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1 Introduction

The problem of maximisation of a utility function of the wealth of an investor
operating in financial markets is a classical one. Very early on (even before modern
finance saw the light with the celebrated Black and Scholes formula), it was
discovered that, when the investor maximises a utility function u belonging to a
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`good' class, then his optimal portfolio consists of allocating his wealth in constant
proportion between the assets in the market: this result holds both in discrete
(Samuelson, 1969) as well as in continuous time (Merton, 1969). These `good'
functions are the so-called HARA (hyperbolic absolute risk aversion) utility
functions, characterised by the fact that ÿu00�x�=u0�x� � �=x, that is the so-called
Pratt's absolute risk aversion (Pratt, 1964), is an hyperbole. These utility functions
are, thus, u�x� � log x and u�x� � x=, with  � 1ÿ � < 1 (the case  � 0
corresponding to the logarithm). Notice that this result does not necessarily hold
true if the utility function has another generic form. These results, originally proven
by the use of dynamic programming, have been recently generalised using convex
duality, even in incomplete diffusion markets (Karatzas et al., 1991).

In this paper, we solve the same problem in a market where a riskless asset and n
risky assets are present and the risky assets, driven by an m-dimensional Poisson
process with independent components and constant intensities, can jump upwards or
downwards in continuous time. This is an extension of the multinomial model, in the
sense that the price of the risky assets can increase or decrease for fixed factors but, in
this model, the instants of these changes are not fixed but random. While market
models which include jumps already appeared in the literature in the field of utility
maximisation problems dealing with only one risky asset (Bellamy, 2001;
Jeanblanc PicqueÂ and Pontier, 1990) and in other contexts (Korn et al., 2003; Lim
and Zhou, 2004; Runggaldier, 2003), to the authors' knowledge this is the first time
that the utility maximisation problem is explicitly solved in a multidimensional model
which includes jumps. Also, this model can be obtained if one assumes that the price
vector of the risky assets is driven by a multivariate Poisson process (Runggaldier,
2003). This model can be significant when dealing (for example) with high-frequency
data, where the evolution of the prices has not a continuous evolution but all the
price movements are due to jumps. Also, by assigning to some of the intensities
values much smaller or much greater than the others, one can represent models where
different time scales play different roles. As these assets are modelled via m > n
independent Poisson processes with constant intensities, this market is incomplete.
The final result is that the optimal strategy of the investor is to keep constant
proportions of his wealth in the market's assets, thus, it is similar to the previous
strategies already present in literature about HARA utility functions.

In order to derive our results, we use the by-now classical method of convex
duality (see Schachermayer (2004) for a survey). This method consists of
transforming the original `primal' utility maximisation problem into an equivalent
`dual' problem, where we minimise the so-called conjugate function of u over the set
of all equivalent martingale measures: it is well known that, in our situation, an
equivalent change of measure corresponds to changing the intensities of the Poisson
processes. We characterise this minimiser and show that the Poisson processes still
have constant intensities under this optimal martingale measure. The advantages of
using the convex-duality approach instead of a direct method (Callegaro et al., 2006)
are, mainly, that we explicitly obtain the optimal equivalent martingale measure �,
which is very useful in many situations and that, with this formulation, � can be
clearly seen to be unique. By the use of this characterisation, we find the optimal final
wealth and show that it is admissible by proving that the so-called duality gap is zero.
Finally, we show that there exists a portfolio strategy which realises the optimal
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portfolio and, by calculating it explicitly, we find out that it corresponds to keeping
fixed proportions of wealth at each time in the riskless and in the risky assets, these
proportions being functions of the coefficients of the assets and of the utility
function's parameters. This allows us to see a difference between our market and a
diffusion market: in fact, in the latter case the optimal portfolio in the risky assets is
proportional to a fixed vector of risky assets' proportions of the total wealth and this
proportionality only depends on the risk-aversion coefficient  (Karatzas et al., 1991).
We show, by using a counter-example, that in our market this is no longer true.

The paper is organised as follows: in Section 2 we present the market model and
state the utility maximisation problem. In Section 3 we characterise all the martingale
measures of this market. In Section 4 we state and solve the dual problem. In Section
5 we characterise the optimal final wealth in terms of the optimal martingale measure
and show that it is admissible for the primal problem. In Section 6 we characterise
the optimal portfolio strategy. In Section 7 we analyse the complete market case and
in Section 8 we obtain more explicit results for the case N � 1, M � 2. Finally, in
Section 9 we show that the dependence of the optimal portfolio proportions on the
risk-aversion coefficient is more representative of a simple scalar dependence.

2 The market model and the primal problem

We consider an extension of the multinomial model, in the sense that the price of the
risky assets can increase or decrease due to fixed factors, but the instants of these
changes are not fixed but random. The financial market considered, then, consists of
a money market account with price Bt and n risky assets Si

t; i � 1; . . . ; n, whose
dynamics are given, under the measure , by the following stochastic differential
equations:

dBt � rBtdt

dSi
t � Si

tÿ
Xm
j�1
�eaij ÿ 1�dNj

t

" #
; i � 1; . . . ; n;

�1�

where we impose that the n�mmatrix A :� �eaij ÿ 1�i�1;...;n;j�1;...;m has maximum rank
and �Nt�t � �N1

t ; . . . ;Nm
t �t is an m-dimensional Poisson process, with m � n, on a

complete filtered probability space �
, F , , �F t�t�, where �F t�t is the right-continuous
filtration generated by N augmented by all the -null sets of 
. We assume that the m
components are independent and that their intensities, � j, j � 1; . . . ;m, are positive
constants. Equivalently we have:

Bt � B0e
rt

Si
t � Si

0 exp
Xm
j�1

aijN
j
t

" #
; i � 1; . . . ; n:

Such a market is, in general, incomplete if m > n. Furthermore, if we suppose that
there is no arbitrage possibility, this implies that there exists at least a martingale
measure equivalent to (possibly infinite many if the market is incomplete), which
we call EMM (equivalent martingale measure) for short.

