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Abstract

In this paper we study the dependence on the loss function of the
strategy which minimises the expected shortfall risk when dealing with a
financial contingent claim in the particular situation of a binomial model.
After having characterised the optimal strategies in the particular cases
when the loss function is concave, linear or strictly convex, we analyse
how optimal strategies change when we approximate a loss function with
a sequence of suitable loss functions.
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1 Introduction

Given a market with a vector S of asset prices (one of which is non-risky), let
Hy be a liability to be hedged at some future time N. If V() is the value
at time N of a portfolio corresponding to a self-financing investment strategy
m, the shortfall risk minimization problem consists in determining Jo(So, Vo),
where for every n =0,1,... | N,

Jn(s,v) = inf B {¢(IHn = Vn(@)]?) | Sn=5,Vu = v}

for a suitable “loss function” ¢, with S,, and V;, the (known) price at time n of
the assets and the value at time n of the portfolio. The most applied side of
the problem above consists in finding the optimal policy 7#* and, if possible, to
determine it explicitly.

The loss function £ is classically considered to be increasing and such that
2(0) = 0. As it is customary to do in economic models, we shall furthermore
suppose that ¢ is either concave or convex on Ry, depending on the investor’s
inclination or aversion (respectively) to taking risks.

In this paper, we want to analyse the dependence of the optimal policy 7* on
the loss function ¢. In order to keep things simple, we restrict ourselves to the
case in which the market follows the Cox-Ross-Rubinstein “binomial model”,



where the non-risky asset is supposed (by considering forward prices) identically
equal to 1, and the stock S follows the dynamics

Sn+1:5nwn+1, n:O,...,Nfl

where Sy > 0 is given and (wy,)p=1,... N are i.i.d. random variables taking values
in the set {d,u} (with v and d known real numbers such that 0 < d < 1 < u)
with probability law

p:=P{w, =u}=1- P{w, =d}, n=1,...,N.

To avoid technicalities, we shall take as our underlying probability space the
minimal one for our model; that is, we let Q = {u,d}, F = P(Q).

An investment strategy is a sequence m = (mp)n=o,. N—1, Where m, =
(aun, Br) is the decision to hold, at time n, (3, units of the non-risky asset and
ap, units of the stock S;,. We shall always suppose our investment strategies to
be self-financing, namely that

Vo = Bo + @0 So
Vi 1= Bn + Sy = ﬂn—i-l + an+1Sn

so that the dynamics of the portfolio value can be written as

VaJrl = Va+1(V7?> Sna anawn+1) = Véy + oann(wn+1 — 1).

n n

By the last equality, then, the main concern in the hedging/replication problem
is the determination of «v,, and this is why we use the notation V& to stress
the dependence of the portfolio dynamics upon the choice of a. Moreover, we
shall suppose H to be a European contingent claim depending only on the final
value Sy of the stock. Hence, the shortfall risk minimization problem can be
written, for every n =0,..., N, as

Ta(Sns Vi) 1= inf ELL([H(Sn) = VEIT) | S, V). (1.1)

The paper is organised as follows. Section 2 contains the definition of the
Dynamic Programming Algorithm (DPA) and some interesting results that hold
when the DPA is applied to the binomial model. Section 3 briefly recalls the
main results of [1] and [8], which will be a useful reference in the sequel. Section 4
is dedicated to a self-contained treatment of the optimization in particular data
structures that we call “recombining binomial trees”, and which is a key tool
for the results in the next section. In Section 5, after the determination of the
optimal control and optimal value for the case when £ is concave in R, it will be
surprisingly clear that the investor with “linear” loss function behaves in exactly
the same way as a risk prone investor. Moreover, the same Section 5 explains
also a way to approach the incomplete information case (i.e., the situation when
p is unknown) for a risk prone investor. Section 6 treats the case when the loss
function is convex, and the explicit determination of the optimal strategy is
made using a Neyman-Pearson technique similar to [2]. In Section 7 we study
the robustness of the optimal strategy with respect to the loss function ¢; in
particular, we shall study three cases, namely the case when we approximate a
strictly convex loss function ¢ with a sequence (¢,,),, of strictly convex functions,
the case when the functions in the approximating sequence (¢,,), are strictly
convex and /£ is linear, and the case when ¢ and the £,,s are concave.



2 The Dynamic Programming Algorithm

In [8], the key tool used for solving the shortfall risk minimization problem is
the Dynamic Programming Algorithm (DPA for short). Since it will be also
used in the present work, we summarize here its main features.

The DPA is computed according to the following backwards recursion:

JIn(s,v) = é([H(s) — v]+)
Jn(8,0) ;= Inf E{Jp41(Sns1, V1) | Sn =5,V =v}, n=0,...,N — 1.

Once solved, the DP algorithm allows us to compute the optimal value Jy(So, V)
for our problem; moreover, if the inf operators in the various recursive steps are
realized as min, the minimizing « is the optimal strategy.

For the DPA applied to the shortfall risk minimization in the binomial model,
there are some remarkable results that do not depend on the choice of the loss
function ¢. First of all, there exists a unique equivalent martingale measure P*
such that

1—d u—1
P, —u) = —— 1 —pf = P {w, =d)} = . 2.1
e e T e SN C Y
In particular, for every n = 0,..., N, the arbitrage free price of H(Sy) at time n

is V¥(Sp) := E*{H(SN) | Sn} (Cox-Ross-Rubinstein valuation formula). Note
that, in particular, V3 (Sny) = H(Sn). It is also well known that, if Vi > Vi (So),
there is a replicating strategy given by

* Va1 (Snu) = Vit 1 (Snd)

) = So(a—d) (2.2)

As a consequence, the shortfall risk minimization problem for this binomial

model is non trivial only in the case Vi < V(Sp). Henceforth, we shall therefore

suppose to be dealing with this case. The problem has already been solved in

the case £(x) = =z in [8], even when there is incomplete information on the

underlying model (see [1] and [8] again, and [4] for a different approach).
Other results on the DPA are gathered in the following

2.1. Proposition. In the notations of the present section and for every n =
0,...,N—1,

1. Ju(s,v) is decreasing in v;
2. Jn(s,v) =0 forv = Vr(s);
3. there exist @ < a such that

Jn(87’l}) = inf~] E{Jn+1(5n+1, Vna+1) | Sn =S, Vna = ’U};

acla,a

4. if v < VX(s), in (3) above one can choose

Viypi(sd) —v

n

s(d—1)

Vipalsu) = v
s(u—1)

a=al(sv):= . a=a?(s,v):= (2.3)



Proof. We shall prove the result by backwards induction on n.

