CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Reshef Meir <u>Maria Polukarov</u> Jeffrey S. Rosenschein Nicholas R. Jennings

Padova, 23 January 2014

Once upon a time...

"Life is worthless without love!" - told Snow White the Seven Dwarfs

CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Once upon a time...

...and fell asleep

Once upon a time...

...for a long-long while.

Prince (P)

- ► Prince (P)
- Prince Charming (C)

- Prince (P)
- Prince Charming (C)
- ► Little Prince (L)

- Prince (P)
- Prince Charming (C)
- ► Little Prince (L)

- Prince (P)
- Prince Charming (C)
- ► Little Prince (L)
- ► Batman (B)

The dwarfs have to choose

So they vote:

The dwarfs have to choose

So they vote:

$$\begin{array}{c|c|c|c|c|c|c|c|c|} P & C & L & B \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \end{array}$$

P, C, L are tied (2 points)

The dwarfs have to choose

So they vote:

C is elected (ties broken alphabetically)

So they vote:

C is elected (ties broken lexicographically)

But wait a minute...

The voters have the following preferences regarding the outcome:

The dwarfs have incentives to strategise

So they may change their mind:

C, L, B are tied (2 points)

The dwarfs have incentives to strategise

So they may change their mind:

B is elected (lexicographic tie-breaking)

... and change the outcome!

It's not yet the end ...

The voters have the following preferences regarding the outcome:

The dwarfs have incentives to strategise

So they may change their mind:

L is elected (unique winner)

It's not yet the end ...

The voters have the following preferences regarding the outcome:

 $\begin{array}{rrrr} 1: & P \succ B \succ L \succ C \\ 2: & P \succ B \succ C \succ L \\ 3: & C \succ L \succ P \succ B \\ 4: & C \succ B \succ P \succ L \\ 5: & L \succ \dots \\ 6: & L \succ \dots \\ 7: & B \succ \dots \end{array}$

The dwarfs have incentives to strategise

So they may change their mind:

B is elected (lexicographic tie-breaking)

No more objections!

 $1: P \succ B \succ L \succ C$ $2: P \succ B \succ C \succ L$ $3: C \succ L \succ P \succ B$ $4: C \succ B \succ P \succ L$ $5: L \succ \dots$ $6: L \succ \dots$ $7: B \succ \dots$

CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Happy end!

- Agents have to agree on a joint plan of action or allocation of resources.
- Their individual preferences over available alternatives may vary, so they vote.

- Agents have to agree on a joint plan of action or allocation of resources.
- Their individual preferences over available alternatives may vary, so they vote.
 - Agents may have incentives to vote strategically.

- Agents have to agree on a joint plan of action or allocation of resources.
- Their individual preferences over available alternatives may vary, so they vote.
 - Agents may have incentives to vote strategically.
- We study the convergence of strategic behaviour to stable decisions, from which no one will wish to deviate—equilibria.

- Agents have to agree on a joint plan of action or allocation of resources.
- Their individual preferences over available alternatives may vary, so they vote.
 - Agents may have incentives to vote strategically.
- We study the convergence of strategic behaviour to stable decisions, from which no one will wish to deviate—equilibria.
 - Agents may have no knowledge about the preferences of the others and/or no communication.

- Agents have to agree on a joint plan of action or allocation of resources.
- Their individual preferences over available alternatives may vary, so they vote.
 - Agents may have incentives to vote strategically.
- We study the convergence of strategic behaviour to stable decisions, from which no one will wish to deviate—equilibria.
 - Agents may have no knowledge about the preferences of the others and/or no communication.

Voting setting

- $V = \{1, \dots, n\}$ set of voters (or agents)
- $C = \{c_1, \ldots, c_m\}$ set of *candidates* (or *alternatives*)
- ► L(C) set of all strict linear orders (transitive, antisymmetric and total relations) on C
- ▶ $\succ_i \in \mathcal{L}(C)$ agent *i*'s private *preference order* over the candidates, for each *i* ∈ *V*

Voting profile

•
$$P = (\succ_1, \ldots, \succ_n)$$
 – truthful profile

Voting rule

•
$$F: \mathcal{L}(C)^n \to 2^C \setminus \{\emptyset\}$$
 – voting rule

determines the winners of the election

CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Voting rule

• $F: \mathcal{L}(C)^n \to C$ – resolute voting rule

returns a single winner

- paired with a tie-breaking rule
 - deterministic (e.g., lexicographic)
 - randomised

CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Voting rule

• $F: \mathcal{L}(C)^n \to C$ – resolute voting rule

- returns a single winner
- paired with a tie-breaking rule
 - deterministic (e.g., lexicographic)
 - randomised

Plurality

Each voter reports his top candidate:

• $P_i \in C$

• Voters may have different weights: $w_i \in \mathbb{N}, \forall i \in V$.

