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Introduction

Once upon a time...

“Life is worthless without love!”
- told Snow White the Seven Dwarfs
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Introduction

Once upon a time...

...and fell asleep
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Introduction

Once upon a time...

...for a long-long while.
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Introduction

Who will wake Snow White up?

I Prince (P)

I Prince Charming (C)

I Little Prince (L)

I Batman (B)
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The dwarfs have to choose

So they vote:

P C L B

1 2 3 4 5 6 7
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Introduction

The dwarfs have to choose

So they vote:

P C L B

1 2 3 4 5 6 7

C is elected (ties broken lexicographically)
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Introduction

But wait a minute...

The voters have the following preferences regarding the outcome:

1 : P � B � L � C
2 : P � B � C � L
3 : C � L � P � B
4 : C � B � P � L
5 : L � . . .
6 : L � . . .
7 : B � . . .
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Introduction

The dwarfs have incentives to strategise

So they may change their mind:

P C L B

2 3 4 5 6 1 7

C, L, B are tied (2 points)



CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Introduction

The dwarfs have incentives to strategise

So they may change their mind:

P C L B

2 3 4 5 6 1 7

B is elected (lexicographic tie-breaking)
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... and change the outcome!
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Introduction

It’s not yet the end...

The voters have the following preferences regarding the outcome:

1 : P � B � L � C
2 : P � B � C � L
3 : C � L � P � B
4 : C � B � P � L
5 : L � . . .
6 : L � . . .
7 : B � . . .
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Introduction

The dwarfs have incentives to strategise

So they may change their mind:

P C L B

2 4 3 5 6 1 7

L is elected (unique winner)
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It’s not yet the end...

The voters have the following preferences regarding the outcome:

1 : P � B � L � C
2 : P � B � C � L
3 : C � L � P � B
4 : C � B � P � L
5 : L � . . .
6 : L � . . .
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Introduction

The dwarfs have incentives to strategise

So they may change their mind:

P C L B

4 3 5 6 1 2 7

B is elected (lexicographic tie-breaking)
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Introduction

No more objections!

1 : P � B � L � C
2 : P � B � C � L
3 : C � L � P � B
4 : C � B � P � L
5 : L � . . .
6 : L � . . .
7 : B � . . .

P C L B

4 3 5 6 1 2 7
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Introduction

Happy end!
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Introduction

What are we after?

I Agents have to agree on a joint plan of action
or allocation of resources.

I Their individual preferences over available alternatives may vary,
so they vote.

I Agents may have incentives to vote strategically.

I We study the convergence of strategic behaviour to stable decisions,
from which no one will wish to deviate—equilibria.

I Agents may have no knowledge about the preferences of the others
and/or no communication.
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Model

Voting setting

I V = {1, . . . ,n} – set of voters (or agents)

I C = {c1, . . . , cm} – set of candidates (or alternatives)

I L(C ) – set of all strict linear orders (transitive, antisymmetric
and total relations) on C

I �i∈ L(C ) – agent i ’s private preference order over the candidates,
for each i ∈ V
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Model

Voting profile

I Pi ∈ L(C ) – vote of voter i (may or may not coincide with �i)
I P = (P1, . . . ,Pn) ∈ L(C )n – voting profile

I P = (Pi ,P−i) where P−i – set of partial votes of a subset V \ {i}
of all the agents but i

I P = (�1, . . . ,�n) – truthful profile
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Model

Voting rule

I F : L(C )n → 2C \ {∅} – voting rule
I determines the winners of the election
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I F : L(C )n → C – resolute voting rule
I returns a single winner
I paired with a tie-breaking rule

I deterministic (e.g., lexicographic)
I randomised
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Model

Plurality

I Each voter reports his top candidate:
I Pi ∈ C

I Voters may have different weights: wi ∈ N, ∀i ∈ V .

I The score of a candidate c is the total weight of agents voting for him:

s(c) =
∑

i∈V :Pi=c

wi

I The winner is selected from the candidates with the highest score.
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Model

Game-theoretical interpretation

The (Plurality) voting game is a normal form game 〈V ,C ,F ,�〉 where:

I V – set of agents = set of voters

I C – set of strategies = set of candidates

I F – voting rule (paired with a tie-breaking rule)

I � – profile of voters’ preferences over the candidates
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Model

Game-theoretical interpretation

The (Plurality) voting game is a normal form game 〈K ,C ,F ,�〉 where:

