A Bayesian adaptive control approach to risk
management in a binomial model
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Abstract. We consider the problem of shortfall risk minimization when there
is uncertainty about the exact stochastic dynamics of the underlying. Starting
from the general discrete time model and the approach described in Rung-
galdier and Zaccaria (1999), we derive explicit analytic solutions for the par-
ticular case of a binomial model when there is uncertainty about the proba-
bility of an “up-movement”. The solution turns out to be a rather intuitive
extension of that for the classical Cox-Ross-Rubinstein model.

1. Introduction

In incomplete markets the superhedging criterion allows one to eliminate the risk
completely, but it requires in general too much initial capital; it corresponds in
fact to a min-max-type criterion. One may then ask by how much one can lower
the initial cost if one is willing to accept some risk or, dually, what is the risk
corresponding to an initial capital less than what is required for superhedging.
The shortfall risk minimization approach allows one to deal with these issues.

Given a market with a non-risky and a certain number of risky assets, let
Hy be a liability to be hedged at some fixed future time 7. Denote by Vi (y) the
value at T of a portfolio corresponding to a self-financing investment strategy ¢,
possibly satisfying some additional constraints such as a shortselling prohibition.
The problem is to find

Jo(So, Vo) 1= igf EL v {e((Hr = Ve (o))} (1)

for a given initial value Sy of the asset(s) in the portfolio, for a given initial capital
Vo and where £(-) is a suitable increasing function such that £(0) = 0 and 4(z) > 0
for all > 0. For £(z) = 1,50}, the right hand side in (1) corresponds to the
smallest shortfall probability. Problems of the type (1) have recently attracted
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considerable attention (see e.g. [2, 3, 4, 5, 7, 8, 9, 10, 16]). Let, for a given Sy,
Vo (So) := inf{Vp | Jo(So, Vo) = 0} (2)

Since Jo(So, Vo) = 0 means that Hr < Vr(p*) P-almost surely (where ¢* is the
optimal strategy in (1)), V5*(So) is the minimal initial capital needed to super-
hedge the claim. It follows that if Vo > Vj(So) then Vr(p*) > Hr, P-a.s. For
superhedging, the choice of the underlying probabilistic model for the evolution of
the risky assets is thus irrelevant as long as it induces probability measures that
are equivalent. However for the more general problem of risk minimization in (1)
the probabilistic structure of the underlying model matters, but the true model is
almost never known exactly. A possibility is then to use a min-max-type criterion
as in [4] trying to find

inf sup EQ’VO {¢((Hr = Ve (o))},
¥ PeP

where P is a family of ”real world probability measures” . However, such a criterion
does not allow one to incorporate additional information on the underlying model
as it becomes successively available.

Thus, an adaptive approach, corresponding to a Bayesian-type criterion, ap-
pears more appropriate. Such adaptive approaches have already been dealt with
in the literature (see e.g. [2, 3, 4, 5] and, in the context of portfolio optimization,
in [1, 11, 12, 13]). In all these papers the uncertainty is only in the stock appre-
ciation rate. The tools are mainly probabilistic in nature (involving also measure
transformation) and are based on convex duality. An explicit solution is essentially
possible only in simpler cases and transaction costs are not taken into account.

In the present paper we base ourselves on [17] following an approach along
the lines of discrete time stochastic adaptive control. In that work the authors
give a general description of this approach and they apply it, in particular, to a
multinomial model for the risky assets where the probabilities are not known; for
the specific case of a binomial model some numerical results are also presented.
Here we focus our attention on the binomial model. By neglecting transaction costs
(the portfolio is rebalanced only at discrete dates, which limits their impact) and
imposing the self-financing requirement as the only constraint on the investment
strategies, we succeed in deriving explicit solutions for the optimal investment
strategy and for the corresponding minimal value of the shortfall risk in the case
£(z) = x. We do this both for the case when the probability p of an “up-movement”
is known as well as when it is unknown and, according to the Bayesian approach,
treated as a random variable with a Beta-type distribution. We obtain an analytic
solution, that turns out to be an interesting variant of the Cox-Ross-Rubinstein
(CRR) solution (see e.g. [15]), when the initial capital is insufficient for a perfect
hedge.