Plurality

- Each voter reports his top candidate:
 - $P_i \in C$
- Voters may have different weights: $w_i \in \mathbb{N}, \forall i \in V$.
- ▶ The score of a candidate *c* is the total weight of agents voting for him:

$$s(c) = \sum_{i \in V: P_i = c} w_i$$

Plurality

- Each voter reports his top candidate:
 - $P_i \in C$
- Voters may have different weights: $w_i \in \mathbb{N}$, $\forall i \in V$.
- ▶ The score of a candidate *c* is the total weight of agents voting for him:

$$s(c) = \sum_{i \in V: P_i = c} w_i$$

▶ The winner is selected from the candidates with the highest score.
Plurality

- Each voter reports his top candidate:
 - $P_i \in C$
- Voters may have different weights: $w_i \in \mathbb{N}$, $\forall i \in V$.
- ▶ The score of a candidate *c* is the total weight of agents voting for him:

$$s(c) = \sum_{i \in V: P_i = c} w_i$$

• The winner is selected from the candidates with the highest score.

- V set of agents = set of voters
- C set of strategies = set of candidates
- ► *F* voting rule (paired with a tie-breaking rule)
- \blacktriangleright \succ profile of voters' preferences over the candidates

- $K \subseteq V$ set of agents = set of strategic voters
- $B = V \setminus K$ sincere (non-strategic) voters
- \triangleright C set of strategies = set of candidates

- $K \subseteq V$ set of agents = set of strategic voters
- $B = V \setminus K$ sincere (non-strategic) voters
- ► C set of strategies = set of candidates
- F(P), where $P = (P_K, P_B)$, is an *outcome*

- $K \subseteq V$ set of agents = set of strategic voters
- $B = V \setminus K$ sincere (non-strategic) voters
- ► C set of strategies = set of candidates
- F(P), where $P = (P_K, P_B)$, is an *outcome*
- Agent $i \in K$ prefers profile P' over profile P if $F(P') \succ_i F(P)$

- $K \subseteq V$ set of agents = set of strategic voters
- $B = V \setminus K$ sincere (non-strategic) voters
- ► C set of strategies = set of candidates
- F(P), where $P = (P_K, P_B)$, is an *outcome*
- Agent $i \in K$ prefers profile P' over profile P if $F(P') \succ_i F(P)$

$s_B(a) = 7$	$w_2 = 4$		L	
$s_B(\mathbf{b}) = 9$	$w_1 = 3$	а	D	С
$s_B(\mathbf{c}) = 3$	а	(14, 9. 3)	(10, <mark>13</mark> , 3)	(10, 9. 7)
	b	(11, 12, 3)	(7, <mark>16</mark> , 3)	(7, <mark>12</mark> , 7)
	С	(11, 9. 6)	(7, <mark>13</mark> , 6)	(7, 9, <mark>10</mark>)

Agents' preferences:

- ▶ $1: a \succ b \succ c$
- ▶ $2: \mathbf{c} \succ \mathbf{a} \succ \mathbf{b}$

$w_2 = 4$ $w_1 = 3$	а	b	С
а	(14, 9. 3)	(10, 13, 3)	(10, 9. 7)
b	(11, 12, 3)	(7, <mark>16</mark> , 3)	(7, 12, 7)
С	(11, 9. 6)	(7, 13, 6)	(7, 9, <mark>10</mark>)

Agents' preferences:

- ▶ $1: a \succ b \succ c$
- ▶ $2: \mathbf{c} \succ \mathbf{a} \succ \mathbf{b}$

$w_2 = 4$ $w_1 = 3$	а	b	С
а	(14, 9. 3)	(10, 13, 3)	(10 , 9. 7)
b	(11, 12, 3)	(7, <mark>16</mark> , 3)	(7, 12, 7)
С	(11, 9. 6)	(7, <mark>13</mark> , 6)	(7, 9, <mark>10</mark>)

Voting in turns (a.k.a. "iterative voting")

- Agents start from some initial profile (e.g., truthful).
- They change their votes in turns.
- At each step, a single agent makes a move.
- The game ends when there are no more objections.
- Implemented in polls via Doodle or Facebook.