G. Callegaro and T. Vargiolu182



Finally, let ��;�� � ��1
t ; . . . ; �n

t ; �t�t be an �n� 1�-uple of F t-predictable processes,
representing the investment strategy at time t 2 �0;T�, where �i

t is the number of units
of the i-th asset and �t is the number of units of the riskless assets which are held in
the portfolio at time t. The processes �i

t and �t have to satisfy the following
integrability conditions with respect to the compensated processes Mj

t : 8t � 0,
8i � 1; . . . ; n; j � 1; . . . ;m,Z t

0

j�i
sjSi

s�
j ds <1;

Z t

0

j�sj� j ds <1 -a.s. �2�

The value at time t of a portfolio corresponding to the strategy ��; �� is, then, the
F t-measurable random variable

Vt �
Xn
i�1

�i
tS

i
t � �tBt:

The portfolio is self-financing if:

dVt �
Xn
i�1

�i
tdS

i
t � �tdBt:

Notice that if the portfolio is self-financing and if we know V0�v and ����1
t ;. . . ;�n

t �t,
we then, also, know Vt and �t, 8t. In this case we often indicate the portfolio as V�.

With these elements, we can formulate the primal problem for a generic utility
function: given an initial wealth v and a fixed time horizon T, maximise the expected
value of the utility of the terminal value of the self-financing portfolio

max� E u�V�
T�

� 	
� : self-financing strategy such that
E �Bÿ1T V�

T� � v 8 EMM:

8<: �3�

When u is of the HARA class, then

u�x� � x=;  < 1;  6� 0
log x;  � 0:

�
Notice that if � is a self-financing strategy, the discounted value of the portfolio
�Bÿ1t V�

t �t is a ( , F t)-martingale 8 EMM. For this reason, the meaning of the
constraint E �Bÿ1t V�

t � in Equation (3) is that the investor's initial wealth is less than
or equal to v.

The primal problem can be solved in two steps:

Step 1: determine V�T which solves the problem (without �)

maxE u�VT�f g
VT 2 Vv

�
�4�

where we define

Vv :� VTr:v: : E �Bÿ1T VT� � v 8 EMM
� 	

: �5�
Step 2: determine the optimal investment strategy �� such that

V��
T � V�T a:s:
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3 The set of all the EMMs

Let us now consider the compensated Poisson processes under the measure :

Mj
t :� Nj

t ÿ
Z t

0

� jdu � Nj
t ÿ � jt; j � 1; . . . ;m �6�

which are ( , F t)-martingales. If we introduce the discounted prices ~Si
t :� Si

t=Bt, the
dynamics under the measure are (Equation (1))

d ~Si
t � d�Si

t=Bt� � ~Si
tÿ
Xm
j�1
�eaij ÿ 1� dNj

t ÿ r dt

( )
: �7�

The Radon-Nikodym derivative for an absolutely continuous change of measure from
to , that implies a change of the Poisson intensities from � j to � j j

t ; j � 1; . . . ;m,
is:

d

d
� ZT � 1; . . . ;  m� � exp

Z T

0

Xm
j�1
�1ÿ  j

t �� jdt�
Z T

0

Xm
j�1

log j
t dNj

t

( )
�8�

where  j, j � 1; . . . ;m, must be non-negative predictable processes, satisfyingZ T

0

 j
s�

j ds <1 -a.s. �9�

Furthermore, we want the Radon-Nikodym derivative to give a probability measure,
so the processes  j, j � 1; . . . ;m, must be such that the following condition holds
true:

E fZtg � 1 8t 2 �0;T�: �10�
A sufficient condition for Equation (10) to be valid can be found in BreÂ maud (1981,
Theorem VIII, T11). Defining the Poisson martingales Mj , j � 1; . . . ;m, by

dMj
t � dNj

t ÿ � j j
t dt

the dynamics of ~Si; i � 1; . . . ; n, under become (Equation (7)),

d ~Si
t � ~Si

tÿ
Xm
j�1
�eaij ÿ 1� dMj

t �
Xm
j�1
�eaij ÿ 1�� j j

tdtÿ rdt

( )
; i � 1; . . . ; n: �11�

Taking as numeraire, as usual, the money market account Bt, we immediately see
that is a martingale measure, i.e., a measure under which ~St is a martingale, if and
only if the  j � 0, j � 1; . . . ;m are chosen such thatXm

j�1
�eaij ÿ 1�� j j

t � r; -a.s. for all t �12�

for all i � 1; . . . ; n. We have obtained infinitely many martingale measures
characterised by the Radon-Nikodym densities and the Radon-Nikodym density
processes
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d  

d
� Z 

T; Z 
t �

d  

d

����
F t

each one parameterised by the process  such that Equations (9), (10) and (12) hold.
The set of positive processes  , which parameterise the set of the EMM and make

Equations (9), (10) and (12) hold, will be denoted by N r.