(n = N —1). The expansion of the expected value gives
In-1(s,v) = inf E{([H(SN) = VFIF) [ Sy =5, Vi =0}
= inf {pl([H(su) — v — as(u — 1)]7) +
+(1- p)E([H(sd) —v—as(d— 1)]+)},

so that (1) follows from the monotonicity of .
Write

Jn(s,v,a) = pl([H(su) — v — as(u —1)]*),
]d (s,v,a) :== (1 —p)¢ ([H(sd) —v—as(d-— 1)]+),

so that Jy_1(s,v) = info {j%(s,v, @) +j%(s,v,a)}. In this expression, note that

for a > af,) 1(s,v) (as defined in (2.3)) one gets H(su) —v —as(u—1) <0, so

Jn(s,v a) = 0. In the same way, j%(s,v,a) = 0 for a < a( ) 1(s,v). So, since

§% and j¢ are, respectively, decreasing and increasing in o, we have that their
sum is decreasing in « for a < O‘%)—l (s,v) and increasing in a for o > 045\2,)_1 (s,v).
As a consequence, the inf of j% + j% must be attained in the interval with

extremal points ag\l,)_l(s,’u) and af,)_l(s, v), and this proves (3).

To compare ag\l,)_l(s, v) and ozf,)_l(s, v), note that
2 1) H(su)—v H(sd)—v
A 1(5 ’U) A 1(5 ’U) s(u—l) - S(d—l)
_ (1-d)H(su) 4+ (u—1)H(sd) — (u— d)v
s(u—1)(1—4d)

—d .
= m(VN—1(3) —v),

namely, that ozg\l,)_l(s,v) < ag\?)_l(s,v) if and only if v < V3 _,(s), and this

proves (4). Also, if v > V3 _,(s) then any value of o € [aE\Q,) 1(s,0), ag\p_l(s,v)]

realizes the absolute minimum of 0 for j, + j4, which implies that we are able
to obtain perfect replication of the claim H at the final date N and that the
shortfall risk minimization problem trivially becomes the CRR hedging problem.
This also proves (2).

(n < N —1). Expanding the expected value as before, one gets
Jn(8,0) = Il E{Jp11(Sn, V) | Sp =8, V¥ = v}
= inf {pJny1(su, v+ as(u— 1)) +
+ (1 =p)Jns1(sd,v+as(d—1))},
and (1) follows from the (inductively assumed) monotonicity of J,,41(s, ).
As in the first part of the proof, define j!, | (s, v, @) := pJpi1(su, v+ as(u—
1), jé i (s,v,a) == (1 = p)Jns1(sd,v + as(d — 1)) and note that they are,

respectively, decreasing and increasing in «. Since J,y1(s,v) = 0 for v >

V,y,1(s) by the inductive hypothesis, we have that

a>aP(s,v) = v+as(u—1) > Vi (su) = ¥ (s,0,0) =0,



and in the same way that jffﬂ(s,v, a) =0 for a < asll)(s,v). Hence it follows

that j¥,, + j¢,, is decreasing in a for o < agll)(s,v) and increasing in o for
o > ag)(s, v). As before, this proves (3).

To compare agll)(s, v) and ag)(s, v), it suffices to compute

P (s,0) — al(s,0) = Viga(sw) v Vi (sd) —v
n ) n ) - S(U, — 1) S(d — 1)
_ A=AV, (sw) + (u = DVt (sd) = (u = d)v
- s(u—1)(1—-4d)

T (VH(s) —
where the last equality comes from the fact that, for every n,

EYV, 1 (Sna1) | Sn = s} = E{E{H(SN) | Snya} | Sn = s} (2.4)

=E"{H(SN) | Sn = s} =V} (s).
Following the same argument as in the first part of the proof, then, also (4)
and (2) are proved. O

The next two sections will make wide use of this result and of the structure
of the functions to be minimized at each recursive step.

3 Preliminary results

This section briefly reviews the most important points of [1] and [8], which
completely solve the problem in the case ¢(z) = x. These results are reported
here for the convenience of the reader, as they permit a better understanding
of the meaning of the results and remarks contained in the next section.

Here, we shall often use the expressions defined in (2.3) in correspondence
of the current values v = V,, and s = §,, for the portfolio and the risky asset
respectively. For simplicity of notation, then, we shall write an) instead of
047(1% )(Sn, V). The reader should nevertheless keep in mind the dependence of

the s not only on the current time (via the Cox-Ross-Rubinstein valuation
formula) but also on S,, and V,,.