The paper is organised as follows. In Section 2 we briefly recall some facts
from the CRR binomial model, that are relevant for the sequel. In Section 3 we
present a solution method to our problem which is based on backwards Dynamic
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Programming (DP). In Section 4, by assuming ¢(z) = x, we compute the minimiz-
ing admissible strategy as well as an explicit evaluation formula for the minimal
discounted shortfall risk in the case when p is known. In Section 5, again by as-
suming £(x) = x, we compute the minimizing strategy as well as the minimal
discounted shortfall risk in the case when p is unknown.

2. The Cox-Ross-Rubinstein binomial model

We consider a discrete-time market model with the set of dates 0,1,...,V, and
with two primary traded securities: a risky asset (a stock) S and a risk-free invest-
ment (a bond) B. We assume that the value of the bond is constantly equal to 1
through time, and that the stock price process S satisfies

Sn+1=Snwn7 TLZO,...,N, (3)

where So > 0 is a given constant and {wy, }n=o,... ~ is a sequence of i.i.d. random
variables defined on a probability space (Q, F, P), taking only two real values d
and u satisfying 0 < d < 1 < u, with probability law

p:=P{w,=u}=1—P{w, =d}, n=0,...,N.

We can assume without loss of generality B,, = 1 by letting S,, be the discounted
prices of the asset. Let us then denote by ¢, = (M, %), n =0,..., N, an invest-
ment strategy, where n,, stands for the amount of the nonrisky asset and ,, stands
for the number of units of the risky asset that are held in the portfolio in period n.
We assume that ¢, is adapted to the observation g-algebra F2 := o{S,,, m < n},
forallm =0, ..., N, and that ¢ = {p, }n=o,...,n satisfies the self-financing property

Voo = mo+veSo
Vn+1 = TMn+1 + '¢’n+15n+1 =1Tn + '(ann-l—l; n = 07 “eey N — ]-7
where V} is a given constant, representing the initial value of the portfolio. We shall
denote by Asg the set of all self-financing strategies (the admissible investment
strategies).
It is a rather classical result that V follows the dynamics

Va1 =Vp + ¢nsn(wn - 1) =: Vo1 (Vnasnawm"pn):

so that one can restrict oneself to just the decision variable ,,.

Consider a European contingent claim H(Sy) and let P* be the martingale
measure for our model. It is well known that P* corresponds to
1-d u—1
U — d7 {(/Jn } p u— d7 n 07 ’ ’
(see e.g. [15, Ch. 2]). The arbitrage free price V,* of H(Sn) at time n, where
n=0,...,N — 1, is given by the Cox-Ross-Rubinstein (CRR) evaluation formula

Vi (Sn) = E*[H(SN)|Sn], (4)

Pw, =u} =p* :=
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where by E* we denote the expectation with respect to P*. In particular, V5 (Sp)
is the minimal initial value of the portfolio needed to replicate the claim defined
in (2). At time n, n =0,..., N — 1, the replicating strategy v, is given by

Vrf 1(Sn ) B Vﬁk 1(Snd)
. Sp(u— d;_ . ®)

If Vo < Vi*(So), then the replication of the terminal payoff is not possible. In
this situation, an investor may be interested in analyzing the shortfall risk defined
as the expectation of the terminal deficit weighted by some loss function. Let us
then introduce this problem in more detail.

Denote by Vn(¢) = nn + ¥nSn the value of the portfolio at time N cor-
responding to an admissible investment strategy (. The minimal shortfall risk is
defined as

Yn =

To(S0,Ve) = min BE, v, {¢((H(Sw) ~ Vw(@)")}, ©)

for a given initial value Sy of the risky asset in the portfolio and a given initial
capital Vo < Vi (So), where £(-) > 0 is a suitable loss function, that is an increasing
function such that £(0) = 0 and £(x) > 0 for all z > 0.

In this paper we consider the optimization problem (6) by assuming either
that the probability p is known or that it is not. For the case when p is unknown,
we adopt a Bayesian-type approach which allows us to incorporate additional
information on the underlying model as it becomes successively available.