4 The dual problem and its solution

Using the theory of convex duality in Luenberger (1969), we now introduce the dual
problem and we solve it in order to solve the primal problem.

First of all, define the dual functional

L� ; �� : � sup
VT

E �u�VT�� ÿ �E  �Bÿ1T VT� � �v
n o

� �v� sup
VT

E �u�VT� ÿ �Z 
TB
ÿ1
T VT�

n o
:

Recalling the definition of conjugate convex function ~u��� associated with u���:
~u�b� � sup

x�0
u�x� ÿ xbf g; b > 0

we have

L� ; �� � �v� E ~u��Z 
TB
ÿ1
T �

h i
:

So our dual problem is

min L� ; ��
 2 N r; � > 0:

�
�13�

In our specific case of HARA utility functions, the conjugate convex function is

~u�b� �
ÿb ~= ~; if  < 1;  6� 0; with ~ :� 

 ÿ 1

log
1

b

� �
ÿ 1; if  � 0:

8><>:
In order to find the minimum of the dual problem, we first minimise L with respect to
 , for all fixed � 2 � and obtain an optimum  �, then we minimise with respect to �
and obtain an optimum ��.

4.1 The optimal  �

For all fixed � > 0, the dual problem (Equation 13) is equivalent to

min
 2N r

E ~u�Z 
T�

h i
: �14�

In fact, if  < 1,  6� 0 we have

L� ; �� � �vÿ E
1

~
��Z 

TB
ÿ1
T � ~

� �
� �vÿ �

BT

� � ~

E
1

~
�Z 

T� ~

� �
� �v� �

BT

� � ~

E ~u�Z 
T�

h i
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while if  � 0 we have

L� ; �� � �vÿ 1ÿ E log��Z 
TB
ÿ1
T �

h i
� �vÿ 1ÿ log

�

BT

� �
ÿ E log�Z 

T�
h i

� �vÿ log
�

BT

� �
� E ~u�Z 

T�
h i

:

Theorem 4.1. The solution to Equation (14) is given by the positive process  �t �  �,
where � �; ��� is an �m� n�-dimensional vector which is the unique solution to the
algebraic system Xn

i�1
��i�eaij ÿ 1� � � j� 1

ÿ1 ÿ 1; j � 1; . . . ;m

Xm
j�1
�eaij ÿ 1�� j j � r; i � 1; . . . ; n:

8>>>><>>>>: �15�

Remark 4.2. Note that by introducing the vectors �� � � ��1; . . . ; ��n� and 	 �
�� 1

t � ~ÿ1 ÿ 1; . . . ; � m
t � ~ÿ1 ÿ 1� and using the fact that the matrix A has maximum

rank, the first m equations in Equation (15) can be rewritten in the more compact
form

��� � 	AT�AAT�ÿ1

Proof. We can see Equation (14) as a stochastic control problem of a pure-jump
process of the kind

��z; t� � inf
 2N r

J� ��z; t� � inf
 2N r

E ~u�Z 
T�jZ 

t � z
h i

�16�

where the control process is  2 N r and the controlled jump process is Z 
t , whose

dynamics is

dZ 
s � Z 

sÿ
Pm

j�1�1ÿ  j
s�� jds�Pm

j�1� j
s ÿ 1�dNj

s

n o
; t < s

Z 
t � z:

(
�17�

As known, the solution to Equation (16) is linked to the following HJB equation
(éksendal and Sulem, 2005, Th. 3.1)

inf
 2N r

z
Xm
j�1
�1ÿ  j

t�� j

" #
@�

@z
�z; t��

Xm
j�1

Z
��z�zy� j

tÿ1�; t�ÿ��z; t�
� �

� j�1�dy�
( )

� @�
@t
�z; t� � 0

�18�
where � j�1�dy� � �j�dy� is the LeÂ vy measure of Nj, j � 1; . . . ; n. If we try a solution
of the kind

��z; t� � ÿ 1

~
k�t�z ~ for  < 1;  6� 0;
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with k a positive C1 function, we get

inf
 2N r

ÿk�t�z ~
Xm
j�1
�1ÿ  j

t�� j

" #
ÿ 1

~
k�t�z ~

Xm
j�1
�� j

t�
~ ÿ 1�� j

" #( )
ÿ 1

~
k0�t�z ~ � 0

which is equivalent to

k�t�z ~ inf
 2N r

Xm
j�1
� j

t ÿ 1�� j ÿ 1

~
�� j

t�
~ ÿ 1�� j

( )
ÿ 1

~
k0�t�z ~ � 0:

An optimal  � is then a solution to the problem

inf
 2N r

Xm
j�1
� j

t ÿ 1�� j ÿ 1

~
�� j

t�
~ ÿ 1�� j

� �
for all t 2 �0;T� and so, to find the optimal EMM we have to solve the following
constrained convex optimal problem (recall Equation (12))

min
Xm
j�1
� j

t ÿ 1�� j ÿ 1

~
�� j

t�
~ ÿ 1�� j

� �
 j
t � 0; j � 1; . . . ;m;Xm

j�1
�eaij ÿ 1�� j j

t � r; i � 1; . . . ; n:

8>>>>>>><>>>>>>>:
�19�

The solution  � to Equation (19) is unique and given by the solution of Equation
(15), as it will be shown in Lemma 4.3. By putting k��t� :� er

��tÿT�, where

r� :� ~
Xm
j�1
� � ÿ 1�� j ÿ

Xm
j�1
�� �� ~ ÿ 1�� j

we have that ��z; t� :� ÿ 1
~ k
��t�z ~ solves the HJB Equation (18) with final condition

��z;T� � ÿ 1
~ z

~ . Then, by éksendal and Sulem (2005),  � solves our problem.
The case  � 0 is analogous (the proof in this case is even simpler recalling the

definition of intensity of a Poisson process (BreÂ maud, 1981)).

