Binary Aggregation by
Selection of the Most Representative Voter

Umberto Grandi

Department of Mathematics
University of Padova

14 May 2014

[Joint work with Ulle Endriss]
Selection of the Closest Opinion

\[
\text{argmin}_{\{o_i \mid i \in \mathcal{N}\}} \, d(o_i, o_1, \ldots, o_n)
\]
Selection of the Most Representative Voter

\[\text{argmin} \left\{ o_i \mid i \in \mathcal{N} \right\} \]
\[d(o_i, o_1, \ldots, o_n) \]
1. A general framework for aggregation problems:
 - Binary aggregation with integrity constraints
 - Preferences, judgments, multi-issue elections...
 - Generalised dictatorships

2. Selection of the most representative voter:
 - Average voter rule (AVR)
 - Majority voter rule (MVR)
 - Ranked voter rule (RVR)

3. Properties of most-representative-voter rules:
 - Approximation results
 - Computational complexity
 - Axiomatic properties
Binary Aggregation

Ingredients:
- A finite set \mathcal{N} of individuals
- A finite set $\mathcal{I} = \{1, \ldots, m\}$ of issues
- A boolean combinatorial domain: $\mathcal{D} = \{0, 1\}^\mathcal{I}$

Definition

An aggregation procedure is a function $F : \mathcal{D}^\mathcal{N} \rightarrow \mathcal{D}$ mapping each profile of ballots $B = (B_1, \ldots, B_n)$ to an element of the domain \mathcal{D}.

Wilson (1975), Dokow and Holzman (JET 2010), Grandi and Endriss (AIJ 2013)
A propositional language \mathcal{L} to define the subset of rational ballots in $\{0, 1\}^I$:

- One propositional symbol for every issue: $PS = \{p_1, \ldots, p_m\}$
- \mathcal{L}_{PS} closed under connectives \land, \lor, \neg, \rightarrow the set of atoms PS

Given an integrity constraint $IC \in \mathcal{L}_{PS}$, a rational ballot is $B \in \text{Mod}(IC)$
Integrity Constraints

A propositional language \mathcal{L} to define the subset of rational ballots in $\{0, 1\}^I$:

- One propositional symbol for every issue: $PS = \{p_1, \ldots, p_m\}$
- \mathcal{L}_{PS} closed under connectives \land, \lor, \neg, \rightarrow the set of atoms PS

Given an integrity constraint $IC \in \mathcal{L}_{PS}$, a rational ballot is $B \in \text{Mod}(IC)$

Example: Three agents with sensors

Perform action A if both parameters T_1 and T_2 exceed the thresholds.
Propositional constraint: $IC = (p_{T_1} \land p_{T_2}) \rightarrow p_A$

Individual 1 submits $B_1 = (1, 1, 1)$: B_1 satisfies IC ✓
Individual 2 submits $B_2 = (0, 1, 0)$: $B_2 \models IC$ ✓
Individual 3 submits $B_3 = (1, 0, 0)$: $B_3 \models IC$ ✓

Majority aggregation outputs $(1, 1, 0)$: IC not satisfied.
Preference Aggregation as Binary Aggregation

Agent 1 \(A > B > C \)
Agent 2 \(B > C > A \)
Agent 3 \(C > A > B \)

\[\text{Maj} \quad A > B > C > A !! \]

Condorcet Paradox (1785)

Preferences as binary ballots + integrity constraint

\[
\begin{array}{ccc}
A > B & B > C & A > C \\
\text{Agent 1} & 1 & 1 & 1 \\
\text{Agent 2} & 0 & 1 & 0 \\
\text{Agent 3} & 1 & 0 & 0 \\
\text{Maj} & 1 & 1 & 0 \\
\end{array}
\]
The Discursive Dilemma

<table>
<thead>
<tr>
<th>Agent</th>
<th>Propositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${\alpha, \beta, \alpha \land \beta}$</td>
</tr>
<tr>
<td>2</td>
<td>${-\alpha, \beta, -(\alpha \land \beta)}$</td>
</tr>
<tr>
<td>3</td>
<td>${\alpha, -\beta, -(\alpha \land \beta)}$</td>
</tr>
<tr>
<td>Maj</td>
<td>${\alpha, \beta, -(\alpha \land \beta)}$</td>
</tr>
</tbody>
</table>

Judgments as binary ballots + integrity constraint

$$IC = \neg(p_\alpha \land p_\beta \land p_{-(\alpha \land \beta)})$$

<table>
<thead>
<tr>
<th></th>
<th>p_α</th>
<th>p_β</th>
<th>$p_{\alpha \land \beta}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Agent 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Agent 3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maj</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Proposition - Majority rule

The majority rule does not generate a paradox with respect to IC if and only if IC is equivalent to a conjunction of clauses of size ≤ 2 (i.e., 2-CNF)
Avoid paradoxes? Characterisation results and generalised dictatorship

Proposition - Majority rule

The majority rule does not generate a paradox with respect to IC if and only if IC is equivalent to a conjunction of clauses of size ≤ 2 (i.e., 2-CNF).

How to avoid all paradoxes?

Proposition - Avoid all paradoxes

An aggregation procedure does not generate a paradox with respect to all IC if and only if it copies the ballot of a (possibly different) individual in every profile.

