on the notion of covering
• Iterations of the Uncovered set (UC^{∞})	
• Dutta's minimal covering set (MC)	
•Bipartisan set (BP)	Game theory based
• Bank's solution (B)	Based on Contestation
•Tournament equilibrium set (TEQ)	

- Random walk in the majority graph.
- Set of winners is the set of outcomes that have a positive probability to be the current outcome in the limit
- The Markov winners do not depend on the initial outcome (some level of fairness)

Another solution: using elimination trees

- ex: knockout tournaments (tennis tournament, soccer cups)
- Form an *agenda*, i.e. set up the order at which each issue will face another issue.
- Given the structure of a tournament (i.e. the complete majority graph), the agent that forms the agenda can manipulate the winner.
- ightarrow Justify our choice of using agent for proposing an alternative
- The proposing agent is randomly selected: the agenda is probabilistic

Situations where a policy remains in effect until replaced by a new legislation.

- proposal is
 - made by an agent (endogenous, natural as it is part of the problem, but makes a more complex process to analyse) [Baron 96, Kalandrakis 06]
 - provided by the environment (exogenous, e.g. policy is drawn from probability density, easier to interpret as there is no decision on which proposal to make) [Penn 08]
- every voters receives a utility for winning policy agents are maximizing a discounted sum (utility they have now with the current policy, plus what they will have in the future)
- study equilibrium strategies
 - ex: divide-a-dollar game

- Using restriction on the valuation function (Sen's triplewise value function)
- Using restriction on the protocol:
 - Do not allow an outcome to be proposed twice (May model the process of making a law, and adding amendment)

may require large memory space 🗶

- Using different voting rule but this may not always guarantee the absence of cycles ★
- $\circ\,$ Adding a bound on the length of the decision sequence $\checkmark\,$

- Agents may be indifferent between two outcomes, ties are possible.
- We allow strategic choice for proposing an outcome.
- We allow strategic voting.
- Each agent *i* has a utility function $u_i : \mathfrak{X} \to \mathbb{R}$.
- Utility matrix U_0 of size $m \times n$ with $U_0(x, i) = u_i(x)$.
- Utility of two agents may not be comparable.
- Utility functions are common knowledge.

Definition A *game* is $\langle N, \mathcal{X}, U_0, q, T, x_0 \rangle$ where

- N is the set of agents
- ${\boldsymbol{\mathfrak X}}$ is the set of alternatives
- $U_{0} \ \mbox{is the matrix of utility for each agent and each alternative}$

 $q \in [0,1]$ is the quota of the voting rule

 ${\mathcal T}$ is the deadline, i.e., the number of rounds played $x_0 \in {\mathcal X}$ is the initial alternative

- The current alternative is x(t).
- An agent is randomly selected and proposes an alternative x^* (including the status quo).
- Agents vote between x(t) and x^* .
- The winner of the election is the current alternative for the next round.

Backward Induction

- $W_t(x, y)$: probability that y becomes the current alternative at time t+1 when x was the current alternative at time t
- \Rightarrow W_t is the transition matrix at time t
- $U_t(x, i)$: expected utility of alternative x for agent i at t.

$$\Rightarrow U_{t+1} = W_{t+1} W_t W_{t-1} \dots W_1 \cdot U_0$$

- *How to vote? i* votes for current alternative when $U_t(x^*, i) < U_t(x(t), i)$
- What to propose?
 - 1. compute the set X^w of winning alternatives against x(t)
 - 2. form the set of proposals $P_i = arg \max_{x \in X_w} U_t(x, i)$
 - 3. *if* the expected utility of a proposal in P_i is greater than the expected utility of the current alternative, pick with equi-probability a proposal in P_i *otherwise*, propose the status quo.

Definition: a game is said to be *intra-state convergent* when $\forall i \in N$, $\forall x \in \mathfrak{X} \lim_{t \to \infty} [U_t(x, i) - U_{t+1}(x, i)] = 0$

expected value converges

Definition: a game is said to be *inter-state convergent* when $\forall i \in N$, $\forall (x, y) \in \mathcal{X}^2 \lim_{t \to \infty} [U_t(x, i) - U_{t+1}(y, i)] = 0$

 \Rightarrow all expected values converges to the same value inter-state:

fair with respect to the initial outcome. *not guaranteed* (indifference between outcomes)

Definition: a game is said to be *fundamentally convergent* when the limit of the product of the transition matrix lim $W_{\tau=t}^1 W_{\tau}$ is a matrix with identical rows. $t \rightarrow \infty$

Proposition:

fundamentally convergence \Rightarrow inter-state \land intra-state convergence

- $q \approx 0$ convergence is guaranteed, but prediction inaccurate
- *q* ≈ 1 the final outcome is Pareto efficient. When multiple Pareto optimal outcomes exist, the game is not inter-state convergence.

Proposition: A two-outcome game is intra-state convergent. **Proposition:** A two-outcome game with q < 50% is inter-state convergent.

NB: Existence of weak Condorcet winners is not a sufficient condition (it is possible that even if a unique Condorcet winner exist, it is not chosen as final outcome)

Varying utility range

• $u_i(x)$ is drawn from a uniform distribution either

- ${\scriptstyle \circ }$ continous in [0,1]
- discrete in $\{0, 1, \ldots, u_{max}\}$
- 15 alternatives, 1000 utility matrices, q = 50%

Varying the quota

Conclusion and future work

- Study of a generic iterated negotiation framework
- Convergence results for 2-alternative games
- The likelihood of ties affects convergence properties
- Future work:
 - In case of convergence, can we predict the deadline to have fairness?
 - Variation of the protocols
 - Proof for more any number of alternatives (at least for intra-state convergence).
 - Scenario where convergence is guaranteed.