Lemma 4.3. The solution  � to the constrained convex optimisation Equation (19) is
unique and it is given by the unique solution � �; ���� to Equation (15).

Proof. Our aim is to prove that, in order to determine the optimal  �t , we can consider
and easily solve a problem equivalent to Equation (19), where the admissible region
is compact.

The admissible region is not empty because we have assumed absence of arbitrage
on the market and so (by the first fundamental theorem of asset pricing) there exists
at least one equivalent martingale measure, i.e., the constraint in Equation (19) holds
for at least one vector � t�t. Now, consider one such point � t � � � 1

t ; . . . ; � m
t � for a

fixed time t 2 �0;T�.
We now evaluate the objective function in � t and define
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m :�
Xm
j�1
� � j

t ÿ 1�� j ÿ 1

~
�� � j

t�
~ ÿ 1�� j

� �
�: f� � t�:

Since we are looking for the minimum of f, this will be equal to or lower than m. We
also have

lim
j tj!�1

f� t� � �1:

This means that the original problem is equivalent to a problem with the same value
function f and the compact admissible region

Cm :�   j � 0; j � 1; . . . ;M; f� � � m;
Xm
j�1
�eaij ÿ 1�� j j � r; i � 1; . . . ; n

�����
( )

:

The set Cm is closed, convex and bounded. Thus, we have a continuous function
defined on a compact set: it admits minimum and Equation (19) has a solution
which, furthermore, is unique because of the strict convexity of f. Introducing the
Lagrangian function with Lagrange multipliers ��1; . . . ; ��n we can finally solve the
problem using first order necessary conditions, which are the first m equations in
Equation (15). By Remark 4.2, the uniqueness of ��� is evident.

Remark 4.4. Since the process  � is constant, Equations (9) and (10) are satisfied
and, furthermore, BreÂ maud (1981, Theorem VIII, T11) is verified: Z �

t is a real
Radon-Nikodym derivative and so  � � � is actually an EMM.

4.2 The optimal ��

In order to solve the dual problem it remains now to find the optimal ��. For  < 1,
 6� 0, then we have to solve

min
�>0

L� �; �� � �vÿ 1

~
��� ~�Bÿ1T �

~
E �Z �

T �
~

h i
:

By differentiating L� �; �� with respect to � and considering the equation

@

@�
L� �; �� � 0

we have:

�� � v�BT� ~

E��Z �
T �

~ �

 ! 1
~ÿ1

: �20�

If  � 0 we have to minimise with respect to � the dual functional

L� �; �� � �vÿ 1ÿ log �ÿ E log �Z �
T Bÿ1T �

h i
:

The optimal value �� is easily obtained, setting its first derivative with respect to �
equal to zero and so the optimal value �� is

�� � 1

v
: �21�
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Notice that this is a particular case of Equation (20), as  � 0 implies ~ � 0. We have
finally obtained the optimal solution ���; ��� to the dual problem.

5 The relationship between primal and dual optimal solutions:
the optimum V�T���;  ��

We now want to obtain a relationship between the optimal solution of the primal
problem

max
VT

Efu�VT�g
VT r:v: : E �Bÿ1T VT� � v 8 EMM

(
�22�

and the optimal solution of the dual problem (which we have just obtained in the
previous section)

min L� ; ��
 2 N r; � > 0:

�
�23�

Proposition 5.1. Let � �; ��� be the optimal solution of the dual problem and define

V�T � ��Bÿ1T Z �
T

� � 1
ÿ1
: �24�

Then V�T is admissible for the primal problem, E
 � �V�TBÿ1T � � E

� �V�TBÿ1T � � v and
so it is the optimal solution of the primal Equation (22).

In order to prove the above proposition, it is important to recall the notion of
`duality-gap' and its connection with the optimal solution of an optimisation
problem.

In general, when we deal with a primal and a dual optimisation problem, if both
the admissible regions are non-empty, then the following result is always true: the
values that the objective function of the `max-problem' has in its admissible region
are less than or equal to the analogous values of the `min-problem'. In our case we
have (Equations (22) and (23)):

E�u� �VT�� � L� � ; ���
for each �VT admissible for the primal problem and for each pair � � ; ��� admissible for
the dual one. It follows that

sup
VT2Vv

E�u�VT�� � inf
 2N r;�>0

L� ; ��: �25�

Furthermore, we define the `duality-gap' associated to the primal admissible value
�VT and the pair of dual admissible values � � ; ��� as

E�u� �VT�� ÿ L� � ; ��� � 0:

If there exist V�T;  
�; �� such that the duality-gap is zero, Equation (25) is satisfied as

an equality relation and this implies that V�T;  
�; �� are the optimal solutions of our

problems (Avriel, 1976; Luenberger, 1969).
Now we prove Proposition 5.1.
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Proof. To prove the proposition we must show:

1 the primal admissibility of V�T

2 that the duality-gap is zero if in the primal and dual objective functions we
substitute V�T and � �; ���, respectively.