I K ⊆ V – set of agents = set of strategic voters

I B = V \K – sincere (non-strategic) voters

I C – set of strategies = set of candidates

I F (P), where P = (PK ,PB ), is an outcome

I Agent i ∈ K prefers profile P ′ over profile P if F (P ′) �i F (P)
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Model

Voting as a normal form game

3 candidates with initial scores:

I sB (a) = 7

I sB (b) = 9

I sB (c) = 3

XXXXXXXXXXXw1 = 3
w2 = 4

a b c

a

b

c
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Model

Voting as a normal form game

3 candidates with initial scores:

I sB (a) = 7

I sB (b) = 9

I sB (c) = 3

XXXXXXXXXXXw1 = 3
w2 = 4

a b c

a (14, 9. 3) (10, 13, 3) (10, 9. 7)

b (11, 12, 3) (7, 16, 3) (7, 12, 7)

c (11, 9. 6) (7, 13, 6) (7, 9, 10)
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Model

Voting as a normal form game

Agents’ preferences:

I 1 : a � b � c

I 2 : c � a � b
XXXXXXXXXXXw1 = 3

w2 = 4
a b c

a (14, 9. 3) (10, 13, 3) (10, 9. 7)

b (11, 12, 3) (7, 16, 3) (7, 12, 7)

c (11, 9. 6) (7, 13, 6) (7, 9, 10)
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Model

Voting in turns (a.k.a. “iterative voting”)

I Agents start from some initial profile (e.g., truthful).

I They change their votes in turns.

I At each step, a single agent makes a move.

I The game ends when there are no more objections.

I Implemented in polls via Doodle or Facebook.



CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Model

Voting in turns (a.k.a. “iterative voting”)

I Agents start from some initial profile (e.g., truthful).

I They change their votes in turns.

I At each step, a single agent makes a move.

I The game ends when there are no more objections.

I Implemented in polls via Doodle or Facebook.



CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Model

Improvement moves

Agents make rational moves to improve their state, when

I they do not know the preferences of the others,

I and cannot coordinate their actions.

⇒ The agents apply myopic (or, local) moves.
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Improvement moves

3 : C � L � P � B

P C L B

1 2 4 5 6 3 7
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B
3→ L is an improvement move

(or better reply) of agent 3
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Model

Improvement moves

3 : C � L � P � B

P C L B

1 3 2 4 5 6 7

B
3→ P is a best

reply of agent 3
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Model

Improvement moves

3 : C � L � P � B

P C L B

1 2 3 4 5 6 7

B
3→ C is a restricted best reply

(which is unique) for agent 3
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Variations of the game

Voting setting:

I Voting rule
I Plurality

I Tie-breaking rule
I Deterministic
I Randomised

I Number of voters, number of candidates
I Agent types

I Weighted
I Unweighted
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I Arbitrary

I Improvement moves
I Better replies
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Model

Our results

We show how the convergence depends
on all of these game/dynamic attributes.
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Model

Deterministic tie-breaking

Theorem

If all agents have weight 1 and use restricted best replies,
the game converges to a Nash equilibrium from any state.



CONVERGENCE TO EQUILIBRIA IN PLURALITY VOTING

Model

Proof sketch

(by Reyhani & Wilson 2012)

I ot – outcome at step t

I Restricted best replies at any step t are of 2 types:
I type 1: a → b where a 6= ot−1 and b = ot
I type 2: a → b where a = ot−1 and b = ot

I We will show that there are
I ≤ m moves of type 1 in total, and
I ≤ m − 1 moves of type 2 for each voter.
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Model

Proof

PWt = {c
∣∣∃i ∈ K : ot

i→ c ⇒ c = ot+1} – potential winners at step t

Lemma

For t < t ′ we have PWt ′ ⊆ PWt .
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Model

Proof of the lemma

I Let a → b at step t . Then, b = ot .

I Let c ∈ PWt .

I Consider the scores of b, c, y ∀y ∈ C \ {a, b}:

st−1(c) + 1 = st(c) + 1 � st(b)− 1 = st−1(b)

st−1(c) + 1 = st(c) + 1 � st(y) = st−1(y)

where c � c′ if s(c) > s(c′) or s(c) = s(c′) and c has a lower index.
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Model

Proof of the lemma (contd.)

I If a → b at step t is of type 2, then followed by b → c at step t + 1
results in the same scores as a → c at step t . Hence, c ∈ PWt−1.

I Otherwise, let a ′ = ot and note a ′ 6= a, b.

