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Abstract

In this paper we study the dependence on the loss function of the
strategy which minimises the expected shortfall risk when dealing with a
financial contingent claim in the particular situation of a binomial model.
After having characterised the optimal strategies in the particular cases
when the loss function is concave, linear or strictly convex, we analyse
how optimal strategies change when we approximate a loss function with
a sequence of suitable loss functions.

Key Words: shortfall risk minimization, binomial model, Dynamic Pro-
gramming algorithm, robustness

1 Introduction

Given a market with a vector S of asset prices (one of which is non-risky), let
HN be a liability to be hedged at some future time N . If VN (π) is the value
at time N of a portfolio corresponding to a self-financing investment strategy
π, the shortfall risk minimization problem consists in determining J0(S0, V0),
where for every n = 0, 1, . . . , N ,

Jn(s, v) := inf
π

E
{
`
(
[HN − VN (π)]+

) ∣∣ Sn = s, Vn = v
}

∗This author accomplished most of this research as a post-doc fellow in the Pure and
Applied Mathematics Dept. of Padua University, which is gratefully acknowledged.
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for a suitable “loss function” `, with Sn and Vn the (known) price at time n
of the assets and the value at time n of the portfolio. This problem typically
arises when an agent does not have enough initial capital to (super)replicate
the contingent claim HN . The loss function ` is classically considered to be
increasing and such that `(0) = 0. It is also customary in economic models to
suppose that ` is either concave or convex on R+, depending on the investor’s
inclination or aversion (respectively) to taking risks. While the most used loss
function is `(x) = x (see [2, 3, 4, 9] and the references therein), and the choice
`(x) = 1x>0 corresponds to the problem of maximising the probability of a
perfect hedge (see e.g. [1, 8]), the shortfall risk minimisation problem with a
convex ` is used as a building block when dealing with the so-called convex
measures of risk (see [10] for details). The major application of the foregoing
problem consists in finding the optimal policy π∗ and, if possible, to determine
it explicitly.

In this paper, we want to analyse the dependence of the optimal policy π∗

on the loss function ` in the case of the Cox-Ross-Rubinstein “binomial model”.
Namely, we want to prove that the shortfall risk minimization problem is robust
with respect to the loss function `, meaning that, if (`n)n is a sequence of loss
functions converging to another loss function `, then the optimal strategies π∗,k

for the “approximating” problems also converge in some sense to the optimal
strategy for the limit problem. To this extent, a necessary first step is to char-
acterise the optimal strategies, both in the case of a concave loss function and
in the case of convexity. Indeed, for the convex case we find results similar
to those cited in the references above, while in the concave (also including the
linear) case, we find different results, closer to those of [6, 7, 15, 16]). It is
remarkable that, due to the finite state space of our model, we are allowed to
drop the constraints HT > 0, VN (π) > 0 (or some weaker version) which are
usually needed when solving the shortfall risk minimisation problem in infinite
state spaces (see e.g. [2, 3, 4, 9, 8, 13]). Nevertheless, when the robustness issue
is considered, it can be proved that our main results still hold true even if some
“admissibility” constraints are taken into consideration.

In the Cox-Ross-Rubinstein “binomial model”, the non-risky asset is sup-
posed (by considering forward prices) identically equal to 1, and a single risky
asset S is featured, whose price S follows the dynamics

Sn+1 = Snωn+1, n = 0, . . . , N − 1

where S0 > 0 is given and (ωn)n=1,...,N are i.i.d. random variables taking values
in the set {d, u} (with u and d known real numbers such that 0 < d < 1 < u)
with probability law

p := P{ωn = u} = 1− P{ωn = d}, n = 1, . . . , N.

To avoid technicalities, we shall take as our underlying probability space the
minimal one for our model; that is, we let Ω = {u, d}N , F = P(Ω).

An investment strategy is a sequence π = (πn)n=0,...,N−1, where πn =
(αn, βn) is the decision to buy at time n− 1, and hold up to time n, βn units of
the non-risky asset and αn units of the stock Sn. We shall always suppose our
investment strategies to be self-financing, namely that{

V0 = β0 + α0S0

Vn := βn + αnSn = βn+1 + αn+1Sn
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so that the dynamics of the portfolio value can be written as

V αn+1 = V αn+1(V αn , Sn, αn+1, ωn+1) := V αn + αn+1Sn(ωn+1 − 1).

By the last equality, then, the main concern in the hedging/replication problem
is the determination of αn, and this is why we use the notation V αn to stress
the dependence of the portfolio dynamics upon the choice of α. Moreover, we
shall suppose H to be a European contingent claim depending only on the final
value SN of the stock. Hence, the shortfall risk minimization problem can be
written, for every n = 0, . . . , N , as

Jn(Sn, Vn) := inf
α

E
{
`
(
[H(SN )− V αN ]+

) ∣∣ Sn, Vn}. (1.1)

The paper is organised as follows. Section 2 contains the definition of the
Dynamic Programming Algorithm (DPA) and some interesting results that hold
when the DPA is applied to the binomial model. Moreover, in the same section
the main results of [6] and [15], which will be a useful reference in the sequel,
are recalled. In Section 3, after the determination of the optimal control and
optimal value for the case when ` is concave in R+, it will be surprisingly clear
that the investor with “linear” loss function behaves in exactly the same way
as a risk prone investor. Moreover, Section 3 also explains a way to approach
the incomplete information case (i.e., the situation when p is unknown) for a
risk prone investor and investigates the robustness of the solutions in the case
when a concave function ` is approximated with a sequence (`n)n of concave
functions. Section 4 treats the case when the loss function is convex, and the
explicit determination of the optimal strategy is made using a Neyman-Pearson
technique similar to [9]. Moreover, we study the robustness of the optimal
strategy considering the two cases when we approximate a strictly convex loss
function ` with a sequence (`n)n of strictly convex functions and the case when
the functions in the approximating sequence (`n)n are strictly convex and ` is
linear.