3. The dynamic programming algorithm

In this section we provide a DP algorithm to compute a solution to our problem
(6) both for the case when p is known and when it is not (see [6] for an analogous
algorithm for the case of superhedging with transaction costs). In the case where
p is unknown, adopting the Bayesian point of view, we use the ordinary Bayes
formula to successively update the initial (prior) density h(p) of p on the basis of
{]-';?}n:g,m,N. This leads to what is called the Bayesian DP algorithm (see e.g.
[14, 18)]).

3.1. DP algorithm when p is known
The DP algorithm proceeds backwards according to the following steps:
In(s,v) = L(H(s)—v)"),
Jn—l(Sn—hVn—l) = winf ESn—1,Vn—1{Jn(SnaVn)} =
n—1
= winf {pIn(Sn—1u, Vo1 + Yn—1Sn—1(u — 1))
n—1

+(1 _p)Jn(Sn—lda Vn—l + ¢n—lsn—1(d - 1))}7 (7)
forn=N,...,1.
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3.2. DP algorithm when p is unknown
The Bayesian DP algorithm proceeds similarly to the DP algorithm:

In(s,0) = L((H(s) —v)*"),

Jni(Sn1,Voor) = inf Eg !y AJa(Sn, Vi) (8)
Now p too is a random variable, and its distribution depends on the information F3
up to time n. We incorporate this information in the probability measure P,,, that
depends also on the distribution of p. Since P{w,|p} is the Binomial distribution,
a conjugate family of distributions of p is that of the Beta distributions. With a
prior density

ho(p) o< p*°(1 - p)™,
with ag, Bo > 0, the posterior density in period n becomes
ha(p) o p* (1 = p)Pn,

where, denoting by u,, the total number of “up-movements” (ug := 0) cumulated
up to time n,

Qn =0 +Un, Pn=7PF0+n—1up

In particular, for n = 0 and a9 = By = 0 the prior density ho(p) becomes the
uniform density.

Since the values of p enter the DP recursions linearly, by the “smoothing
property” of conditional expectations it is easily seen that, also in the present
case, the DP recursions are given by the previous steps, except that p has to be
replaced in J;, 1(Sp-1,Vn-1), n = N,...,1, by Eq,_, g._,[p] := E [p|F5_,] and
1-pbyl—E,,_, s, .[p], where

a+1
Eq6lp] =

a+p+2

4. Explicit solutions when p is known

In this section we are concerned with the evaluation of the minimal discounted
shortfall risk (6) and the corresponding strategy in the case when £(z) = z. Due
to the possibility of making direct calculations on the DP algorithm steps, we
can derive explicit evaluation formulas. These evaluation formulas are simple and
meaningful, showing explicitly what was to be expected: that is, the shortfall risk is
decreasing with respect to the initial capital (we will show that such dependence
is linear), and it is always equal to zero when the level of the initial capital is
greater than or equal to Vi (Sp). We first consider the case when there is complete
information on the underlying market and we compare our results with the well-
known results on perfect hedging of a European contingent claim.

In the following theorem we give some formulas for the optimal discounted
shortfall risk and for the corresponding investment strategy.
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Theorem 4.1. Consider a European contingent claim H on a stock whose price
S is assumed to follow the CRR binomial model (3). Let V(S,), where n =
0,...,N —1, be the arbitrage free price at time n defined by the CRR evaluation
formula (4). Assume the loss function £(-) in (6) is the identity function £(z) = x.
Then

i) if p > p*, then

1- ¥4 " *
TS0 = (122 ) WS -Vl ©
forn = 0,...,N — 1. In particular, for n = 0 the minimal discounted

shortfall risk is

N
Tson ) = (725 ) W (s0) -l

where Vi (So) = C¢(So). The minimizing investment strategy is given by
g = Vin(Su) =V
n Sp(u—1) 7’
forn=0,...,.N —1;
ii) if p < p*, then
IS = (2) W38 - '

forn = 0,...,N — 1. In particular, for n = 0 the minimal discounted
shortfall risk is

(10)

N
Jol(So, Vo) = (pﬁ) Vi (S0) = Vol

where Vi (So) = C3(So). The minimizing investment strategy is given by
Ve (Snd) =V,
2 n+1\°n n
=" 11
¥ Sp(d—-1) (11)
forn=0,...,N —1.
Proof. We start from n = N — 1 by considering expression (7) of