In the case £(x) = z, Vo < Vi (So), the recursive step in the dynamic pro-
gramming algorithm defined in previous section reduces, at each time n, to the
minimization of a function which is piecewise linear in « on the three disjoint

intervals (foo,agll)), (ag),ag)) and (a%Q),Jroo). As a consequence, the inf is

attained as a min either for o = a%l) or for a = ag). A straightforward calcu-
lation (see [8, Theorem 4.1]) allows one to check that the optimal control o' is

calculated at each time n by choosing

. 3.1
af) if p > p* (31)

t {ag) if p < p*

al =
(The case p = p* corresponds to S and V being martingales, so that any choice
of the control would give the same results in the mean.) Note that the choice
between the strategy o)) and a(®) does not depend on 7, so the optimal control



is either of = aEP for p < p* or af = ag) for p > p*. In particular, the

choice of the optimal control can be made “a priori”. The optimal value for the
shortfall risk is then min{}%, ll:pp* WV (So) — Vo)t

Note also that the strategies a(") and o(?) are in some sense a modifica-
tion of the optimal replicating strategy of Cox, Ross and Rubinstein (see the
Introduction). Strategy a(!) (respectively, a(?)), indeed, is obtained from (2.2)
by substituting u and V5, ;(Snu) (respectively, d and V¥ ,(S,d)) by 1 and V/,.
Moreover, note that p < p* (respectively, p > p*) if and only if E{S,, | So}
is decreasing (respectively, increasing) in n. In some sense, then, the optimal
strategy in the case Vo < V' (Sp) is built by replacing in the CRR formula the
“less significant” event (i.e., the one against the mean tendency of S to decrease
or increase) with the present value.

In [1], some additional properties of the strategies belonging to the class

IT:= {(on)n | an € {aD a1 for every n} (3.2)

are investigated. In particular, a slight modification of the proof of Theorem 4.1
in [8] shows that for every « € II,

« p AN 1-— p N=An * +
B(H(SN) -V S0 v = () (720) ) -l 39)
where Ay := #{n | a,, = aS)}. Moreover, it is possible to define a one to one
correspondence between controls o € II and “events” w = (wy)n=0,... N—1 DY
defining

(w(a))n = ) - (3.4)

u if a, = ag)
d if o, = ay;

In other words, w(«) is the only event such that the stock S goes up every time
the investor “bets” on it going down on average, and the stock goes down every
time the investor bets on it going up on average. Now, it is straightforward to
prove that any strategy o € 11 gives perfect hedging in all events w # w(ca). This
is quite a strong result, which has two main consequences. First of all, II is a
class of “quasi-replicating” controls, in the sense that every a € II gives perfect
hedging with probability close to 1. More in detail, since E{(H(Sy)—Vg)"} >0
and H(Sy)(w) — Vi (w) = 0 in all events w # w(a), one has

P{H(SN) = V§ > 0} = P{w(a)} = p* (1 —p)' (3.5)
with Ay defined as above. Moreover, from (3.3), it follows that in the only
“critical” event w(«) we have

o 1\Aw
H(Sn(w(@) = Vi w(@) = (=) (

p*

1
1—p*

N—-A\N
)V (S0) = al

which is generally much greater than the initial “lack” of capital.

4 Optimal paths in recombining binomial trees

This section contains some technical definitions and results that formalise a
“branch-and-bound” type algorithm for the purpose of determining an optimal



path in a particular directed graph, which we call a recombining binomial tree.
These results will constitute a key tool for the proof of Theorem 5.2 concerning
the solution of the shortfall risk minimization problem in the case when £ is
concave.

4.1. Definition. For n € N, a recombining binomial tree (r.b.t. for short) of
depth n is a directed graph T'(n) with w nodes 7{, where k =0,...,i
1 =0,...,n. This way, T'(n) features i+ 1 nodes at each “depth” i. In particular,
at the depth 0 there is only one node 73, which will be called the vertex of the
tree T'(n).

For i = 0,...,n — 1, each node 7{ is supposed to be connected with the
two nodes T]i+1 and T]z:‘ﬁ The nodes at depth n are thus “terminal” nodes,
and will be called the leaves of the tree. We shall refer to moving from 7}
to 7',2“ (respectively, to T,:,ﬁ) with the expression branching left (respectively,
branching right).

Since the graph is directed, the maximum length paths on the graph start
from the vertex 7 and reach a leaf 7' for some k. Note that there is a
one-to-one correspondence between maximum length paths and branching se-
quences (9;)7=; € {l,7}", where 9; = [ (respectively, ¥; = ) means the decision
to branch left (respectively, right) when passing from depth i to depth i 4 1.

The problem we want to solve is the following. Suppose that each leaf 7}
of the r.b.t. T(n) is associated with some value 7, € R. Then, we want to find
a branching sequence so as to reach a leaf associated with the minimum value,
that we shall call, respectively, an optimal branching sequence (or strategy) and
an optimal leaf. (The problem of reaching the maximum value can trivially
be reformulated as a minimum problem by associating the values —rj to the
leaves.)

Note that, even if the correspondence between paths and branching se-
quences is one to one, in general the strategy leading to a chosen leaf 7' is
not unique. Actually, any strategy (starting from the vertex) which branches
left n — k times and right k times in any order will end in leaf 7}, and it is clear
that there are (Z) such strategies. Thus, the choice of the optimal branching
strategy is not a consequence of the determination of the optimal leaf.

The algorithm we propose below solves the problem of choosing an opti-
mal strategy by deciding the branching sequence while scanning the leaves to
determine the minimum value.

4.2. Proposition. Let n € N, and T'(n) be the recombining binomial tree of
depth n, with values i, k =0,...,n associated with the leaves.
Define

%:¥ if ro <7

roif rg >y,
and then, recursively for everyi=1,...,n,

koi=4{j <i|V; =r},
9 — ! Zf Tko < Tn—itke,;
1 .
ToAf Thy > Tnoitky -



Then the leaf 7}, s associated with the minimum value, and ¥ = (¥;);-; is an
optimal branching sequence.

Proof. Induction on n.

(n = 1). In this case, there are only the two leaves 73 and 7{ associated
with the values rg and r; respectively. The thesis translates into the obvious
decision to branch left and reach 7 if ry is the minimum value, and to branch
right and reach 7{ otherwise.

(n > 1). To determine the branching at depth 0 the following considerations
can be made. Note that the two outmost leaves 7§ and 7,7 are both reached
from the vertex by a unique branching strategy, namely, 75 can only be reached
by branching always left and 7" can only be reached by branching always right.
Any other leaf can be reached with a suitable branching sequence whatever ¢,
is. Thus, the proposed strategy decides to branch so as to make unreachable
the outmost leaf which is associated with the higher (and, thus, non-optimal)
value and reach the node T,%ﬂvl.