Appendix A is dedicated to a self-contained treatment of the optimization
in particular data structures that we call “recombining binomial trees” , which
are used in the determination of the optimal strategy in Section 3.

2 Preliminary results from the literature: the
linear case

In [15], the key tool used for solving the shortfall risk minimization problem
is the Dynamic Programming Algorithm (DPA for short). Since it will be also
used in the present work, we summarize here its main features. Unlike the rest
of the paper (and with the exception of Proposition 2.1), this section gathers
results that are already known in the literature.

The DPA is computed according to the following backwards recursion:

JN (s, v) := `
(
[H(s)− v]+

)
Jn(s, v) := inf

α
E{Jn+1(Sn+1, V

α
n+1) | Sn = s, V αn = v}, n = 0, . . . , N − 1.

Once solved, the DPA allows us to compute the optimal value J0(S0, V0) for
our problem; moreover, if the inf operators in the various recursive steps are
realized as min, the minimizing α is the optimal strategy.
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For the DPA applied to the shortfall risk minimization in the binomial model,
there are some remarkable results that do not depend on the choice of the loss
function `. First of all, there exists a unique equivalent martingale measure P ∗

such that

p∗ = P ∗{ωn = u} :=
1− d
u− d

, 1− p∗ = P ∗{ωn = d} =
u− 1
u− d

. (2.1)

In particular, for every n = 0, . . . , N , the arbitrage free price of H(SN ) at time n
is V ∗n (Sn) := E∗{H(SN ) | Sn} (Cox-Ross-Rubinstein valuation formula). Note
that, in particular, V ∗N (SN ) = H(SN ). It is also well known that, if V0 > V ∗0 (S0),
there is a replicating strategy given by

α∗n+1 :=
V ∗n+1(Snu)− V ∗n+1(Snd)

Sn(u− d)
(2.2)

As a consequence, the shortfall risk minimization problem for this binomial
model is non trivial only in the case V0 < V ∗0 (S0). Henceforth, we shall therefore
suppose that we are dealing with this case. The problem has already been solved
in the case `(x) = x in [15], even when there is incomplete information on the
underlying model (see [6] and [15] again, and [12] for a different approach).

Other results on the DPA are gathered in the following proposition, whose
proof – a straightforward calculation by backwards induction on n, based on
the DPA and on the monotonicity of ` – is extensively featured in [7].

2.1 Proposition. In the notations of the present section and for every n =
0, . . . , N − 1,

1. Jn(s, v) is decreasing in v;

2. Jn(s, v) = 0 for v > V ∗n (s);

3. there exist α < α̃ such that

Jn(s, v) = inf
α∈[α,eα]

E{Jn+1(Sn+1, V
α
n+1) | Sn = s, V αn = v};

4. if v 6 V ∗n (s), in (3) above one can choose

α = α
(1)
n+1(s, v) :=

V ∗n+1(sd)− v
s(d− 1)

, α̃ = α
(2)
n+1(s, v) :=

V ∗n+1(su)− v
s(u− 1)

.

(2.3)

We now want to review the most important points of [6] and [15], which
completely solve the problem in the case `(x) = x. These results are reported
here for the convenience of the reader, as they permit a better understanding
of the meaning of the results and remarks contained in the next section.

Here, we shall often use the expressions defined in (2.3) in correspondence
of the current values v = Vn and s = Sn for the portfolio and the risky asset
respectively. For simplicity of notation, then, we shall write α(i)

n+1 instead of
α

(i)
n+1(Sn, Vn). The reader should nevertheless keep in mind the dependence of
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the α(i)
n+1s not only on the current time (via the Cox-Ross-Rubinstein valuation

formula) but also on Sn and Vn.
In the case `(x) = x, V0 < V ∗0 (S0), the recursive step in the dynamic pro-

gramming algorithm defined above reduces, at each time n, to the minimiza-
tion of a function which is piecewise linear in α on the three disjoint intervals
(−∞, α(1)

n+1), (α(1)
n+1, α

(2)
n+1) and (α(2)

n+1,+∞). As a consequence, the inf is at-
tained as a min either for α = α

(1)
n+1 or for α = α

(2)
n+1. A straightforward

calculation (see [15, Theorem 4.1]) allows one to check that the optimal control
α† is calculated at each time n by choosing

α†n+1 =

{
α

(1)
n+1 if p < p∗,

α
(2)
n+1 if p > p∗.

(2.4)

(The case p = p∗ corresponds to S and V being martingales, so that any choice
of the control would give the same results in the mean.) Note that the choice
between the strategy α(1) and α(2) does not depend on n, so the optimal control
is either α†n ≡ α

(1)
n for p < p∗ or α†n ≡ α

(2)
n for p > p∗. In particular, the

choice of the optimal control can be made “a priori”. The optimal value for the
shortfall risk is then min{ pp∗ ,

1−p
1−p∗ }

N (V ∗0 (S0)− V0)+.
In [6], some additional properties of the strategies belonging to the class

Π :=
{

(αn)n
∣∣ αn ∈ {α(1)

n , α(2)
n } for every n = 1, . . . , N

}
(2.5)

are investigated. In particular, a slight modification of the proof of Theorem 4.1
in [15] shows that for every α ∈ Π,