Grandi and Endriss, Lifting Integrity Constraints in Binary Aggregation. AIJ, 2013.
Distance-based rules in judgment aggregation

Definition - Distance-based rule

The DBR (aka Kemeny rule, Prototype) picks the consistent ballots minimising the sum of the Hamming distances to the individual ballots. Θ^p_2-complete

Definition - Slater rule

The Slater rule (aka Endpoint) picks the consistent ballots minimising the Hamming distance to the outcome of the majority rule. NP-hard (at least)

Definition - Ranked agenda

The ranked-agenda rule picks the consistent ballots obtained by sequential majority following the order given by the strength of acceptance. Δ^p_2-hard.

Lang and Slavkovijk, ECAI-2014.
Selection of the Most Representative Voter

Restrict the search space to $\text{Supp}(B) = \{B_1, \ldots, B_n\}$

Definition
The **average-voter rule** is the aggregation rule that selects those individual ballots that minimise the Hamming distance to the profile:

$$\text{AVR}(B) = \arg\min_{B \in \text{Supp}(B)} \sum_{i \in N} H(B, B_i)$$

Definition
The **majority-voter rule** is the aggregation rule that selects those individual ballots that minimise the Hamming distance to one of the majority outcomes:

$$\text{MVR}(B) = \arg\min_{B \in \text{Supp}(B)} \min \{H(B, B') \mid B' \in \text{Maj}(B)\}$$

The RVR is defined in a similar way...
An Example

The AVR, the MVR and the majority rule can give radically different results:

<table>
<thead>
<tr>
<th>Issue:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 voter:</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10 voters:</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10 voters:</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Maj: 0 0 0 0 0 0
MVR: 1 0 0 0 0 0
AVR: 0 1 1 0 0 0

Hamming distance of AVR from the profile: 53
Hamming distance of MVR from the profile: 70

Observation

\[\mathcal{H}(\text{AVR}(B), B) \leq \mathcal{H}(\text{MVR}(B), B) \] where \(\mathcal{H}(B, B) = \sum_i H(B, B_i) \)
Can we compare the outcome of the ideal rule – DBR aka Kemeny – with that of our AVR, MVR, RVR?

Definition - Approximation

F is said to be an α-approximation of DBR^{IC} if for every profile B:

$$\mathcal{H}(F(B), B) \leq \alpha \cdot \mathcal{H}(\text{DBR}^{IC}(B), B)$$

Good approximation if α is a constant.
Preliminary facts about the distance-based procedure

The definition of the distance-based rule depends on the constraint:

$$\text{DBR}^{\text{IC}}(B) = \arg\min_{B \in \text{Mod}^{\text{IC}}} \sum_{i \in N} H(B, B_i)$$

In particular, $\text{DBR}^\top = \text{Maj}$ (the majority rule). With stronger constraints?

Lemma

If IC entails IC', then $H(\text{DBR}^{\text{IC}}(B), B) \geq H(\text{DBR}^{\text{IC}'}(B), B)$ for every profile $B \in \text{Mod}^{\text{IC}}$n.

And a baseline result:

Proposition

Every rule based on the most representative voter is an $O(n)$-approximation of the DBR^{IC}.
Recall that n is the number of individuals, m is the number of issues.

Theorem

The RVR is a $\Theta(n)$-approximation of Maj (even if m is bounded).

Proof. The upper bound is given by the result on the previous slide. The lower bound is obtained by showing a family of profiles where the result of the RVR is n-far from that of Maj.
Positive Results

Theorem

The AVR and the MVR are strict 2-approximations of the DBR

The AVR can go closer than 2 if \(m \) is bounded or the IC is restrictive:

Theorem

Let \(m \) be constant. Then the AVR is an \(\alpha \)-approximation of the DBR

Theorem

Let \(m \) be constant and let IC be a conjunction of \(k \) distinct literals. Then the AVR is an \(\alpha \)-approximation of the DBR

The MVR cannot do better, even with a bounded number of issues.
Recall that m is the number of issues; n is the number of voters.

Winner determination for the AVR is in $O(mn \log n)$

Winner determination for the MVR is in $O(mn)$

Conclusion? Both rules are easy to compute (MVR is easier)
Axiomatic Properties

Rules based on the most representative voter satisfy interesting properties:

- No paradox ever, whatever the IC (no other rule has this property)
- Unanimity guaranteed (obvious)
- Neutrality guaranteed (less obvious)

\[F \text{ satisfies reinforcement if for any two profiles } B \text{ and } B' \text{ such that:} \]

- \(\text{Supp}(B) = \text{Supp}(B') \)
- \(F(B) \cap F(B') \neq \emptyset \)

we have that \(F(B \oplus B') = F(B) \cap F(B') \)

Theorem

The AVR satisfies reinforcement, but the MVR does not.
Conclusions

Characterisation results in binary aggregation with integrity constraints suggests novel simple procedures to be used in practice:

- **AVR**: voters minimizing average distance
- **MVR**: voters minimizing distance from majority
- **RVR**: voters chosen by sequential majority following strength order

Very good properties (AVR and MVR):

- Outcome will never be paradoxical
- Very low complexity
- Social-choice theoretic properties (not independence!)
- 2-approximation of distance-based rule (aka Kemeny)

Not all definitions work well: RVR is a bad approximation.

Endriss and Grandi. Binary Aggregation by Selection of the Most Representative Voter. AAAI-2014