One can now consider the“sub-tree” 7 of depth n — 1 with vertex T,%M
and leaves 7', k = kg1,...,m — 14 kg, 1. Note that the minimum value has
to be associated with one of the leaves of T, since the value associated with
the “discarded” leaf is greater than a value associated with a leaf of T;. The
recursive step then corresponds to the first step in this sub-tree, and so the
proposition follows by recursion. ]

5 Risk prone investor: the concave case

Throughout this section ¢ will be supposed to be a concave function on R;. As
in Section 3, we use the convention of writing o' instead of o (Sn, V).

Before starting the discussion, we need an extension of Proposition 2.1.

5.1. Proposition. If/ is concave then, in the notations of Section 2, the func-
tion Jn(8,")|(—c0, vz (s)] 45 concave for everyn =0,...,N.

Proof. We proceed again by backwards induction on n. For n = N the statement
follows immediately from the fact that V,*(s) = H(s) and that ¢ is concave.

For n < N, choose v/ < 7 < v" < V(s), and let X', \” be the convex
combinators such that A + A’ = 1, Mv' + X'v"” = v. Expanding the expected
value as in the proof of Proposition 2.1 one gets (as explained below)

JIn(8,7) mf {pJni1(su, v+ as(u—1)) +
+(1-p) n+1(5d v+ as(d— 1))}
= inf {pTni1(su, N (v + as(u—1)) + X'(v" + as(u—1))) +
—|— (1= p)Jns1(sd, N (v + as(d—1)) + N'(v" + as(d —1))) }
> inf {NpJpsr (su, 0" + as(u — 1)) + (1 = p) Jpq1(sd, v’ + as(d — 1))] +

+ N [pTnsr (su, 0" + as(u — 1)) + (1 = p) g (sd,v” + as(d — 1))]}
> N Ju(s,0") + X' T (s,0").

The last inequality comes from the fact that whenever a, b are positive one has
inf,{af(x) + bg(z)} > ainf,{f(z)} + binf,{g(x)}. The first inequality is not
straightforward, because .J,,+1 is not concave on the entire real line, but can



be proved as follows. By (3) of Proposition 2.1, in the computation of the inf

we can restrict « to take values in the interval [ozgll)(s,i),ag)(s,ﬁ)]. In this
interval, both inequalities

T+ as(d—1) <V, (sd)
T+ as(u—1) <V (su)

hold, so that both j,; and j,‘fH (in the same notations as for the proof to 2.1)
are calculated in the (inductively assumed) concavity domain of J,, ;1. This way
J¥ 14 jl., being a sum of concave functions, is concave, and hence the first
inequality follows. O

The fact that the concavity “propagates” along the DP algorithm allows us
to find a straightforward explicit solution for our problem.

5.2. Theorem. Let ¢ be a concave function and, for everyn =0,... N, let
Jn be the function defined in Equation (1.1). Suppose that Vo < Vi (So). Then,
for every n,

. _ _ VS, =V,
— k—n(1 _ \N—k n \Fn n
In(Sp, Vi) = k:rglnr.lpr (1-p) ¢ <(p*)k—n(1 _p*)N—k) : (5.1)
Define, for everyn=0,...,N —1,
Q) Vi 1(Spd) = Vi Q@ Vi1 (Shu) =V,
" Sp(d—1) 7 " Sp(u—1)
Then the optimal strategy is given by
(1) - N— V';(Sn)_vn _ N— V;(Sn)_vn
T N S N - i SRR
n 2) . —np (VI (Sn)=Vi —np [ Va(Sn)=Va )
Qi prN 14 OV >(1—p)N 14 A—p ) =7

5.3. Remark. As the proof of this theorem will make clear, we can always
restrict the class of admissible controls to the class IT defined in (3.2). In par-
ticular, this allows a proof by induction via a straightforward calculation that
from Vo < Vi (So) follows V,, < V,*(S,,) almost surely (i.e., for every event w)
for every n. This is the reason why in the expression for J,, (S, V,) there is no
need to consider the positive part of the argument of £.

Proof of Theorem 5.2. For every n = 0,..., N — 1 define j* and j¢ as in the
proof of Proposition 2.1, so that

Jn(Sna Vn) - igf{j%+l(sa v, a) + j:+1(57 v, a)}

By (3) and (4) of Proposition 2.1 we can restrict the computation of the inf to
the interval [a%l),ag)] where, as already seen in the proof of Proposition 5.1,
Jna1 t+ jd 11 is concave. So, since a concave function on an interval can attain
its lowest value only at the extremal points, the problem reduces to comparing

the values taken by the function at the extrema. Namely, on recalling that for



a=al’ (respectively, a = agf)) one has j¢, | = 0 (respectively, j* , = 0), one

finds that
Tn (S, Vi) = min{pJni1(Spu, Vo + ol Sp(u — 1)),
(1 - p)Jn+1(Snd7 Vi + ang)Sn(d - 1))}7
argmin[- - -] = o'V < pJ1(Spu, Vi + VS, (u—1)) <
< (1 - p)Jn+1(Snda Vi + ag)sn(d - 1))7
and, as in [1, Section 2] (see also Section 3 here), we are allowed to restrict the
class of admissible controls to the class II defined in (3.2). Thanks to (2.4), it

is straightforward to verify by backward induction on n that for every a € II,
defining

An :z#{k}n\ak:ag)}, un::#{k>n|ak:a,(€2)}:]\f—n—)\n,

gives

_ Yo+ A o\ Mn V;(Sn) - Vn )
Es e (1A (Sw) - VT = (1= e () oy
Hence it follows that the optimal value is as in (5.1).