E{H(SN )− V αN | S0, V0} =
( p
p∗

)λN( 1− p
1− p∗

)N−λN
[V ∗0 (S0)− V0]+, (2.6)

where λN := #{n | αn = α
(1)
n }. As a consequence, it is possible to calculate

an adaptive strategy on a “step-by-step” basis, namely, choosing αn = α
(1)
n

(respectively, αn = α
(2)
n ) if, given our information at time n, we are lead to

believe that p < p∗ (respectively, p > p∗). Moreover, it is possible to define a one
to one correspondence between controls α ∈ Π and “events” ω = (ωn)n=0,...,N−1

by defining (
ω(α)

)
n

:=

{
u if αn = α

(1)
n

d if αn = α
(2)
n

. (2.7)

In other words, ω(α) is the only event such that the stock S goes up every time
the investor “bets” on it going down on average, and the stock goes down every
time the investor bets on it going up on average. Now, it is straightforward to
prove that any strategy α ∈ Π gives perfect hedging in all events ω 6= ω(α). This
is quite a strong result, which has two main consequences. First of all, Π is a
class of “quasi-replicating” controls, in the sense that every α ∈ Π gives perfect
hedging with probability close to 1. More in detail, since E{(H(SN )−V αN )+} > 0
and H(SN )(ω)− V αN (ω) = 0 in all events ω 6= ω(α), one has

P{H(SN )− V αN > 0} = P{ω(α)} = pλN (1− p)1−λN (2.8)

with λN defined as above. Moreover, from (2.6), it follows that in the only
“critical” event ω(α) we have

H(SN (ω(α)))− V αN (ω(α)) =
( 1
p∗

)λN( 1
1− p∗

)N−λN
[V ∗0 (S0)− V0]+,
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which is generally much greater than the initial “lack” of capital.

3 Risk prone investor: the concave case

Throughout this section ` will be supposed to be a concave function on R+. As
in Section 2, we use the convention of writing α(i)

n instead of α(i)
n (Sn, Vn).

Before starting the discussion, we need an extension of Proposition 2.1. Its
proof, a straightforward calculation by backwards induction, is again featured
in [7].

3.1 Proposition. If ` is concave then, in the notations of Section 2, the func-
tion Jn(s, ·)|(−∞,V ∗n (s)] is concave for every n = 0, . . . , N .

The fact that the concavity “propagates” along the DP algorithm allows us
to find a straightforward explicit solution for our problem.

3.2 Theorem. Let ` be a concave function and, for every n = 0, . . . , N , let Jn
be the function defined in Equation (1.1). Suppose that V0 < V ∗0 (S0). Then, for
every n,

Jn(Sn, Vn) = min
k=n,...,N

pk−n(1− p)N−k`
(

V ∗n (Sn)− Vn
(p∗)k−n(1− p∗)N−k

)
. (3.1)

Define, for every n = 0, . . . , N − 1,

α
(1)
n+1 :=

V ∗n+1(Snd)− Vn
Sn(d− 1)

, α
(2)
n+1 :=

V ∗n+1(Snu)− Vn
Sn(u− 1)

.

Then the optimal strategy is given by

α∗n+1 =

α
(1)
n+1 if pN−n`

(
V ∗n (Sn)−Vn

(p∗)N−n

)
6 (1− p)N−n`

(
V ∗n (Sn)−Vn
(1−p∗)N−n

)
α

(2)
n+1 if pN−n`

(
V ∗n (Sn)−Vn

(p∗)N−n

)
> (1− p)N−n`

(
V ∗n (Sn)−Vn
(1−p∗)N−n

) . (3.2)

3.3 Remark. As the proof of this theorem will make clear, we can always
restrict the class of admissible controls to the class Π defined in (2.5). In par-
ticular, this allows a proof by induction via a straightforward calculation that
from V0 6 V ∗0 (S0) follows Vn 6 V ∗n (Sn) almost surely (i.e., for every event ω)
for every n. This is the reason why in the expression for Jn(Sn, Vn) there is no
need to consider the positive part of the argument of `.

Proof of Theorem 3.2. For every n = 0, . . . , N − 1 define jun and jdn as in the
proof of Proposition 2.1, so that

Jn(Sn, Vn) = inf
α
{jun+1(s, v, α) + jun+1(s, v, α)}.

By (3) and (4) of Proposition 2.1 we can restrict the computation of the inf to
the interval [α(1)

n+1, α
(2)
n+1] where, as already seen in the proof of Proposition 3.1,

jun+1 + jdn+1 is concave. So, since a concave function on an interval can attain
its lowest value only at the extremal points, the problem reduces to comparing
the values taken by the function at the extrema. Namely, on recalling that for

6



α = α
(1)
n+1 (respectively, α = α

(2)
n+1) one has jdn+1 = 0 (respectively, jun+1 = 0),

one finds that

Jn(Sn, Vn) = min{pJn+1(Snu, Vn + α
(1)
n+1Sn(u− 1)),

(1− p)Jn+1(Snd, Vn + α
(2)
n+1Sn(d− 1))},

argmin[· · ·] = α
(1)
n+1 ⇐⇒ pJn+1(Snu, Vn + α

(1)
n+1Sn(u− 1)) 6

6 (1− p)Jn+1(Snd, Vn + α
(2)
n+1Sn(d− 1)),

and, as in [6, Section 2] (see also Section 2 here), we are allowed to restrict the
class of admissible controls to the class Π defined in (2.5). By recalling that
E∗{V ∗n+1(Sn+1) | Sn = s} = V ∗n (s), it is straightforward to verify by backward
induction on n that for every α ∈ Π, defining