Firstly, we observe that if V�T is given by Equation (24), since in this case �� is given
by Equation (20) we have

E
� �Bÿ1T V�T� � E�Z �

T Bÿ1T ���Z �
T Bÿ1T �

~ÿ1�

� E �Z �
T �

~�Bÿ1T �
~ � v�BT� ~

E��Z �
T �

~�

" #
� v:

�26�

We start from point 2. The optimal value of the dual objective function, if we use
Equations (24) and (26), is given by

L� �; ��� � ��vÿ 1

~
� E ���� ~�Bÿ1T �

~�Z �
T �

~
h i

� ��E � �Bÿ1T V�T� ÿ
1

~
� E ���� ~�Bÿ1T �

~�Z �
T �

~
h i

� ��E Z �
T Bÿ1T ���� ~ÿ1�Bÿ1T �

~ÿ1�Z �
T �

~ÿ1h i
ÿ 1

~
� E ���� ~�Bÿ1T �

~�Z �
T �

~
h i

� 1ÿ 1

~

� �
E ���� ~�Bÿ1T �

~�Z �
T �

~
h i

� 1


E �V�T�
� � � E u�V�T�

� �
which is, thus, the optimal value of the primal objective function, as the duality-gap
is equal to zero if point 1 holds. In order to prove this, we have to show that

E �Bÿ1T V�T� � v 8 EMM

that is, using Equations (24) and (20):

E Z 
TB
ÿ1
T ���� ~ÿ1�Bÿ1T �

~ÿ1�Z �
T �

~ÿ1h i
� E

Z 
T

BT
� v�BT� ~

E��Z �
T �

~�
� �Z

 �
T �

~ÿ1

�BT� ~ÿ1

" #
� E v

Z 
T

Z �
T

�Z �
T �

~

E��Z �
T �

~ �

" #
� v 8 2 N r:

If we now define a new measure ~ using the Radon-Nikodym derivative
�Z �

T �
~
=E��Z �

T �
~� with respect to , the proof of the admissibility of V�T reduces to

proving the following relation

~E
Z 

T

Z �
T

" #
� 1 �27�
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where ~E denotes the expected value under the measure ~ , which is proved by the
following Proposition 5.2.

Proposition 5.2. Let  � be the optimal solution of the dual problem. Then Equation
(27) holds 8 2 N r.

Proof. Firstly, we note that using the Radon-Nikodym derivative

~ZT :� d ~

d
� �Z �

T �
~

E��Z �
T �

~ �
;

~

for all j � 1; . . . ;m, the intensity of the Poisson process Nj
t changes and, under the

measure ~ , becomes � j� j�� ~
. In fact (Equation (9)):

~ZT �
exp ~T

Pm
j�1�1ÿ  j��� j

n o
�Qm

j�1 � j�� ~N j
T

exp ~T
Pm

j�1�1ÿ  j��� j
n o

� E Qm
j�1 � j�� ~N j

T

n o
and now, using the independence of the Nj and recalling that if X � Po���, then
E�cX� � e��cÿ1�, we obtain

~ZT �
Ym
j�1
� j�� ~
h iN j

T �e
Pm

j�1 �
jT�1ÿ� j�� ~ �

: �28�

As ~ZT is a Radon-Nikodym derivative, it implies a change of the intensities of the
Poisson processes from � j to � j� j�� ~; j � 1; . . . ;m. Using ItoÃ 's formula and recalling
Equation (17) we have:

d
Z 

t

Z �
t

 !
� Z 

tÿ

Z �
tÿ

Xm
j�1
�1ÿ  j

t�� j � � j� ÿ 1�� j
� �

dt�
Xm
j�1

 j
t

 j� ÿ 1

 !
dNj

t

( )
:

Since we have to calculate the expected value of Z�
T=Z

��
T under the measure ~ , it is

useful to introduce the ~ -martingales ~Mj
t ; j � 1; . . . ;m, with dynamics

d ~Mj
t � dNj

t ÿ � j� j�� ~
dt:

So we have

d
Z 

t

Z��
t

 !
� Z 

tÿ

Z �
tÿ

Xm
j�1

 j
t

 j� ÿ 1

 !
d ~Mj

t

� Z 
tÿ

Z �
tÿ

Xm
j�1
�1ÿ  j

t�� j � � j� ÿ 1�� j �  j
t

 j� ÿ 1

 !
� j� j�� ~

" #
dt

and, finally, under suitable assumptions on the coefficients of d ~Mj
t ; j � 1; . . . ;m,

~E
Z 

T

Z �
T

" #
� 1� ~E

Z T

0

Z 
tÿ

Z �
tÿ

Xm
j�1

� j� j
t ÿ  j���� j�� ~ÿ1 ÿ 1�

" #
dt

( )
: �29�
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To prove Equation (27), we will now show that the integrand random variable in
Equation (29) is null, so that the expected value under the measure ~ is equal to 1.
The optimal  j�; j � 1; . . . ;m, as shown, are the unique solutions to the algebraic
Equation (15) and, then, they satisfy both the first group of equations and the second
of Equation (15), while a generic  j; j � 1; . . . ;m satisfy only the second group. Using
conditions in Equation (15), we now show that the integrand random variable in
Equation (29) is null and so the proposition is proved. In fact, we have