To prove that the strategy given in (5.2) is optimal, we start by observ-
ing that from (5.3) it follows that, for the purpose of determining the shortfall
risk, only the number of times that «,, = 04511) matters, and not the particu-
lar sequence of choices. The evolution of the shortfall risk with respect to the
chosen control from time n on can then be seen as a “recombining binomial
tree” of depth N —n (see Definition 4.1 for the definition) as follows. For every
m =mn,..., N—1, associate the choice «,, = a%) (respectively, a,, = ag)) with
the decision of branching left (respectively, right) at depth m — n, so as to set
a one-to-one correspondence between strategies in the class II and branching

sequences for the tree. Formula (5.3) suggest associating with each leaf T]iv -n

the value p*(1 — p)N*””%(%), i.e. the shortfall risk associated
with any strategy leading to that leaf. The proof is now completed by observ-
ing that the proposed strategy is exactly the “optimal branching sequence” of

Proposition 4.2. ]

5.4. Remark. At the end of Section 3 we noted that any strategy in the class
IT is “quasi replicating”, i.e., it leads to perfect hedging in all events w # w(«)
as defined in (3.4). This result does not depend on the function ¢ taken into
consideration, so we can conclude that the expected value (5.3) found in the

proof to Theorem 5.2 corresponds to a shortfall of %
“critical” non-hedging event w(a), whose probability is P(w(a)) = p*» (1 —p)H»

as seen in (3.5).

in the only

5.5. Remark. In the case of “complete information” (i.e., when the proba-
bility p is known by the investor), the optimal strategy can be chosen a pri-
ori instead of on a step-by-step basis. Actually, once the k that minimizes
pF(1 — p)N*W(%) is determined, any strategy choosing k times
an = asll) is optimal. Note also that all of these strategies have the same proba-

bility p*(1—p)N—* of being non-hedging and the same shortfall £ (%)

10



in the “critical” event, so that the choice of the “preferred” optimal strategy
has to be made according to completely subjective criteria.

The expression (5.2) for the optimal control has been chosen because it can
easily be adapted in the spirit of [1, Section 3] (summarized in Section 3) to
elaborate optimal adaptive controls in the case of incomplete knowledge of the
model.

5.6. Remark. In the case ¢(x) = x examined in [1] and [8], a quite remarkable
fact is that the (generally unique) optimal strategy consists of choosing either
a=a® or a =a®. In other words, in this case the optimal leaf in the tree
described in the proof of Theorem 5.2 is either at the extreme “left” or at the
extreme “right”. This may not happen in the general case, as the following
(perhaps quite artificial) example shows even in the very simple case of three
possible final outcomes.

5.7. Example. Take {(z) :==+/x + z, N =2, p= 245 v =317 and d = .8
(so that p* = .0845). Consider a contingent claim H such that Vi (Sg) > 170
and choose Vp such that V" (Sp) — Vo = 170. The three values associated with
the final leaves are then

Vi (So) — Vo
2£<JL—————>~971
b (p*)?
0

ml_pw<?1_l__7)~95&

S
“)(
(1—p)%¢ <%> ~9.72.

This way the optimal “leaf” is the central one, and two optimal controls can be
built by choosing either oy = agl), o) = a§2) or oy = cv((f), o) = agl). Note also
that the policy proposed in Theorem 5.2 will choose oy = agz).

5.8. Example. Consider the case when ¢(x) = z" for some 0 < x < 1. In
particular, the case k = 1 corresponds to minimising the mean shortfall risk,
and, due to the assumption that ¢(0) = 0, the case kK = 0 corresponds to
minimising the probability of positive shortfall. These two particular cases have
already been considered in [1] and [8]: when k = 1, the optimal strategy is the
al defined in (3.1), and when x = 0 the optimal strategy ot is calculated by
choosing

" %2) p> 0.5

t_ {afll) p<0.5
@
(when p = 0.5, all strategies o € II are optimal).

When 0 < k < 1, the solution still takes an appearance close to the cited
results, namely, the optimal policies always choose either o = aV) or a = o?.
Actually, in this case, for every n = 0,..., N — 1 the optimal control o* is
computed by choosing

1- K
=all) — P« p i.e.,Lg( P ),

:L_ n (p*)l = (1 _p*)n

independent of n.

(67
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log(p)—log(1—p)
log(p*)—log(1—p*)

)E). Excluding the “undecidable” cases p = 0.5 (all events have the same

Moreover, let & = (namely, the value for which % =

( 1—p*
probability), p* = 0.5 (division by zero in ) and p = p* (the stock and the port-
folio are martingales under the real world probability measure), the following
cases may then occur.

F— @ R
«@ @ K <K
* ) 1 * =

pF<p<05(0<k<l) (e} + @ k>%7

p* <05, p#(p05) (k<Oork>1) | a* =at =af =al
af=a® k<®&
af=aV k>%&
p*>05,p#(05p) (k<0ork>1) | a* =af =af =a®

05<p<p*(0<kK<1) a* =

Note that if a* = af, then the optimal control a* for the shortfall risk min-
imization problem coincides with both a* and af for every x. On the other
hand, if of # af, the exponent 0 < & < 1 is “critical”, in the sense that a* = of
for k € (0,%) and a* = af for & € (%,1). In other words, the study of the
shortfall risk minimization problem with ¢(z) = z* can be reduced to the two
fundamental problems with x =0 and k = 1.

6 Risk averse investor: the convex case

Throughout this section ¢ will be assumed to be a convex function on R;. As
in the previous setting, we can give an extension of Proposition 2.1.

6.1. Proposition. If ¢ is convex then, in the notations of Section 2, the func-
tion J,(s,-) is convex for everyn =0,...,N.

Proof. We proceed by backwards induction on n.
(n = N). Since £(0) = 0, the definition

7z - Lz) ifxz>0
“]o if 2 <0

extends £ to a function which is convex on the entire real line, and £(x+) = {(x).
We can then write

In(s,v) = L(H(s) —v)

and the conclusion follows from the convexity of .