λn := #{k > n | αk = α
(1)
k }, µn := #{k > n | αk = α

(2)
k } = N − n− λn,

gives

ESn,Vn{`([H(SN )− V αN ]+)} = pλn(1− p)µn`
(

V ∗n (Sn)− Vn
(p∗)λn(1− p∗)µn

)
. (3.3)

Hence it follows that the optimal value is as in (3.1).
To prove that the strategy given in (3.2) is optimal, we start by observ-

ing that from (3.3) it follows that, for the purpose of determining the shortfall
risk, only the number of times that αn = α

(1)
n matters, and not the particu-

lar sequence of choices. The evolution of the shortfall risk with respect to the
chosen control from time n on can then be seen as a “recombining binomial
tree” of depth N − n (see Definition A.1 in the Appendix for the definition) as
follows. For every m = n + 1, . . . , N , associate the choice αm = α

(1)
m (respec-

tively, αm = α
(2)
m ) with the decision of branching left (respectively, right) at

depth m − n − 1, so as to set a one-to-one correspondence between strategies
in the class Π and branching sequences for the tree. Formula (3.3) suggests
associating with each leaf τN−nk the value pk(1 − p)N−n−k`

( V ∗n (Sn)−Vn
(p∗)k(1−p∗)N−n−k

)
,

i.e., the shortfall risk associated with any strategy leading to that leaf. The
proof is now completed by observing that the proposed strategy is exactly the
“optimal branching sequence” of Proposition A.2.

3.4 Remark. At the end of Section 2 we noted that any strategy in the class
Π is “quasi replicating”, i.e., it leads to perfect hedging in all events ω 6= ω(α)
as defined in (2.7). This result does not depend on the function ` taken into
consideration, so we can conclude that the expected value (3.3) found in the
proof to Theorem 3.2 corresponds to a shortfall of V ∗n (Sn)−Vn

(p∗)λn (1−p∗)µn in the only
“critical” non-hedging event ω(α), whose probability is P (ω(α)) = pλn(1−p)µn
as seen in (2.8).

3.5 Remark. In the case of “complete information” (i.e., when the proba-
bility p is known by the investor), the optimal strategy can be chosen a pri-
ori instead of on a step-by-step basis. Actually, once the k that minimizes
pk(1 − p)N−k`

( V ∗0 (S0)−V0

(p∗)k(1−p∗)N−k
)

is determined, any strategy choosing k times
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αn = α
(1)
n is optimal. Note also that all of these strategies have the same proba-

bility pk(1−p)N−k of being non-hedging and the same shortfall `
( V ∗0 (S0)−V0

(p∗)k(1−p∗)N−k
)

in the “critical” event, so that the choice of the “preferred” optimal strategy
has to be made according to completely subjective criteria.

The expression (3.2) for the optimal control has been chosen because it can
easily be adapted in the spirit of [6, Section 3] (summarized in Section 2) to
elaborate optimal adaptive controls in the case of incomplete knowledge of the
model.

3.6 Remark. In the case `(x) = x examined in [6] and [15], a quite remarkable
fact is that the (generally unique) optimal strategy consists of choosing either
α ≡ α(1) or α ≡ α(2). In other words, in this case the optimal leaf in the tree
described in the proof of Theorem 3.2 is either at the extreme “left” or at the
extreme “right”. This may not happen in the general case, as the following
(perhaps quite artificial) example shows even in the very simple case of three
possible final outcomes.

3.7 Example. Take `(x) :=
√
x + 5
√
x, N = 2, p = .245, u = 3.17 and d = .8

(so that p∗ = .0845). Consider a contingent claim H such that V ∗0 (S0) > 170
and choose V0 such that V ∗0 (S0) − V0 = 170. The three values associated with
the final leaves are then

p2`

(
V ∗0 (S0)− V0

(p∗)2

)
∼ 9.77,

p(1− p)`
(
V ∗0 (S0)− V0

(p∗)(1− p∗)

)
∼ 9.54,

(1− p)2`

(
V ∗0 (S0)− V0

(1− p∗)2

)
∼ 9.72.

This way the optimal “leaf” is the central one, and two optimal controls can be
built by choosing either α0 = α

(1)
0 , α1 = α

(2)
1 or α0 = α

(2)
0 , α1 = α

(1)
1 . Note also

that the policy proposed in Theorem 3.2 will choose α1 = α
(2)
1 .

3.8 Example. Consider the case when `(x) = xκ for some 0 ≤ κ ≤ 1. In
particular, the case κ = 1 corresponds to minimising the mean shortfall risk,
and, due to the assumption that `(0) = 0, the case κ = 0 corresponds to
minimising the probability of positive shortfall. These two particular cases have
already been considered in [6] and [15]: when κ = 1, the optimal strategy is the
α† defined in (2.4), and when κ = 0 the optimal strategy α‡ is calculated by
choosing

α‡n =

{
α

(1)
n p < 0.5
α

(2)
n p > 0.5

(when p = 0.5, all strategies α ∈ Π are optimal).
When 0 < κ < 1, the solution still takes an appearance close to the cited

results, namely, the optimal policies always choose either α ≡ α(1) or α ≡ α(2).
Actually, in this case, for every n = 0, . . . , N − 1 the optimal control α∗ is
computed by choosing

α∗n = α(1)
n ⇐⇒ p

(p∗)l
6

1− p
(1− p∗)κ

i.e.,
p

1− p
6
( p∗

1− p∗
)κ
,
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independent of n.
Moreover, let κ = log(p)−log(1−p)

log(p∗)−log(1−p∗) (namely, the value for which p
1−p =(

p∗

1−p∗
)κ). Excluding the “undecidable” cases p = 0.5 (all events have the same

probability), p∗ = 0.5 (division by zero in κ) and p = p∗ (the stock and the port-
folio are martingales under the real world probability measure), the following
cases may then occur.