Jn_1(Sn_1,Vn_1)- The function to be minimized in (7) is a linear combination
of the two piecewise affine functions

[H(Sy_1u) — VN_1 —¥n_1Sn_1(u—1)]" (12)
and
[H(Sn—1d) — VN—1 —tn-1Sn—-1(d — 1)]* (13)

The function in (12) is decreasing for ¥y 1 less than 1%, in Equation (10), since
u > 1 and Sy_1 is positive, and thereafter it is equal to zero, while the function
in (13) is equal to zero for 1 _1 less than 1% | in Equation (11), since d < 1 and
Sn_1 is positive, and from there on it is increasing. Therefore, if %, _|, < ¥%_,
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or, equivalently, if Viy_; > E*[H(Sy)], then both strategies ¢} _, and ¢34 _, are
optimal as well as any admissible strategy between them. If Vy_; < E*[H(Sy)],
then in order to establish the infimum in (7) it suffices to analyze the sign of the
slope of

p[H(SN-1u) = VN_1 —N_1SN—1(u — 1)]+
+(1 = p[H(Sn-1d) = VN1 — ¥n-15n-1(d = 1)],
which is given by the expression
Sn_1[p(d—u) + 1 —d]. (14)
If (14) is less than zero, or, equivalently, if p > p*, then the infimum in (7) is
achieved at % _,. If this is the case, by putting ¢%;_, in (7) we obtain

1-—
IN-1(SN-1,VN-1) = 1_—;1 [Cx 1(Sn—1) — V1] ™.
Conversely, if p < p* then the infimum in (7) is achieved at ¥4 _,, and we obtain
JN-1(SN-1,VN_1) = 1% [Chn_1(Sn-1) — VN_1]+.

This shows that formula (9) is true for n = N — 1.

We now proceed by backward induction with respect to n. Assume p > p*
from now on. Assume that equality (9) holds for n, where n = N —1,...,1, with
the minimizing strategy given by (10). We show that it also holds for n — 1, with
the same strategy as (10) for n — 1. From (7) of the DP algorithm we have

Jn—l(Sn—l;Vn—l) = wlnf {p JIn (Sn—luavn(vn—l; Sn—lyuﬂ,bn—l)) +
+(1 - p) Jn (Sn—1d7 Vn(Vn—17 Sn—h d7 wn—l))}a

which implies, by induction,
1_p>m inf {p [V*(Sno1t) = Vo1~ (15)
1 _p* S D n n—1 n—1

~tn 1S 1(u= DI + (1= p) [V (Sa 1d) = Va1 = Yn 180 1(d= 1]}

Using the same arguments as in the first step, and taking into account that the
slope of the expression

p [V:(Snflu) — Vo1 — 1&"715”71(’& — 1)] +
+(1=p) [V;¥(Sn-1d) = Vo1 = Pn_1Sn1(d = 1)]

is again given by (14) with Sy_; replaced by S,_1, we have that, under the
assumption p > p*, the infimum in expression (15) is achieved at ¢} ; given by
(10). Putting . _; in (15) we easily obtain

Jn—l(Sn—l, Vn—l) = (

1-p m " +
Jn—l(Sn—hVn—l) = (1 _p*) [Vn—l (Sn—l) - Vn—l] .
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This ends the proof of 7). The proof of ii) can be obtained by using arguments
similar to those of 7). We only observe that, under the assumption p < p*, the
infimum in the DP algorithm steps is achieved at ¥,_1, for n = 0,...,N — 1,
satisfying

V¥ (Sn-1d) — Vo1 — hn-1Sa_1(d— 1) = 0.
O

Remark 4.2. Notice that this approach is linked to the CRR model: in fact, by
calculating the expected shortfall risk under the historical probability P, we arrive
at an expression containing the expected price of the claim under the risk-neutral
probability P*. Moreover, the hedging strategy in this case is similar to (5), which
is the one of the CRR model: in fact in the CRR model the hedging strategy 1 is
equal to the ratio between the difference of the expected prices of the claim in the
two possible future outcomes and the different prices of the underlying; here 1) is
equal to the ratio between the difference of the expected price of the claim in one
of the possible future outcomes and the value the portfolio would have if it were
invested in the bond B, and the difference between the price of the underlying
in the same future outcome considered before and its present price as if it were
invested in the bond B. In other words, it is as if we were hedging a claim having
a payoff that in each state of nature could be the one of the original claim or
the money corresponding to the present value of the portfolio; in the same way,
the underlying could either assume the value corresponding to the value of the
derivative, or the value corresponding to a riskless investment.