Voting in turns (a.k.a. "iterative voting")

- Agents start from some initial profile (e.g., truthful).
- They change their votes in turns.
- At each step, a single agent makes a move.
- The game ends when there are no more objections.
- Implemented in polls via Doodle or Facebook.

Agents make rational moves to improve their state, when

- they do not know the preferences of the others,
- and cannot coordinate their actions.

 \Rightarrow The agents apply *myopic* (or, *local*) moves.

Agents make rational moves to improve their state, when

- they do not know the preferences of the others,
- and cannot coordinate their actions.

 \Rightarrow The agents apply *myopic* (or, *local*) moves.

$$3: \quad C \succ L \succ P \succ B$$

$$\underline{P \mid C \mid L \mid B}$$

$$1 \mid 2 \mid 4 \mid 5 \mid 6 \mid 3 \mid 7$$

$$3: \quad C \succ L \succ P \succ B$$

$$\underline{P \mid C \mid L \mid B}$$

$$1 \mid 2 \mid 4 \mid 3 \mid 5 \mid 6 \mid 7$$

 $B \xrightarrow{3} L$ is an *improvement move* (or *better reply*) of agent 3

$$3: \quad C \succ L \succ P \succ B$$

$$\frac{P \quad C \quad L \quad B}{1 \quad 3 \quad 2 \quad 4 \quad 5 \quad 6 \quad 7}$$

 $B \xrightarrow{3} P$ is a *best reply* of agent 3

$$3: \quad C \succ L \succ P \succ B$$

$$P \mid C \mid L \mid B$$

$$1 \mid 2 \quad 3 \quad 4 \mid 5 \quad 6 \mid 7$$

 $B \xrightarrow{3} C$ is a restricted best reply (which is unique) for agent 3

- Voting setting:
 - Voting rule
 - Plurality

Voting setting:

- Voting rule
 - Plurality
- ► Tie-breaking rule
 - Deterministic
 - Randomised

Voting setting:

- Voting rule
 - Plurality
- Tie-breaking rule
 - Deterministic
 - Randomised

Number of voters, number of candidates

Voting setting:

- Voting rule
 - Plurality
- Tie-breaking rule
 - Deterministic
 - Randomised

Number of voters, number of candidates

- Agent types
 - Weighted
 - Unweighted

Voting setting:

- Voting rule
 - Plurality
- Tie-breaking rule
 - Deterministic
 - Randomised
- Number of voters, number of candidates
- Agent types
 - Weighted
 - Unweighted

Dynamics:

- Initial state
 - Truthful
 - Arbitrary

Dynamics:

- Initial state
 - Truthful
 - Arbitrary
- Improvement moves
 - Better replies
 - Best replies
 - Restricted best replies

Dynamics:

- Initial state
 - Truthful
 - Arbitrary
- Improvement moves
 - Better replies
 - Best replies
 - Restricted best replies

CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Our results

We show how the convergence depends on *all* of these game/dynamic attributes.

Deterministic tie-breaking

Theorem

If all agents have weight 1 and use restricted best replies, the game converges to a Nash equilibrium from any state.

Proof sketch

(by Reyhani & Wilson 2012)

- o_t outcome at step t
- Restricted best replies at any step t are of 2 types:
 - type 1: $a \to b$ where $a \neq o_{t-1}$ and $b = o_t$
 - type 2: $a \rightarrow b$ where $a = o_{t-1}$ and $b = o_t$
- We will show that there are
 - $\leq m$ moves of type 1 in total, and
 - $\leq m 1$ moves of type 2 for each voter.

Proof

$$PW_t = \{c | \exists i \in K : o_t \stackrel{i}{\rightarrow} c \Rightarrow c = o_{t+1}\}$$
 – potential winners at step t

Lemma

For t < t' we have $PW_{t'} \subseteq PW_t$.

Proof of the lemma

• Let
$$a \to b$$
 at step t. Then, $b = o_t$.

- Let $c \in PW_t$.
- Consider the scores of $b, c, y \ \forall y \in C \setminus \{a, b\}$:

$$s_{t-1}(c) + 1 = s_t(c) + 1 \succeq s_t(b) - 1 = s_{t-1}(b)$$

$$s_{t-1}(c) + 1 = s_t(c) + 1 \succeq s_t(y) = s_{t-1}(y)$$

where $c \succeq c'$ if s(c) > s(c') or s(c) = s(c') and c has a lower index.