p∗ < p < 0.5 (0 < κ < 1) α∗ =
{
α‡ = α(1) κ < κ
α† = α(2) κ > κ

p∗ < 0.5, p 6= (p∗, 0.5) (κ < 0 or κ > 1) α∗ = α‡ = α† = α(1)

0.5 < p < p∗ (0 < κ < 1) α∗ =
{
α‡ = α(2) κ < κ
α† = α(1) κ > κ

p∗ > 0.5, p 6= (0.5, p∗) (κ < 0 or κ > 1) α∗ = α‡ = α† = α(2)

Note that if α‡ = α†, then the optimal control α∗ for the shortfall risk min-
imization problem coincides with both α‡ and α† for every κ. On the other
hand, if α‡ 6= α†, the exponent 0 < κ < 1 is “critical”, in the sense that α∗ = α‡

for κ ∈ (0, κ) and α∗ = α† for κ ∈ (κ, 1). In other words, the study of the
shortfall risk minimization problem with `(x) = xκ can be reduced to the two
fundamental problems with κ = 0 and κ = 1.

Suppose now that (`k)k is a given sequence of concave loss functions con-
verging pointwise to a (concave) loss function `. For each function `k (resp. for
`), let α∗,k (resp. α∗) be the optimal strategy for the corresponding shortfall risk
minimisation problem. It is then a natural question whether the α∗,k converge
in some sense to α∗.

Though the answer is somewhat complicated by the fact that the optimal
solution of a concave problem in general is not unique, it is nevertheless possible
to give the following result.

3.9 Theorem. Let (`k)k∈N be a sequence of concave functions such that `k → `
pointwise and let α∗,k be the optimal strategy for the shortfall risk minimisation
problem corresponding to `k for every k. Then there exists a (kh)h such that
α∗,khn → α∗n almost surely for all n = 1, . . . , N , where α∗ is an optimal strategy
for the shortfall risk minimisation problem corresponding to `.

Proof. Define for every k ∈ N,

ϕ0
k(S0, V0) := pN`k

(
V ∗0 (S0)− V0

(p∗)N

)
− (1− p)N `k

(
V ∗0 (S0)− V0

(1− p∗)N

)
,

so that according to (3.2) the optimal strategy at time 0 for the problem as-
sociated to `k is to choose α∗,k1 = α

(1)
1 (respectively, α∗,k1 = α

(2)
1 ) if ϕ0

k 6 0
(respectively, ϕ0

k > 0). Note also that, since α(1)
1 = V ∗1 (S0d)−V0

S0(d−1) , α(2)
=

V ∗1 (S0u)−V0
S0(u−1)

(see (2.3) for the definition) and V ∗n (Sn) = E{H(SN ) | Sn} is independent of
the loss function, α(1)

1 and α(2)
1 also do not depend on the loss function. We can

now distinguish two cases:

• if either ϕ0
k 6 0 or ϕ0

k > 0 from some k on, then the sequence (α∗,k1 )k is
constant from k on, and thus it converges to a limit α∗1,
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• if ϕ0
k converges to 0 taking both positive and negative values infinitely

many times, consider the subsequence (ϕ0
kh0

)h0 formed either by the posi-
tive or by the non-positive values taken by (ϕ0

k)k and the problem reduces
to the previous case.

This way, we are dealing with a subsequence (`kh0
)h0 such that (α∗,kh0

1 )h0 ≡ α∗1
from some h0 on. Note that, since V α1 = V0 + α1S0(ω0 − 1) only depends on
the chosen strategy and not on the loss function `, the optimal portfolios of the
problems associated to the `kh0

s for h0 > h0 all follow the same evolution in the
first time interval.

The existence of the limit strategy α∗ now follows by induction on n in a
similar way, i.e., defining at each step n = 1, . . . , N − 1

ϕnk (Sn, Vn) := pN−n`k

(
V ∗n (Sn)− Vn

(p∗)N−n

)
− (1− p)N−n`k

(
V ∗n (Sn)− Vn
(1− p∗)N−n

)
for every k ∈ N, and extracting from the sequence (`khn−1

)hn−1 a subsequence

(`khn )hn such that (α∗,khnn+1 )hn ≡ α∗n+1 from some hn on.
It only remains to show that α∗ is an optimal strategy for the problem

associated to `. Note that, by Equation (3.1) and the independence between the
strategies and the loss functions, the optimal values of the problems associated
to the `ks converge to the shortfall associated to strategy α∗ under the loss
function `. On the other hand, since for every sequence of functions (fn)n
converging pointwise to f one has lim inf fn 6 inf f , this limit value necessarily
must be the optimal value for the problem associated to `.

3.10 Remark. Note that the optimal limit strategy α∗ is not necessarily
unique, i.e., there might be different subsequences of (α∗k)k converging to differ-
ent optimal solutions to the problem (4.2). Note also that one does not need
strict concavity of the `ks, so that the limit function ` might also be linear.