I We have:

st−1(c) + 1 � st−1(a
′)

st−1(a
′) � st−1(y) ∀y ∈ C

⇒ st−1(c) + 1 � st−1(a
′) � st−1(a)

Hence, c ∈ PWt−1.

2
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Model

Proof of the theorem (contd.)

I If a → b at step t is of type 1 then a /∈ PWt :
I If a ∈ PWt then b → a makes a a winner,

a contradiction to a → b being of type 1.

I By the lemma, a /∈ PWt ′ for all t ′ > t
⇒ the number of type 1 moves is bounded by m.

I At every improvement step a
i→ b of type 2, it must hold that b �i a

⇒ each voter can make at most m − 1 steps of type 2.

2
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Model

(Not restricted) best replies

3 candidates with initial scores (1, 0, 0)

2 voters with preferences

I 1 : a � b � c

I 2 : c � b � a

XXXXXXXXXXXvoter 1
voter 2

a b c

a

b (1,2,0) (1,1,1)

c (1,1,1) (1,1,1)

Cycle from an arbitrary state!
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Model

Better replies

4 candidates with initial scores (2, 2, 2, 0)

3 voters with preferences

I 1, 3 : d � a � b � c

I 2 : c � b � a � d

dcd(2, 2, 3, 2)
1→ bcd(2, 3, 3, 1)

3→ bca(3, 3, 3, 0)

↑1
2→ bba(3, 4, 2, 0)

1→ cba(3, 3, 3, 0)
2→ cca(3, 2, 4, 0)

Cycle from the truthful state!
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Model

Weighted voters

I No convergence for 3+ voters, even when
start from the truthful state and use restricted best replies

I Convergence for 2 voters, if they both
use restricted best replies or start from the truthful state
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Model

Randomised tie-breaking

I �i does not induce a complete order over the oucomes,
which are sets of candidates.

I We augment agents’ preferences with cardinal utilities:
I ui(c) ∈ R – utility of candidate c to voter i ,

I for multiple winners, ui(W ) =
∑

c∈W ui (c)

|W | .

I A utility function u is consistent with a preference relation �i if

u(c) > u(c′)⇔ c �i c
′
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Model

Randomised tie-breaking

I To prove convergence, we must show it is guaranteed for any
utility function which is consistent with the given preference order.

I To disprove, it is sufficient to show a cycle for a specific assignment
of utilities: weak counterexample.

I If the counterexample holds for any profile of utility scales, it is strong.
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Weighted voters

3 candidates with initial scores (0, 1, 3)

2 voters weighted voters with preferences

I 1 : a � b � c

I 2 : b � c � a
XXXXXXXXXXXw1 = 5

w2 = 3
a b c

a (8,1,3) (5,4,3) (5,1,6)

b (3,6,3) (0,9,3) (0,6,6)

c (3,1,8) (0,4,8) (0,1,11)
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Unweighted voters

Theorem

If all agents have weight 1 and use restricted best replies,
the game converges to a Nash equilibrium from the truthful state.
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Model

Proof (skipped)

We show that in each step, an agent votes for a less preferred candidate.

I Clearly holds for the first step. Proceed by induciton.

Hence, each voter can make only m − 1 steps.
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Model

Less restricted dynamics

I Arbitrary state:
I weak counterexample with 3 unweighted agents,

even if they use restricted best replies

I Better replies:
I strong counterexample with 3 unweighted agents
I weak counterexample with 2 agents,

even if they start from the truthful state
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Summary

Deterministic Tie breaking
Dynamics R. best reply Best reply Any better reply

Initial state Truth Any Truth Any Truth Any

Weighted (k > 2) X X X X X X
Weighted (k = 2) V V V X V X
Non-weighted V V X X X

Randomized Tie breaking
Dynamics R. best reply Any better reply

Initial state Truth Any Truth Any

Weighted X X X X
Non-weighted V X X X
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Summary

Deterministic Tie breaking
Dynamics R. best reply Best reply Any better reply

Initial state Truth Any Truth Any Truth Any

Weighted (k > 2) X X X X X X
Weighted (k = 2) V V V X V X
Non-weighted V V V (#) X X X

(#) Reijngoud & Endriss, 2012

Randomized Tie breaking
Dynamics R. best reply Any better reply

Initial state Truth Any Truth Any

Weighted X X X X
Non-weighted V X X X
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Model

Future work

I Rules other than Plurality

I Restricted Iterative Processes

I Iterative processes as a single-round game

I Weak acyclicity?

I Dynamics leading to desirable outcomes?
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Happy end!

THE END
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