~E
Z 

T

Z �
T

" #
� 1� ~E

Z T

0

Z 
tÿ

Z �
tÿ

Xm
j�1

� j� j
t ÿ  j��

Xn
i�1

��i�eaij ÿ 1�
" #

dt

( )

� 1� ~E

Z T

0

Z 
tÿ

Z �
tÿ

Xn
i�1

��i
Xm
j�1

� j� j
t ÿ  j���eaij ÿ 1�

" #
dt

( )

� 1� ~E

Z T

0

Z 
tÿ

Z �
tÿ

Xn
i�1

��i�rÿ r�
" #

dt

( )
� 1:

6 The optimal investment strategy ��

From the previous section we know that the optimal solution of the primal problem is

V�T � ���Bÿ1T Z �
T �

1
ÿ1 � vBT

�Z �
T �

~ÿ1

E��Z �
T �

~�
where �� is given by Equation (20) and  � is given by the solution of Equation (15).

The aim of this section is to determine the optimal strategy �� � ��1
t
�
; . . . ; �n

t
�; ��t �,

i.e., the one which satisfies

V�T � V��
T -a.s.

We shall solve this hedging problem using a martingale representation method:
in particular we will take advantage of the property that the discounted value of a
self-financing portfolio is a martingale under any martingale measure. It will also be
convenient to work under the `optimal' martingale measure � :�  � . We shall
define a martingale corresponding to ~V�T at time T and then we will use the dynamics
of both these martingales in order to obtain relationships between �� and the
coefficients in the dynamics of the new martingale. We have

~Vt �
Xn
i�1

�i
t

~Si
t � �t; d ~Vt �

Xn
i�1

�t d ~Si
t

and

~V�T �
v

E��Z �
T �

~ �
� �Z �

T �
~ÿ1
:

We now introduce the ( �, F t)-martingale ~M:

~Mt :� E
� � ~V�TjF t� � v

E��Z �
T �

~ �
� E � ��Z �

T �
~ÿ1jF t�:
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in order to compare the dynamics of the two ( �, F t�-martingales ~Mt and ~V�t (note
that ~M0 � v and ~MT � ~V�T).

It is useful to recall that under the measure � the intensities of the Poisson
processes are � j j�; j � 1; . . . ;m. Recalling Equation (28) we have

E��Z �
T �

~ � � exp ~T
Xm
j�1
�1ÿ  j��� j � � jT

Xm
j�1
�� j�� ~ ÿ 1�

 !

and

E
� �Z �

T �
~ÿ1jF t

h i
� E

�
e
� ~ÿ1�T

Pm

j�1�1ÿ j��� j Ym
j�1
� j��� ~ÿ1�N

j
T jF t

" #

� e
� ~ÿ1�T

Pm

j�1�1ÿ j��� j

E
� Ym

j�1
� j��� ~ÿ1��N

j
T
ÿNj

t�N j
t �jF t

" #

� e
� ~ÿ1�T

Pm

j�1�1ÿ j��� j Ym
j�1
� j��� ~ÿ1�N

j
t
Ym
j�1

E
� � j��� ~ÿ1��N

j
T
ÿNj

t �
� �

where the last equality holds because for all t and for every j � 1; . . . ;m, the random
variables �Nj

T ÿNj
t� are independent and each one is also independent of the �-algebra

F t. If we now recall that under � �Nj
T ÿNj

t� � Po�� j j��Tÿ t��; j � 1; . . . ;m, we
finally have:

E
� �Z �

T �
~ÿ1jF t

h i
� e

� ~ÿ1�T
Pm

j�1�1ÿ j��� j Ym
j�1
� j��� ~ÿ1�N

j
t

� e
�Tÿt�

Pm

j�1 �
j j��� j�� ~ÿ1ÿ1�

:

�30�

After some calculations we then have

~Mt � v
Ym
j�1
� j��� ~ÿ1�N

j
t e
ÿt
Pm

j�1 �
j j��� j�� ~ÿ1ÿ1�

� ~M0 exp
Xm
j�1

Z t

0

log � j�� ~ÿ1
dNj

s �
Xm
j�1

Z t

0

�1ÿ � j�� ~ÿ1�� j j�ds

( ) �31�

(recall that ~M0 � v). In order to obtain the optimal investment strategy �� we now
have to compare the differentials of the two martingales ~Mt and ~V�t . The differential
of ~Mt is easily obtained from Equation (32) and, under the optimal martingale
measure �, is given by

d ~Mt � ~Mtÿ
Xm
j�1
�� j�� ~ÿ1 ÿ 1�dNj

t �
Xm
j�1
�1ÿ � j�� ~ÿ1�� j j�dt

( )

� ~Mtÿ
Xm
j�1
�� j�� ~ÿ1 ÿ 1�dMj

t

�
( )

:

If we compare the following two dynamics
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d ~V�t �
Xn
i�1

�i
t

� ~Si
tÿ
Xm
j�1
�eaij ÿ 1�dMj

t

�

d ~Mt � ~Mtÿ
Xm
j�1
�� j�� ~ÿ1 ÿ 1�dMj

t

�

we find that the optimal investment strategy has to satisfy the following system of m
equations Xn

i�1
�i
t

� ~Si
tÿ�eaij ÿ 1� � ~Mtÿ�� j�� ~ÿ1 ÿ 1�; j � 1; . . . ;m:

Proposition 6.1. The optimal investment strategy exists and it is uniquely determined

by �i
t
�

:� ��i
~Mtÿ

~Si
tÿ
; i � 1; . . . ; n, where �� � � ��1; . . . ; ��n� is the vector found in Theorem

4.1.