3.11 Remark. The concave problem can also be solved from the “static” point
of view defined in the next section. In this case, the optimal modified contingent
claim X∗ will have the same form as in (4.3) where E is the set of the “critical”
ωs corresponding to any optimal branching sequence leading to the optimal
“leaf”. This way, it is possible to see that any convex combination of the

(
N
k

)
optimal modified claims corresponding to the

(
N
k

)
optimal strategies in Π still

gives an optimal solution to the shortfall risk minimization problem.
This allows us to understand that, if the optimal strategy α∗ ∈ Π is not

unique, then there also exist infinitely many optimal strategies not in Π. More-
over, it is no longer possible to give an analogue to Theorem 3.9 unless the mod-
ified contingent claims optimal for the approximating problems are required to
be chosen according to some common condition (e.g., all the loss is concentrated
on a single ω, or γ constant on E).

4 Risk averse investor: the convex case

Throughout this section ` will be assumed to be a convex function on R+. As
in the above section (see Proposition 3.1), it is possible to give an extension of
Proposition 2.1, which we cite below. We give the formulation of this extension
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below but, as the proof is based on rather technical calculations and the propo-
sition itself will not be used in this paper, we invite the interested reader to find
it in [7].

4.1 Proposition. If ` is convex then, in the notations of Section 2, the function
Jn(s, ·) is convex for every n = 0, . . . , N .

This proposition has as an immediate consequence the existence of an op-
timal strategy for the convex case. It also follows that, if ` is strictly convex,
then the optimal strategy is unique. Nevertheless, when trying to determine
explicitly the optimal strategy in general form by using dynamic programming
arguments one is led to quite complex calculations. For the sake of simplicity,
then, from now on we shall shift from a DPA-based approach to another one,
with techniques similar to those in [9]. Notice that, for the case when ` is strictly
convex, we could also use techniques based on convex duality as in [12] or [13].
However, due to the absence of lower bounds on the claim H(SN ) and on the
portfolio X, it would not be possible to apply these techniques to the case when
`(x) = x.

4.2 Definition. We define the set of the modified contingent claims as

X := {X | X 6 H(SN ) (a.s.),E∗{X} 6 V0}. (4.1)

Roughly speaking, X is the set of all the claims less than H(SN ) which can be
replicated with initial capital (less than or equal to) V0 or, equivalently, the set
of all the possible final states of adapted, self-financing strategies starting from
initial capital (less than or equal to) V0.

We can now consider the shortfall risk minimization problem from a “static”
point of view:

min
X∈X

ES0

{
`
(
H(SN )−X

)}
. (4.2)

We want to show that the modified contingent claim that solves (4.2) coincides
with the payoff of the optimal portfolio for the shortfall risk minimization prob-
lem. We shall start from the linear case (`(x) = x) and from this case we shall
derive the solution for the strictly convex case.

The following lemma, a key tool for the proof of the main Theorem 4.4,
shows how this approach, an alternative to the DPA used in Section 2, can be
applied to the study of the “mean shortfall risk minimization problem”, i.e.,
the shortfall risk minimization problem in the case `(x) = x. Note that, in this
case, (4.2) reduces to the problem maxx∈X E{X}.

4.3 Lemma. If X∗ ∈ X solves the problem maxx∈X E{X}, then the hedging
strategy α∗ for the claim X∗ also solves the mean shortfall risk minimization
problem minα

{
ES0,V0{(H(SN ) − V αN )+}

}
. Moreover, define ces := minω dP

dP∗ ,
where P and P ∗ are, respectively, the “real world” and the martingale probability
measures. Set E := {ω | dP

dP∗ (ω) = ces}, and

X∗ := H(SN )1Ec + γ1E

where γ is any random variable such that E∗{X∗} = V0. Then X∗ solves the
problem (4.2).
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Proof. This proposition can be proved directly as in [16], but we give a shorter
proof that uses the results of Section 2. Consider the strategy α† defined in (2.4).
Since the corresponding portfolio value V α

†

N is the payoff of a self-financing
strategy starting from the initial capital V0 and V α

†

N 6 H(SN ), then V α
†

N itself
is a modified contingent claim in the sense of (4.1). Moreover, if X ∈ X , then
one has ES0,V0{(H(SN )−X)+} = ES0,V0{H(SN )}−ES0,V0{X}, so that the first
part of the proposition follows.

As for the second part, if p = p∗ then all the modified contingent claims
X ∈ X are solutions. If p 6= p∗, then from Section 2 we also deduce that V α

†

N

is equal to H(SN ) on all events except for the “least probable” one, where the
payoff is equal to

H(SN )− 1
min {(p∗)N , (1− p∗)N}

(V ∗0 (S0)− V0).

In particular, it is straightforward to check that E∗{V α†N } = V0, and thus that
V α
†

N can be defined as in the statement above.

To apply this approach to the convex case, we make the further assumption
that ` is strictly convex, continuously differentiable and such that `′(0) = 0.
Indeed, these properties appear to be the right ones to state the following re-
sults in a reasonable notation, but we believe that a generalization to non-C1

functions, in terms of the sub-differential, should be straightforward.

4.4 Theorem. Set I := (`′)−1 and define the modified contingent claim

X∗ := H(SN )− I
(
c∗

dP ∗

dP

)
with c∗ > 0 chosen in such a way that E∗{X∗} = V0. Then X∗ solves the
“static” problem (4.2).

The proof can be carried out either by using Neyman-Pearson techniques as in
[9] (see [7]), or using convex duality techniques (i.e., Lagrange multipliers).

4.5 Remark. Once the optimal modified contingent claim X∗ is determined,
the optimal strategy is simply the Cox-Ross-Rubinstein replicating strategy for
X∗ as in (2.2), that is,

α∗n+1 =
E∗{X∗|Sn+1 = Snu} − E∗{X∗|Sn+1 = Snd}

Sn(u− d)
.