Proof of the lemma (contd.)

- ▶ If $a \to b$ at step t is of type 2, then followed by $b \to c$ at step t+1 results in the same scores as $a \to c$ at step t. Hence, $c \in PW_{t-1}$.
- Otherwise, let $a' = o_t$ and note $a' \neq a, b$.
- We have:

$$s_{t-1}(c) + 1 \succeq s_{t-1}(a')$$

$$s_{t-1}(a') \succeq s_{t-1}(y) \qquad \forall y \in C$$

$$\Rightarrow s_{t-1}(c) + 1 \succeq s_{t-1}(a') \succeq s_{t-1}(a)$$

Hence, $c \in PW_{t-1}$.

Proof of the theorem (contd.)

- If $a \to b$ at step t is of type 1 then $a \notin PW_t$:
 - If a ∈ PW_t then b → a makes a a winner, a contradiction to a → b being of type 1.
- ▶ By the lemma, $a \notin PW_{t'}$ for all t' > t⇒ the number of type 1 moves is bounded by m.

▶ At every improvement step $a \xrightarrow{i} b$ of type 2, it must hold that $b \succ_i a$ ⇒ each voter can make at most m-1 steps of type 2.

Proof of the theorem (contd.)

- If $a \to b$ at step t is of type 1 then $a \notin PW_t$:
 - If a ∈ PW_t then b → a makes a a winner, a contradiction to a → b being of type 1.
- ▶ By the lemma, $a \notin PW_{t'}$ for all t' > t⇒ the number of type 1 moves is bounded by m.

▶ At every improvement step $a \xrightarrow{i} b$ of type 2, it must hold that $b \succ_i a$ ⇒ each voter can make at most m - 1 steps of type 2.
(Not restricted) best replies

- 3 candidates with initial scores $\left(1,0,0\right)$
- 2 voters with preferences

Cycle from an arbitrary state!

Better replies

- 4 candidates with initial scores (2, 2, 2, 0)
- 3 voters with preferences
 - ▶ 1,3 : $d \succ a \succ b \succ c$
 - $\blacktriangleright \quad 2: \mathbf{c} \succ \mathbf{b} \succ \mathbf{a} \succ \mathbf{d}$

 $dcd(2,2,3,2) \xrightarrow{1} bcd(2,3,3,1) \xrightarrow{3} bca(3,3,3,0)$

Better replies

- 4 candidates with initial scores (2, 2, 2, 0)
- 3 voters with preferences
 - ▶ 1,3: $d \succ a \succ b \succ c$
 - ► 2: $c \succ b \succ a \succ d$ $dcd(2, 2, 3, 2) \xrightarrow{1} bcd(2, 3, 3, 1) \xrightarrow{3} bca(3, 3, 3, 0)$ \uparrow_1 $\xrightarrow{2} bba(3, 4, 2, 0) \xrightarrow{1} cba(3, 3, 3, 0) \xrightarrow{2} cca(3, 2, 4, 0)$ Cycle from the truthful state!

Better replies

- 4 candidates with initial scores (2, 2, 2, 0)
- 3 voters with preferences
 - ▶ $1, 3: d \succ a \succ b \succ c$

•
$$2: c \succ b \succ a \succ d$$

 $dcd(2,2,3,2) \xrightarrow{1} bcd(2,3,3,1) \xrightarrow{3} bca(3,3,3,0)$
 \uparrow_1
 $\xrightarrow{2} bba(3,4,2,0) \xrightarrow{1} cba(3,3,3,0) \xrightarrow{2} cca(3,2,4,0)$

Cycle from the truthful state!

- No convergence for 3+ voters, even when start from the truthful state and use restricted best replies
- Convergence for 2 voters, if they both use restricted best replies or start from the truthful state

Randomised tie-breaking

- ► ≻_i does not induce a complete order over the oucomes, which are *sets* of candidates.
- ▶ We augment agents' preferences with cardinal utilities:
 - $u_i(c) \in \mathbb{R}$ utility of candidate c to voter i,
 - for multiple winners, $u_i(W) = \frac{\sum_{c \in W} u_i(c)}{|W|}$.
- A utility function u is *consistent* with a preference relation \succ_i if

$$u(c) > u(c') \Leftrightarrow c \succ_i c'$$

Randomised tie-breaking

- To prove convergence, we must show it is guaranteed for any utility function which is consistent with the given preference order.
- To disprove, it is sufficient to show a cycle for a *specific* assignment of utilities: *weak* counterexample.
- ▶ If the counterexample holds for any profile of utility scales, it is *strong*.