(n < N). Write

Jn(s,0) = ir;fE{JnJrl(SnJrl,V;‘f‘Jrl | Sp =5, V' = v} (6.1)
= igf{pJnH(su, v4+as(u—1))+ (1 —p)Jnt1(sd,v + as(d — 1))},
and define, as in the proof of Proposition 2.1,
Iny1(8,0,0) i= pJnyi(su, v+ as(u — 1)),

ngJrl(Sa v, a) = (1 - p)Jn—i-l(Sd, v+ OéS(d — 1))

12



so that J,,(s,v) = infa{j% 1 (s,v,@) + 4,1 (s,v,a)}. Since J,11(s,") is convex
by the inductive hypothesis, it is straightforward to prove that ji ,(s,-,-) and
jffﬂ(s, -,+) are convex, in the sense that for every v; < 7 < vg, a1 < @ < o
such that 7 = A\jv1 + Aavg, @ = A1y + Aecs (with Aj, As convex combinators)
it is

In1(8,70,@) < Ay (s,v1,00) + Aadpyq (8,02, 02)
JE1(8,0,@) < Mgl (s, 01, 1) + Aojly 1 (5,00, a2).

In particular, ju+1(s,v, @) = j% 1 (s,v,a) + jl, (s, v, @) is convex in a, so the
inf of (6.1) is realized as min.

Choose now v' < v < v”, so that v = Mo+ \"v” for some convex combinators
AN, By convexity of jn,+1(s,v, ), there exist &, o, @ such that

Jnt1(s,0,a) = mainjnﬂ(s,ﬂ, a) = Jp(s,0)
Jnt1(s,0", Q") =min j,11(s,0", ) = J,(s,0)
(6%

Jna1(s,0",a") = mainjnﬂ(s, v a) = Jp(s,0"),
and by convexity of j,11(s, -, ) and minimality of & we have that

N T (8,0") + N T (s,0") = Nipp1(s,0", ) + N jnaa(s, 0", a)
2 jn+1(s7 57 )\,O{/ + )\HO//)
= jn+1(8,5, a) = Jn(safﬁ)

O

This proposition has as an immediate consequence the existence of an op-
timal strategy for the convex case. It also follows that, if £ is strictly convex,
then the optimal strategy is unique. Nevertheless, when trying to determine
explicitly the optimal strategy in general form by using dynamic programming
arguments one is led to quite complex calculations. For the sake of simplicity,
then, from now on we shall shift from a DPA-based approach to another one,
with techniques similar to those in [2]. Notice that, for the case when ¢ is strictly
convex, we could also use techniques based on convex duality as in [4] or [6].
However, due to the absence of lower bounds on the claim H(Sy) and on the
portfolio X, it would not be possible to apply these techniques to the case when
(z) = x.

6.2. Definition. We define the set of the modified contingent claims as
X ={X|X <H(Sy) (as.),E"{X} < Vp}. (6.2)

Roughly speaking, X is the set of all the claims less than H(Sy) which can be
replicated with initial capital (less than or equal to) Vj or, equivalently, the set
of all the possible final states of adapted, self-financing strategies starting from
initial capital (less than or equal to) Vj.

We can now consider the shortfall risk minimization problem from a “static”
point of view:

min Eg, {£(H(Sy) - X)}. (6.3)

13



We now want to show that the modified contingent claim that solves (6.3) coin-
cides with the payoff of the optimal portfolio for the shortfall risk minimization
problem. We shall start from the linear case (¢(x) = z) and from this case we
shall derive the solution for the strictly convex case.

The following lemma, a key tool for the proof of the main Theorem 6.4,
shows how this approach can be applied to the study of the “mean shortfall risk
minimization problem”, i.e., the shortfall risk minimization problem in the case
£(x) = x. Note that, in this case, (6.3) reduces to the problem max,cx E{X}.

6.3. Lemma. If X* € X solves the problem max,cx E{X}, then the hedging
strategy o for the claim X* also solves the mean shortfall risk minimization
problem min, { Es,v, {(H(Sn) — V§)T}}. Moreover, define ces := min,, £,
where P and P* are, respectively, the “real world” and the martingale probability

measures. Set E = {w | &2 (w) = c.}, and

X* = H(SN)lEc +v1g

where 7y is any random variable such that E*{X*} = V. Then X* solves the
problem (6.3).

Proof. This proposition can be proved directly as in [9], but we give a shorter
proof that uses the results of Section 3. Consider the strategy af defined in (3.1).
Since the corresponding portfolio value VﬁT is the payoff of a self-financing
strategy starting from the initial capital V and VﬁT < H(Sn), then V](‘,T itself
is a modified contingent claim in the sense of (6.2). Moreover, if X € X, then
one has Eg, v, {(H(Sn)—X)"} = Es, vy {H(Sn)} —Es,.v, { X }, so that the first
part of the proposition follows.

As for the second part, if p = p* then all the modified contingent claims
X € X are solutions. If p # p*, then from Section 3 we also deduce that the
V]f',‘T is equal to H(Sy) on all events except for the “least probable” one, where
the payoff is equal to

1
min {(p*) N, (1 = p*)N}

In particular, it is straightforward to check that E*{Vﬁf} = Vb, and thus that
V]‘\’,ZT can be defined as in the statement above. O

H(Sn) - (Vg (So) = Vo).

To apply this approach to the convex case, we make the further assumption
that ¢ is strictly convex, continuously differentiable and such that ¢(0) = 0.
Indeed, these properties appear to be the right ones to state the following re-
sults in a reasonable notation, but we believe that a generalization to non-C*
functions, in terms of the sub-differential, should be straightforward.