Now let (`k)k be a sequence of strictly convex, C1 loss functions that converge
pointwise to a loss function `. For each function `k (resp. for `), we call X∗k
(resp. X∗) the optimal modified claim which solves the problem in (4.2), and
α∗,k (resp. α∗) the corresponding optimal strategy. We shall also write

∆ := E∗{H(SN )} − V0 = V ∗0 (S0)− V0.

Since the optimal modified claims are very different in the two cases when the
limit loss function ` is strictly convex and when `(x) = x, we shall deal separately
with these two situations. We start with the first case using a technique similar
to [11].
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4.6 Theorem. Let (`k)k∈N be a sequence of strictly convex, C1 functions such
that `′k(0) = 0 for every k. If limk `k = ` pointwise with ` strictly convex, C1

and such that `′(0) = 0, then X∗k → X∗ almost surely.

Proof. We start by proving that c∗k → c∗. To do this, define

ϕk(c) = E
{
Ik

(
c
dP ∗

dP

)}
and note that c∗ and the c∗ks have the property that ∆ = ϕk(c∗k) = ϕ(c∗)
(where ϕ is defined in the obvious way). Since the probability space Ω is finite,
it is straightforward to check that ϕk(c) < +∞ for all c ≥ 0 and that ϕk is
continuous for all k.

Since Ik → I pointwise, we have that for every c ∈ R+

Ik

(
c
dP ∗

dP
(ω)
)
≤ sup

k∈N
Ik

(
c
dP ∗

dP
(ω)
)
≤ sup
ω∈Ω

sup
k∈N

Ik

(
c
dP ∗

dP
(ω)
)

=: K <∞,

i.e., the sequence Ik(cdP∗

dP (ω)) is dominated. We know from [11] that if `k → `
pointwise then Ik → I uniformly on compact sets. This means that ϕk(c) →
ϕ(c) for all c ≥ 0. Since ϕ and the ϕk are continuous and strictly increasing, it
follows that ϕ−1

k → ϕ−1 pointwise. Moreover, these functions are continuous,
so c∗k = ϕ−1

k (∆)→ ϕ−1(∆) = c∗.
Now we are able to prove the theorem. First of all notice that by Theorem 4.4

X∗k = H(SN )− Ik
(
c∗k

dP ∗

dP

)
.

Since Ik converges uniformly on compact sets to I, the right hand side converges
to H(SN )−I(c∗ dP∗

dP ) almost surely, so that one gets X∗k → X∗ almost surely.

Now we consider the case `(x) = x. For this case, since I cannot be defined,
we can no longer use techniques similar to [11], and we have to develop an ad-hoc
technique. Recall from Lemma 4.3 that an optimal claim in this case is given
by

X∗ = H(SN )− ∆
P ∗(E)

1E (4.3)

with E =
{

dP
dP∗ = ces

}
.

4.7 Theorem. Let (`k)k∈N be a sequence of strictly convex, C1 functions such
that `′k(0) = 0 for every k. If limk `k(x) = x pointwise, then X∗k → X∗ almost
surely, where X∗ is defined as in (4.3).

Proof. Since `k(x) → x pointwise and the `k are convex, then `′k(x) → 1 uni-
formly on compact sets of R+ (see [11] or [14]). Since the `′k are all increasing
functions, it is easy to prove that

lim
k→∞

Ik(x) =

{
0 if x < 1
+∞ if x > 1

The convergence is uniform on compact sets of (0, 1), and also the convergence
to +∞ is “uniform” in the sense that for every ε > 0 and M > 0 there exists k
such that Ik(x) > M for all k > k and x > 1 + ε.
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This convergence implies that c∗k → ces. Indeed, for every ε > 0 there exists
k such that 0 < Ik(x) < ε for every k > k, x ∈ (0, 1− ε). Then

∆ = E∗
{
Ik

(
c∗k

dP ∗

dP

)}
≤ ε+ E∗

{
Ik

(
c∗k

dP ∗

dP

)
1{c∗k dP∗

dP >1−ε}

}
so E∗

{
Ik(c∗k

dP∗

dP )1{c∗k dP∗
dP ≥1−ε}

}
≥ ∆− ε; in particular,

{
c∗k

dP∗

dP ≥ 1− ε
}

is not

empty for all k > k̄, and this means that c∗k maxω dP∗

dP (ω) ≥ 1 − ε, so c∗k <

(1− ε) minω dP
dP∗ (ω) = (1− ε)ces. Conversely, for all ε > 0 and M > ∆/P ∗(E)

there exists k̄ such that Ik(x) > M for all k > k̄, x > 1 + ε. This implies that

∆ = E∗
{
Ik

(
c∗k

dP ∗

dP

)}
≥ E∗

{
Ik

(
c∗k

dP ∗

dP

)
1E

}
= Ik

(
c∗k
ces

)
P ∗(E)

Thus we must have c∗k
ces
≤ 1+ε. In fact, if c∗k

ces
> 1+ε, we obtain ∆ ≥M ·P ∗(E),

but we took M > ∆/P ∗(E), so this is absurd. In conclusion, we have that for
all ε, (1− ε)ces ≤ c∗k ≤ (1 + ε)ces from a certain k̄ on, which yields c∗k → ces.

Now we only have to prove that Ik(c∗k
dP∗

dP ) → ∆
P∗(E)1E . Since c∗k → ces, it

follows that limk→∞ c∗k
dP∗

dP = ces
dP∗

dP , which is equal to 1 on E and less than
one on Ec. Since Ik → 0 uniformly on compact sets of (0, 1), we have that
Ik(c∗k

dP∗

dP )→ 0 on Ec, and the limit is uniform. Thus for all ε > 0 there exists
k̄ such that for all k > k̄ we have

∆− E∗
{
Ik

(
c∗k

dP ∗

dP

)
1E

}
= E∗

{
Ik

(
c∗k

dP ∗

dP

)
1Ec
}
∈ (0, ε)

This means that Ik( c
∗
k

ces
)P ∗(E) → ∆, and finally that Ik(c∗k

dP∗

dP ) → ∆
P∗(E)1E .