Remark 4.3. Differently from [8], here we have not imposed that V' > 0. This
leads to different results: in fact, if we imposed V' > 0, we would have obtained (as
they do) an optimal strategy equal to the replicating strategy of a modified claim
that is between zero and the original claim; we have a different strategy, that in
general gives an optimal expected shortfall Jower than they have. In particular, our
strategy succeeds in replicating perfectly the claim in all the states of nature but
the least probable one (see [7] for an explicit proof), so that the expected shortfall
comes entirely from this state of nature. However, if Vj is near Vi, then V' remains
positive at all times prior to the maturity IV, so the two strategies that we obtain
by imposing or not the constraint V' > 0 coincide.

5. Explicit solutions when p is unknown

The formulas given in the following theorem for the optimal discounted shortfall
risk are similar to those given in Theorem 4.1, and the minimizing investment
strategies are the same. However, while in the previous case only two alternatives
for the possible values of p* were considered, i.e. p* > p and p* < p, here at each
step n we have to consider several alternatives according to the estimates of p,
each of them leading to a different formula for J, (S, V4)-
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Theorem 5.1. Consider the assumptions of Theorem 4.1 for the case when p is
unknown with a prior ho(p) o p*° (1 — p)P°, with ag, Bo > 0. Then

i) if p* < Ea, 8.+m—1[p], then

m—1
l_Eany ntJ *
nsav) = | I 2l s,y -vgt. as)
i=0

The minimizing investment strategy is given by (10).

ii) if Ea,+i8,+m-1-ilP] <P < Ea,+it1,8,+m—2-i[p], where i =0,...,m —
2, then

m—2—1i
1—E, 5 .
Jn(Sna Vn) = H —1 i’ﬁz—iﬂ [p] X
i=0 P

x | [ Peetmt=lil ) s,y - v a7)

J=0
i

Eq, +j.5. [p] = 1—FEq, tit1,6n+j [P] * +
JoPn P J V*(S,) — V.| (18

=0 =0

Both the strategies (10) and (11) are optimal as well as any admissible
strategy between them.

iii) if p* > Eq, +m—18. [p], then

m—1 E ) [p]
Tn(Sns Vo) = | J] 222222 ) [V (Sn) — Val™ (19)
=0 P
The minimizing investment strategy is given by (11).

Proof. We start from n = N — 1 by considering the expression

JIn_1(Sn-1,Vno1) = (20)

= winf Eon 1 pns [P} [H(Sn—14) = V1 — n—1Sn—1(u — 1)]* +

+ (1= Bay 1 pn_a [P]) [H(Sn-1d) = Vo1 = n1Sn—a(d— )],
whose infimum is achieved, by using arguments similar to those in the proof of
Theorem 4.1, at ¢._; in Equation (10) if Eay_, 8x_, [P] > p* and at ¢2_; in

Equation (11) if E4,_, ay_, [P] < p*. Therefore, putting the minimizing strategy
in (20) we have

1- EaN—lqﬁN—l [P]
1-—p*

IN-1(SN-1,VN_1) = [Chn_1(Sn-1) — VN—1]+



10 W. Runggaldier, B. Trivellato and T. Vargiolu

if Eoy_1,85-1 [P] > p*, and

EaN—l,ﬂN—l [p] [

» Cx1(Sn-1) = Vn-1]"

IN-1(Sn-1,VN-1) =
if Eon_1,8n_1[P] < p*, showing that formulas (16)—(19) are true for n = N — 1
(let us observe that the validity of %) is trivial for n = N —1).