6.4. Theorem. Set I := (¢')~! and define the modified contingent claim

X =) - 1 (57 )

dpP

with ¢* > 0 chosen in such a way that E*{X*} = V. Then X* solves the
“static” problem (6.3).
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Proof. Fix an X* € X and define, for every X € X
X.:=(1-e)X*+eX, Fx(e):=E{{(H(Sy)-X.)}.
Then X, € X for every ¢ € [0,1] and it is clear that X* is optimal for the
problem (6.3) if and only if
0 < Fi(0%) = E{(X* = X)¢'(H(Sy) — X*)}

i.e., if and only if E{X*¢'(H(Sy) — X*)} > E{XV'(H(SNy) — X*)}, for every
XeXx.
Define now the measure () by

dQ  C(H(Sy) - X°)

dP " E{¢(H(Sy)—X*)}’

so that X™* minimizes the shortfall risk if and only if it is optimal for the prob-
lem maxxey EQ{X }. According to Proposition 6.3, the latter maximization
problem is solved by an X* of the form

X* = H(SN)lpc +’ylF,

where F := {w | (fg (w) = ¢}, € := min,, %(w) and + is such that E*{X*} =
Vo.

Note that by definition of @,
dQ dQ dP V' (H(Sy) — X*) dprP

dP* ~ dP dP*  E{¢(H(Sy) - X*)} dP*

Since ¢’ is increasing and ¢'(0) = 0, the above equality implies that {;1?* =
0} = {H(Sy) = X*}. As a consequence, if ¢ = 0, then P{H(Sy) = X*} > 0
and one would have X* = H(Sy) on the set {dd}?* >0} = {H(Sn) > X*},
a contradiction. One then has that ¢ > 0, i.e., @ and P* are equivalent and,
moreover, H(Sy) > X* almost surely. By definition of X*, it follows then that

% = ¢ almost surely, so that X* = ~1p, i.e., v = X*. As a consequence,

d@ dQ dp

a7 apap 7!
P dQ  ¢([H(Sy) - X*]7)
P AP

= C([H(Sy) - x7) =

dpP*
:>H(SN)—X* ZI(C* ar

ap
éX*H(SN)I(c* dP),

with ¢* := E{¢(H(Sy) — X*)}. Since X* minimizes the shortfall risk, one
must have that E*{X*} =V}, i.e.,

g dr (e = E*{H(SN)} — Vp. (6.4)
U ()}

Since £ is convex and C!, then #' is increasing and continuous and so is I. This
means that the function ¢ — E*{I(c9L5)} is continuous and increasing, thus
there exists a unique ¢* such that (6.4) is satisfied. O
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6.5. Remark. Once the optimal modified contingent claim X* is determined,
the optimal strategy is simply the Cox-Ross-Rubinstein replicating strategy for
X* as in (2.2), that is,

n Sp(u—d) '

7 Robustness

In this section we assume that we are given a sequence (£ ) of loss functions
that converge pointwise to a loss function ¢. For each function ¢ (resp. for £),
we call X} (resp. X*) the optimal modified claim which solves the problem in
(6.3), and a** (resp. a*) the corresponding optimal strategy. Throughout the
section, we shall also write

A :=E"{H(SN)} - Vo = Vi (So) - Vo.

We distinguish three cases: the case when the limit loss function ¢ is strictly
convex, the case ¢(x) = x and the case when the limit loss function ¢ is concave.
In the first case, we use a technique similar to [3].

7.1. Theorem. Let ({;)ren be a sequence of strictly convex, C1 functions such
that ¢}, (0) = 0 for every k. If limy £, = ¢ pointwise with ¢ strictly convex, C!
and such that ¢'(0) = 0, then X} — X* almost surely.

Proof. We start by proving that ¢;, — ¢*. To do this, define

w2 (45)}

and note that ¢* and the c¢js have the property that A = @i(cp) = o(c¥)
(where ¢ is defined in the obvious way). Since the probability space (2 is finite,
it is straightforward to check that pr(c) < +oo for all ¢ > 0 and that ¢ is
continuous for all k.

Since I, — I pointwise, we have that for every ¢ € R+

dpP* dpP* dpP*

Iy, (c P (w)) < 21€1§Ik <c 1P (w)) < Slégilelll\)llk (c 1P (w)) = K < o0,
i.e., the sequence Ik(c%(w)) is dominated. We know from [3] that if ¢, — ¢
pointwise then I, — I uniformly on compact sets. This means that ¢g(c) —
©(c) for all ¢ > 0. Since ¢ and the ¢ are continuous and strictly increasing, it
follows that <p,;1 — 1 pointwise. Moreover, these functions are continuous,
so cf = ¢ H(A) = o HA) = ¢

Now we are able to prove the theorem. First of all notice that by Theorem 6.4

dp*
X,::H(SN)—Ik(* >

“kqp

Since Ij, converges uniformly on compact sets to I, the right hand side converges
to H(Sn)—1(c*4L5) almost surely, so that one gets X; — X* almost surely. [
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Now we consider the case ¢(z) = x. For this case, since I cannot be defined,
we can no longer use techniques similar to [3], and we have to develop an ad-hoc
technique. Recall from Lemma 6.3 that an optimal claim in this case is given
by

A

X = HN) - gy

lg (7.5)

with F = {dP* ces}.

7.2. Theorem. Let ({;)ren be a sequence of strictly convex, Ct functions such
that £,,(0) = 0 for every k. If limy {(x) = = pointwise, then X} — X* almost
surely, where X* is defined as in (7.5).

Proof. Since ¢j(z) — x pointwise and the ¢, are convex, then ¢, (z) — 1 uni-
formly on compact sets of Ry (see [3] or [7]). Since the ¢} are all increasing
functions, it is easy to prove that

if 1
lim Ip(z) = 0 1 T<
ko0 +oo ifx>1

The convergence is uniform on compact sets of (0, 1), and also the convergence
to +00 is “uniform” in the sense that for every e > 0 and M > 0 there exists k
such that Iy(x) > M for all k >k and > 1 +&.