Weighted voters

- 3 candidates with initial scores (0, 1, 3)
- 2 voters weighted voters with preferences
 - ▶ $1: a \succ b \succ c$
 - ▶ $2: b \succ c \succ a$

Weighted voters

- 3 candidates with initial scores (0, 1, 3)
- 2 voters weighted voters with preferences

▶
$$1: a \succ b \succ \{b, c\} \succ c$$

▶
$$2: b \succ \{b, c\} \succ c \succ a$$

$w_2 = 3$ $w_1 = 5$	а	b	С
а	(8,1,3)	(5 ,4,3)	(5,1, <mark>6</mark>)
b	(3,6,3)	(0, <mark>9</mark> ,3)	(0, <mark>6,6</mark>)
С	(3,1,8)	(0,4, <mark>8</mark>)	(0,1, <mark>11</mark>)

No Nash equilibrium!

Weighted voters

- 3 candidates with initial scores (0, 1, 3)
- 2 voters weighted voters with preferences

▶
$$1: a \succ b \succ \{b, c\} \succ c$$

▶
$$2: b \succ \{b, c\} \succ c \succ a$$

$w_2 = 3$ $w_1 = 5$	а	b	С
а	(8,1,3)	(5 ,4,3)	(5,1, <mark>6</mark>)
b	(3,6,3)	(0, <mark>9</mark> ,3)	(0, <mark>6,6</mark>)
С	(3,1,8)	(0,4, <mark>8</mark>)	(0,1, <mark>11</mark>)

No Nash equilibrium!

Unweighted voters

Theorem

If all agents have weight 1 and use restricted best replies, the game converges to a Nash equilibrium from the truthful state.

```
Proof (skipped)
```

We show that in each step, an agent votes for a less preferred candidate.

Clearly holds for the first step. Proceed by induciton.

Hence, each voter can make only m-1 steps.

Less restricted dynamics

- Arbitrary state:
 - weak counterexample with 3 unweighted agents, even if they use restricted best replies
- Better replies:
 - strong counterexample with 3 unweighted agents
 - weak counterexample with 2 agents, even if they start from the truthful state

Summary

Deterministic Tie breaking

Dynamics	R. best reply		Best reply		Any better reply	
Initial state	Truth	Any	Truth	Any	Truth	Any
Weighted $(k > 2)$	Х	X	X	Х	X	X
Weighted $(k=2)$	V	V	V	Х	V	Х
Non-weighted	V	V		X	X	Х

Randomized Tie breaking

Dynamics	R. best	: reply	Any be	tter reply
Initial state	Truth Any		Truth	Any
Weighted	X	X	X	Х
Non-weighted	V	Х	X	Х

Summary

Deterministic Tie breaking

Dynamics	R. best reply		Best reply		Any better reply	
Initial state	Truth	Any	Truth	Any	Truth	Any
Weighted $(k > 2)$	X	Х	X	Х	X	X
Weighted $(k=2)$	V	V	V	Х	V	Х
Non-weighted	V	V	V (#)	Х	X	Х

(#) Reijngoud & Endriss, 2012

Randomized Tie breaking

Dynamics	R. best	: reply	Any better reply		
Initial state	Truth Any		Truth	Any	
Weighted	X	X	X	Х	
Non-weighted	V	Х	X	Х	

Truth biased agents

Vangelis's talk tomorrow

- Truth biased agents
 - Vangelis's talk tomorrow
- Quality of outcomes

- Truth biased agents
 - Vangelis's talk tomorrow
- Quality of outcomes
 - Simina's talk tomorrow

- Truth biased agents
 - Vangelis's talk tomorrow
- Quality of outcomes
 - Simina's talk tomorrow

Future work

Rules other than Plurality

Restricted Iterative Processes

- Rules other than Plurality
- Restricted Iterative Processes
- Iterative processes as a single-round game

- Rules other than Plurality
- Restricted Iterative Processes
- Iterative processes as a single-round game
 - Today's talks

- Rules other than Plurality
- Restricted Iterative Processes
- Iterative processes as a single-round game
 - Today's talks

Future work

- Rules other than Plurality
- Restricted Iterative Processes
- Iterative processes as a single-round game
- Weak acyclicity?
- Dynamics leading to desirable outcomes?

THE END