We now proceed by induction with respect to n. We assume that equalities
(16)—(19) hold for n, where n = 1,..., N — 1, and we show that they also hold
for n — 1. As regards alternative i), we shall only prove formula (17). Indeed, it
is not difficult to check (we omit calculations) the validity of the equality

_2_ .
mH "1 Ea, p1i 1] ﬁ Eontjpatm—1-i[p] | _
j=0 1-— p* =0 p*

, s
_ f[ Eopti6. [P] mH "1 - Eo,+it1,,+5 [P]

p* 1—p*

J=0 Jj=0

corresponding to, respectively, (17) and (18) of é7). Let us remark that, as we shall
see below, formula (17) (respectively, (18)) is obtained by always choosing strategy
(10) (respectively, (11)) at each step n where, for some i € {0,...,N —n — 2}, we
have

Eoptia+N-n—1-i[p] <P* < Eay,+it1,8,+N-n—2-i[P]-

This choice will be possible since, under the above condition for p*, both the
strategies (10) and (11), as well as any admissible strategy between them, will
be optimal. In fact, other representation formulas for J,,, different from (17) and
(18), but equivalent to them, could be possible, each of them corresponding to a
different procedure for selecting a minimizing strategy between (10) and (11).

From (8), we have
Jn-1(Sn—-1,Vn-1) = 1/}11111_f1 Eo 1 o1 [Pl In(Sn—1u, Vo (Va—1, Sn—1, 4, ¥n_1))+
+(1 = Eap_y,80a [P I (Sn—1d, Va(Vio1, Sn—1,d, ¥n-1)) ,
which implies, by induction,
Jn—1(Sn—-1,Vn-1) = J?_fl Eo, 1 8.1 [Pl A(@n_1+1,Bp_1) X

X [V (Sn—1u) — Vi (Vip—1, Sn—laua¢n—1)]+ + (1 —Eap 1,801 [p]) X
x A (an—ly ﬂn—l + ]-) [V:(Sn—ld) - Vn(Vn—h Sﬂ—h d7 ¢n—1)]+7
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where (choosing e.g. (17) when taking into account alternative ii))

N-n—1
1 — Ea 4 [p]
Ay =| I 1_71,*] Ypr<Bapin—noall}t
=0

N—-n—2 [N—n—2—k k

- 1= Eq,p+; [Pl Eotjp+N-n-1-k [p]
+ ) s II

X

k=0 7=0

X l{Ea+k,ﬁ+N—n—1—k[P]<P* <Eatk4+1,8+N—n—2—r[pP]} +

Nﬁ* Botj 1]

+ *
p

Yp+>Basnon-1slplb

j=0
Proof of part i). If p* < E,,_, g._.+N—n [p] then it is not difficult to check that
only the first indicator functions in both A(a, 1 +1,8,_1) and A(ap_1,8,1+1)
are equal to one, while all the others are equal to zero. Therefore

N—-n-1
1-F, -
Jnfl(STL*]Janl) = lnf Ean—l,ﬂn_1 [p] H an—1+17€n—1+] [p] x
Yn—1 j=0 1-— p
X [V;(Snflu) — anl — ¢n,15n,1(u — 1)]+ +
N—-n-1
1—FEq, 180_14j
+ (1 - Ean—l,ﬂ’n—l [p]) H an 11’ﬁ *1+J+1 [p] X
- —-p
j=0
x [V (Sn-1d) — — n_1Sn_1(d = 1)]*. (21)
The sign of the slope of this linear expression in ¢, is given by
N—-n—1
1-F ;
N | Gt Lt ) LR (22)
. p
7=0
T an 17ﬁn 1+]+1 [p]
+(1_Ean—1aﬁn—1 [-p]) H (l_d)‘

After making elementary manipulations, one can rewrite (22) as the product of a
suitable strictly positive term and (p* — E4,_, 8,_1+N—n [P]), Which is less than
zero by assumption. Therefore, using the same arguments as those in the proof
of Theorem 4.1, we have that the infimum in (21) is achieved at ¢} _; given by
formula (10). Putting 11 ; in (21) we easily obtain