This completes the proof.

4.8 Corollary. Under the assumptions of Theorems 4.6 or 4.7, we have that
α∗,kn → α∗n almost surely for all n = 0, . . . , N − 1.

Proof. Recall that the optimal strategy for the shortfall risk minimization prob-
lem with loss function `k is

α∗,kn =
E∗{X∗k |Sn−1u} − E∗{X∗k |Sn−1d}

Sn−1(u− d)

(see Remark 4.5). Since X∗k → X∗ almost surely and the probability space Ω is
finite, the conditional expectations above converge almost surely to

E∗{X∗|Sn−1u} − E∗{X∗|Sn−1d}
Sn−1(u− d)

,

i.e., α∗,kn → α∗n almost surely for all n = 0, . . . , N − 1.

A Optimal paths in recombining binomial trees

This appendix contains some technical definitions and results that formalise a
“branch-and-bound” type algorithm for the purpose of determining an optimal
path in a particular directed graph, which we call a recombining binomial tree.
These results constitute a key tool for the proof of Theorem 3.2 concerning the
solution of the shortfall risk minimization problem in the case when ` is concave.
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A.1 Definition. For n ∈ N, a recombining binomial tree (r.b.t. for short) of
depth n is a directed graph T (n) with (n+1)(n+2)

2 nodes τ ik, where k = 0, . . . , i,
i = 0, . . . , n. In this way, T (n) features i + 1 nodes at each “depth” i. In
particular, at the depth 0 there is only one node τ0

0 , which will be called the
vertex of the tree T (n).

For i = 0, . . . , n − 1, each node τ ik is supposed to be connected with the
two nodes τ i+1

k and τ i+1
k+1. The nodes at depth n are thus “terminal” nodes,

and will be called the leaves of the tree. We shall refer to moving from τ ik
to τ i+1

k (respectively, to τ i+1
k+1) with the expression branching left (respectively,

branching right).
Since the graph is directed, the maximum length paths on the graph start

from the vertex τ0
0 and reach a leaf τnk for some k. Note that there is a

one-to-one correspondence between maximum length paths and branching se-
quences (ϑi)n−1

i=0 ∈ {l, r}n, where ϑi = l (respectively, ϑi = r) means the decision
to branch left (respectively, right) when passing from depth i to depth i+ 1.

The problem we want to solve is the following. Suppose that each leaf τnk
of the r.b.t. T (n) is associated with some value rk ∈ R. Then, we want to find
a branching sequence so as to reach a leaf associated with the minimum value,
that we shall call, respectively, an optimal branching sequence (or strategy) and
an optimal leaf. (The problem of reaching the maximum value can trivially
be reformulated as a minimum problem by associating the values −rk to the
leaves.)

Note that, although if the correspondence between paths and branching
sequences is one to one, in general the strategy leading to a chosen leaf τnk is
not unique. Actually, any strategy (starting from the vertex) which branches
left n−k times and right k times in any order will end in leaf τnk , and it is clear
that there are

(
n
k

)
such strategies. Thus, the choice of the optimal branching

strategy is not a consequence of the determination of the optimal leaf.
The algorithm we propose below solves the problem of choosing an opti-

mal strategy by deciding the branching sequence while scanning the leaves to
determine the minimum value.

A.2 Proposition. Let n ∈ N, and T (n) be the recombining binomial tree of
depth n, with values rk, k = 0, . . . , n associated with the leaves.

Define

ϑ0 =

{
l if r0 6 rn

r if r0 > rn

and then, recursively for every i = 1, . . . , n,

kϑ,i := #{j < i | ϑj = r},

ϑi =

{
l if rkϑ,i 6 rn−i+kϑ,i
r if rkϑ,i > rn−i+kϑ,i .

Then the leaf τnkϑ,n is associated with the minimum value, and ϑ = (ϑi)ni=1 is an
optimal branching sequence.

Proof. Induction on n.
(n = 1). In this case, there are only the two leaves τ1

0 and τ1
1 associated

with the values r0 and r1 respectively. The thesis translates into the obvious
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decision to branch left and reach τ1
0 if r0 is the minimum value, and to branch

right and reach τ1
1 otherwise.

(n > 1). To determine the branching at depth 0 the following considerations
can be made. Note that the two outmost leaves τn0 and τnn are both reached
from the vertex by a unique branching strategy, namely, τn0 can only be reached
by branching always left and τnn can only be reached by branching always right.
Any other leaf can be reached with a suitable branching sequence whatever ϑ0

is. Thus, the proposed strategy decides to branch so as to make unreachable
the outmost leaf which is associated with the higher (and, thus, non-optimal)
value and reach the node τ1

kϑ,1
.

One can now consider the“sub-tree” T1 of depth n − 1 with vertex τ1
kϑ,1

and leaves τnk , k = kϑ,1, . . . , n − 1 + kϑ,1. Note that the minimum value has
to be associated with one of the leaves of T1, since the value associated with
the “discarded” leaf is greater than a value associated with a leaf of T1. The
recursive step then corresponds to the first step in this sub-tree, and so the
proposition follows by recursion.
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[9] Föllmer H, Leukert P (2000) Efficient hedging: cost versus shortfall risk.
Finance and Stochastics 4: 117–146
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