The convergence above implies that ¢j — ces. Indeed, for every € > 0 there
exists k such that 0 < I (z) < ¢ for every k > k, # € (0,1 — ). Then

LdP* . L 4P
A=FE" {Ik ( K qp )} <e+E {Ik (C’“F) 1{c;ddf;*>1—s}}

so E* {Ik(c; ddi, )1{02%21_6}} > A —¢; in particular, {CZ ddi: >1- s} is not

empty for all k¥ > k, and this means that c} max, %(u}) >1—¢g,80 ¢t <
(1 — &) min, 42 (w) = (1 — €)ces. Conversely, for all € > 0 and M > A/P*(E)
there exists k such that Ij(x) > M for all k > k, © > 1 + . This implies that

oo o ()} )] () o

Thus we must have <& < 1. In fact, if 2= > 14¢, we obtain A > M- P*(E),
but we took M > A/ P*(E), so this is absurd. In conclusion, we have that for
all €, (1 —€)ces < ¢ < (1+€)ces from a certain k on which yields ¢, — ces.

* dP*

Now we only have to prove that Iy(c; G5 ) — 7 (E)
dp*

follows that limy .o ;G5 = ces%, which is equal to 1 on E and less than
one on E° Since I — 0 uniformly on compact sets of (0,1), we have that
I (e ddﬁ; ) — 0 on E°, and the limit is uniform. Thus for all € > 0 there exists
k such that for all k > k we have

dpr* dpr*

This means that Ik( )P*( ) — A, and finally that Ik(czdd%) —
The proof is finished.

1g. Since ¢ — ces, it

A
PEy e

17



7.3. Corollary. Under the assumptions of Theorems 7.1 or 7.2, we have that
ai® — o almost surely for allm =0,... N — 1.

Proof. Recall that the optimal strategy for the shortfall risk minimization prob-
lem with loss function ¢ is

ok XIS 1u) — ET{X{[S,1d)
« .
n Sp_1(u—d)

(see Remark 6.5). Since X} — X* almost surely and the probability space 2 is
finite, the conditional expectations above converge almost surely to
E*{X*|Sp_1u} — E*{X*|S,_1d}
S’n—l (u - d) ’

k

ie., o™ — « almost surely for alln =0,... ,N — 1. U

In the concave case similar results hold, but the formulation is not straight-
forward due to the fact that the optimal solution is in general not unique. Recall
that in the concave case the strategy is given by (5.2) and thus the optimal mod-
ified contingent claim is given by

. A
X*=H(SNn) — ml{w(a*)}v

where w(a*) is the “critical” event defined in (3.4).

7.4. Theorem. Let ({;)ren be a sequence of concave functions such that £, — £
pointwise. Then there exists a (kn)n such that X} — X* almost surely and
sk — o almost surely for alln = 0,... N — 1, where X* is an optimal
solution of problem (6.3) and o* is the corresponding optimal strategy.

Proof. We start by proving that, under the given hypotheses, there exist a limit
strategy a* and a subsequence (a**);, such that a*** = o* from some h on.
Define for every k € N,

(S0, Vo) = p b (M> -V (M) |

()N (1 —p)N
so that according to (5.2) the optimal strategy at time 0 for the problem asso-
clated to €4 is to choose af® = ol (respectively, ai* = a{?) if ©? < 0 (re-

spectively, ¢ > 0). Note also that, since aél) = %, a((f) = %{)5%

(see (2.3) for the definition) and V,*(S,) = E{H(SNn) | Sn} is independent of
the loss function, 04((]1) and a(()g) do not depend on the loss function either. We
can now distinguish two cases:

o if either ¢} < 0 or ¢} > 0 from some k on, then the sequence (a;’k)k is
constant from k on, and thus it converges to a limit o,

o if @2 converges to 0 taking both positive and negative values infinitely
many times, consider the subsequence ((pgho )ho formed either by the pos-

itive or with the non-positive values taken by (@g)k and the problem re-
duces to the previous case.
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. . . *,kp *
This way, we are dealing with a subsequence (Ekho )ho such that (ay ")y = Qb

from some hy on. Note that, since VP = Vo + apSo(wy — 1) only depends on
the chosen strategy and not on the loss function ¢, the optimal portfolios of the
problems associated to the Ekho s for hg > hg all follow the same evolution in the
first time interval.

The existence of the limit strategy o now follows by induction on n in a

similar way, i.e., defining at each stepn=1,...,N —1
_ Vi(Sp) — Vi N_ VE(Sn) — Va
P (Sns Vi) i= pN "y, ("7) (A =p)" " | N
i ) (p*)N-" ( ) (1 —p*)N-n
for every k € N, and extracting from the sequence ({, _ )n, , a subsequence
*7khn

(Ck,., )n,, such that (an "")p, = a; from some h,, on.

Now remember that, by Remark 5.4 and by the results recalled in Section 3,
in the “concave” case there is a one-to-one correspondence between optimal
strategies belonging to the class IT defined in (3.2) and “critical” events defined
as in (3.4). Note that this is equivalent to saying that there is a one to one
correspondence between strategies a € IT and modified contingent claims of the
form

X(a)=H(Sn) — ﬁl{w(a)}'

In particular, since (oz;’kh")hn = o from some h,, on, this implies that the
optimal modified contingent claims X = corresponding to a*PFr must converge
to the contingent claim X* corresponding to a*.

It only remains to show that o* is an optimal strategy for the problem
associated to £. Note that, by Equation (5.1) and the independence between the
strategies and the loss functions, the optimal values of the problems associated
to the ;s converge to the shortfall associated to strategy a* under the loss
function ¢. On the other hand, since for every sequence of functions (fy,)n
convergin pointwise to f one has liminf f,, < inf f, this limit value necessarily
must be the optimal value for the problem associated to £. O

7.5. Remark. Note that the optimal limit solution X * is not necessarily unique,
i.e., there might be different subsequences of (X; ) converging to different op-
timal solutions to the problem (6.3). Note also that one does not need strict
concavity of the fis.
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