Proof. By defining

�i
t
� ~Si

tÿ

~Mtÿ
:� ��i; i � 1; . . . ; n; �32�

the system above is equivalent to the system given by the first m equations in
Equation (15), which admits a unique solution.

Remark 6.2. Notice that, if we introduce the fractions hit; i � 1; . . . ; n, of wealth
invested at time t in Si

t; i � 1; . . . ; n,

hit :� �
i
tStÿ

Vtÿ
� �

i
t

~Stÿ

~Vtÿ
; i � 1; . . . ; n;

so that hit
� � ��i

t
� ~Si

tÿ�= ~V�tÿ , noting that ~V�tÿ � ~Mtÿ , from Equation (32), we find that
the optimal fractions of wealth to invest in each risky asset are constant over time:
hit
� � hi

�
; i � 1; . . . ; n and they are equal to the ��i; i � 1; . . . ; n, of Theorem 4.1.

Remark 6.3. From Theorem 4.1 and from the previous remark, substituting the
 j
t ; j � 1; . . . ;m, from the first m equations in Equation (15) into the remaining n and

recalling that the optimal hit
�
are equal to the ��i; i � 1; . . . ; n, we find that the hit

�
must

satisfy Xm
j�1

� j�eaij ÿ 1�
Xn
i�1

hi
��eaij ÿ 1� � 1

" #ÿ1
� r �33�

which is the same result obtained in Callegaro et al. (2006), solving directly the
primal problem.

7 The complete market case

In the case when m � n the market is complete and there exists only one EMM,
which we will denote by . It can be easily seen that Equation (12) becomes a system
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of m equations in m unknowns, with matrix A having maximum rank m and so it
admits a unique solution  � � � �1; . . . ;  �M�.

In this case it is not necessary to consider and solve the dual problem, since the
primal Equation (4) has only one constraint and becomes

maxEfu�VT�g
E �Bÿ1T VT� � v

�
and can be solved using the Lagrange multiplier technique. By introducing ZT :� d

d
and the Lagrange multiplier �, our problem becomes

max
VT

Efu�VT�g ÿ �E fBÿ1T VTg
� � � max

VT

Efu�VT� ÿ �ZTB
ÿ1
T VTg: �34�

We now notice that, thanks to the properties of the utility function u���, the inverse
function of its derivative exists and we will denote it by

I��� :� �u0����ÿ1:
On the other hand, maximising the expectation on the right hand side of Equation
(34) is equivalent to maximising its argument for each ! 2 
. A necessary condition,
then, for VT to be optimal is that it satisfies

u0�VT� � �ZTB
ÿ1
T ; VT � I��ZTB

ÿ1
T � �35�

with the Lagrange multiplier � satisfying the `budget equation'

E Bÿ1T I��ZTB
ÿ1
T �

� � � v � E ZTB
ÿ1
T I��ZTB

ÿ1
T �

� � �: V���:
Having defined V���, whenever it is invertible, we finally find

� � Vÿ1�v� and V�T � I�Vÿ1�v�ZTB
ÿ1
T �:

In the specific setting of HARA utility functions, we have

I�y� � y
1

ÿ1 � y ~ÿ1

and so, from Equation (35),

VT � ��ZTB
ÿ1
T �

1
ÿ1 � ��ZTB

ÿ1
T � ~ÿ1:

Furthermore

v � E ZTB
ÿ1
T ��ZTB

ÿ1
T � ~ÿ1

h i
� � ~ÿ1�Bÿ1T �

~
E �ZT� ~
h i

� V���

and so

�� � v�BT� ~

E
��ZT� ~�

 ! 1
~ÿ1

and

V�T � ���ZTB
ÿ1
T �

~ÿ1 � vBT
�ZT� ~ÿ1

E
��ZT� ~�
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i.e., we have obtained, again, Equations (20) and (24), with the difference that in this
setting there is only one EMM and so the optimal � trivially coincides with the
unique EMM.

To determine the optimal investment strategy, finally, we work as in Section 6,
under the measure and we compare, as usual, the two dynamics of ~V�t and ~Mt. The
optimal investment strategy �i

t
�
; i � 1; . . . ;N, is again

�i
t

� � ��i
~Vtÿ

~Si
tÿ

where ���� ��1;. . . ; ��n� is given by ���	Aÿ1, with 	��� 1�� ~ÿ1 ÿ 1; . . . ; � n�� ~ÿ1 ÿ 1�
(by Remark 4.2).

8 The one-dimensional case

Let us now assume that we are allowed to trade in a single risky asset S. For a
realistic model, we require that this asset can go both up and down, so that m � 2
Poisson processes are required to describe it. As m � 2, n � 1, the market is
incomplete and so all the results up to Section 6 hold true, with the advantage that, in
this case, the optimal EMM and the optimal investment strategy have an explicit
form. For simplicity, we use the notation �Nt�t2�0;T� � �N�t ;Nÿt � and

dSt � Stÿ �ea ÿ 1�dN�t � �eÿb ÿ 1�dNÿt
� �

with a > 0; b > 0.
As the market is incomplete, we obtain an infinite number of martingale measures

and Equation (12) reduces to the condition

�ea ÿ 1��� �t � �eÿb ÿ 1��ÿ ÿt � r -a.s. 8t �36�
where �� and �ÿ are the intensities of the Poisson processes N� and Nÿ under the
original measure , respectively and the process  � � �;  ÿ� stands on a half-line in
the first quadrant, which can be parameterised as follows

 ÿt �: �t � 0;  �t �
rÿ �eÿb ÿ 1��ÿ�t
�ea ÿ 1��� :

Due to the introduction of ��t�t, the Radon-Nikodym densities and the Radon-Nikodym
density processes will be denoted by

d �

d
� Z�

T; Z�
t �

d �

d

����
F t

:

In this case the solution to Equation (15) can be made explicit: in fact we have

���ea ÿ 1� � � �t �
1

ÿ1 ÿ 1
���eÿb ÿ 1� � � ÿt �

1
ÿ1 ÿ 1

�ea ÿ 1��� �t � �eÿb ÿ 1��ÿ ÿt � r

8><>:
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and we find that the optimal ��, recalling the parameterisation Equation (36), is the
unique solution to the following equation

��� ~ÿ1 ÿ �e
ÿb ÿ 1�
�ea ÿ 1�

rÿ �eÿb ÿ 1��ÿ�
�ea ÿ 1���

� � ~ÿ1
� 1ÿ �e

ÿb ÿ 1�
�ea ÿ 1� :

If  � 0 � ~ (log-utility case), to determine �� we have to solve the algebraic second
degree equation

��2�ÿk�eÿb ÿ 1� ÿ ��rk� ���ea ÿ 1��eÿb ÿ 1���� � �ÿ� ÿ r�ea ÿ 1� � 0

where

k :� �eÿb ÿ 1� ÿ �ea ÿ 1�� �
< 0:

Since �ÿk�eÿb ÿ 1� � r�ea ÿ 1� > 0, there is only one positive solution, given by

 ÿt
� � ��t �

rkÿ �ea ÿ 1��eÿb ÿ 1���� � �ÿ� � ����
�
p

2�ÿk�eÿb ÿ 1� 8t 2 �0;T�;

where

� � rkÿ �ea ÿ 1��eÿb ÿ 1���� � �ÿ�� �2�4rk�ÿ�ea ÿ 1��eÿb ÿ 1� > 0:

The optimal �� is, thus, obtained as in Section 4.2 and the relationship between
primal and dual optimal solutions is, obviously, that in Section 5.

As concerns the determination of the optimal investment strategy, by using
Proposition 6.1, it is sufficient to find the optimal ��: from Equation (15), we have
that

�� � � 
��� ~ÿ1 ÿ 1

ea ÿ 1
� � 

ÿ�� ~ÿ1 ÿ 1

eÿb ÿ 1
� ��

�� ~ÿ1 ÿ 1

eÿb ÿ 1
;

so that the optimal investment strategy is

��t �
~Mtÿ

~Stÿ
� � 

��� ~ÿ1 ÿ 1

ea ÿ 1
�

~Mtÿ

~Stÿ
� � 

ÿ�� ~ÿ1 ÿ 1

eÿb ÿ 1
�

~Mtÿ

~Stÿ
� ��

�� ~ÿ1 ÿ 1

eÿb ÿ 1
:

9 Fixed portfolio proportions

A peculiar result of HARA utility functions in continuous time in both complete
(Merton, 1969) and incomplete markets (Karatzas et al., 1991) is that the optimal
portfolio in the risky assets is proportional to a fixed vector of risky assets' proportions
of the total wealth and this proportionality only depends on the risk-aversion
coefficient . In our context, this would mean that the optimal portfolio proportions
�hi��i in Remark 6.3 would be proportional to a fixed vector.

A first consequence of our results is that, in the simple case when only one risky
asset is available in the market, this proportionality trivially holds.

Theorem 9.1. If n � 1, then the optimal proportion �h�t �t is constant over time and
depends on .
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Proof. The result in the theorem is a direct consequence of Remark 6.3: in fact, by
putting n � 1 we obtain that the optimal h� must satisfy the algebraic nonlinear
equation Xm

j�1
� j�ea1j ÿ 1�ÿh��ea1j ÿ 1� � 1

�ÿ1 � r:

From the results of Section 6, we know that there exists a unique solution h� to this
equation, which is the optimal portfolio fraction invested in the risky asset and it is
constant over time.

The non-trivial situation is, of course, the case when n > 1. In this case, we find out
that, even in the simplest complete market case m � n � 2, this phenomenon does
not always hold, thus making a difference between markets where assets follow pure
diffusion processes and markets where assets can jump. The following is a counter-
example, where it is shown that the optimal proportions h� have a dependence on 
which can not be brought back to a proportionality of a fixed vector.

Example 9.2. Take m � n � 2, �1 � 1, �2 � 0:8, r � 0:05, and the multiplicative
jumps

�eaij ÿ 1�i;j �
1:1 0:9
1:2 0:8

� �
:

By using the results in Section 7 and solving, numerically, Equation (33) and the
following for  2 �ÿ0:3; 0:3�, we obtain that the parametric curve obtained by seeing
the optimal proportions h � �h1�; h2�� as a function of  is the one in Figure 1.

Figure 1 Graph of the function  ! �h1���; h2����, with h1
�
in the horizontal axis and h2

�

in the vertical axis.
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This being the situation when the market is complete, we argue that a simple scalar
dependence of h� on  is not met also in incomplete markets, unless possibly in a few
specific cases.
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