N—
1- Ean—l, n—1+J *
Jn—l(sn—lavn—l) = H 1 _f)* +J[p] [anl(sn_l) - Vn_1]+,
=0

which gives formula (16) with n replaced by n — 1. This ends the proof of 4).
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Proof of part iii). It is not difficult to argue that the proof of iii) proceeds along
the same lines as the proof of ). We only observe that if p* > E,, 4 N—n,8._1[P]
(alternative 474) for n — 1) then only the last indicator functions in both A(ay,—1 +
1,8n-1) and A(an_1,8n-1 + 1) are equal to one, while all the others are equal
to zero. Moreover, the sign of the slope of the linear expression which arises from
the DP algorithm is positive, so that the infimum is achieved at 4,1 given by
formula (11), i.e. satisfying

V¥ (Sn_1d) = Vi1 — ¥ 18n_1(d— 1) = 0.

Proof of part ii). Now we only have to prove i7). As we shall see, the linear expres-
sions arising from the DP algorithm will have angular coefficients equal to zero,
giving the possibility to choose, as minimizing strategy, any admissible strategy
between (10) and (11). In particular, choosing strategy (10) we shall prove the
validity of formula (17). If

Eo,_14iBu14+N-n—i[P] <P < Eo,_itit1,8,_1+N-n-1-i [P],

for some i € {0,..., N—n—1}, then the last indicator function in A(ap—1+1, Bn—1)

and the first indicator function in A(an—1,8n—1 + 1) are equal to zero, i.e.
Upe>Bay_yinnpn_slpl} =0

and
Yyt <Bap_y 0y sn-nlo} =0

Moreover, we have to distinguish between the following three alternatives:

1. If i = 0, then we have

N—n-—1
l_nl 1- Ean—1+17ﬁn—l+j [p]
1-—p*

X

Jn—l(Sn—hVn—l) = inf Ean—lﬁn—l [P]
Yn—1 i=0

X [V (Sp—1t) = Vet — thp_1Sn—1(u — 1)]T +

X

N—n—2
l_n[ 1~ FEo, 1 ,Bu_1+1+5 [P]

+ (1 —Ey, 18,1 [p]) 1-p*

j=0

E n—1,Pn— N— *
x —an=1.8 p;* n[P] [V*(Sp_1d) = Vi1 — n_1Sn_1(d— 1)]*.
Since the slope of this linear expression in t,_1 is equal to zero (we omit
calculations), the infimum is achieved at both (10) and (11) as well as at
any admissible strategy between them. Choosing e.g. (10) we obtain

N—n—-1
1 _Ean- Br—1+37
Jne1(Sn_1,Val1) = H : _12* 1+4[P]
Jj=0

Ea -1 -1 —n
X n aﬁnp* +N I:p] [V:_l(sn—l) _ Vn—1]+ ,
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which gives formula (17) with n replaced by n — 1 and ¢ = 0.
2. Ifie{l,...,N —n — 2}, then we have
N—n-1—i
: 1= Bop 141,801+ [P]
_ _ _1)= inf E o1t DOn o1t
Jn l(Sn lavn 1) ’d};l—l an—1,Bn-1 [P] Jl;[o 1 _p*
% (ﬁ Ean—1+1+jn3n*—1+N*n*i [p]) %
s p
]_
X [V,:‘(Sn,lu) — Vo1 — wn,lSn,l(u — 1)]+ +
N-—n—2—1%
1 - Ean— Br—1+1+] [p]
+ (0= Fo o) |1 bt P )
n p
7=0
i
E ) i
< [T “"-IH*B"I;;” i[pl [V (Sn-1d) = Va1 — hn—1Sn—1(d — 1)]*.
§=0

The slope of this linear expression in ,,_1 is again equal to zero. Choosing
e.g. (10) as 9,1 we obtain

i=0 L=

N—n—1—1
1—Eq, 1 B0_1+j
Jn—l(Sn—hVn—l) = ( H B +J [p]> x
' Ea"—l j,Bn—1+N—n—i [p] * +
X (H +Jﬂp*+ ) Va_1(Sn-1) = Va1l ",

=0

which gives formula (17) with n replaced by n—1 and i € {1,..., N—n—2}.
3. Ifi=N —n —1, then we have

1-FE,,_, .
Jn—l(Sn_l,Vn_l) = Jnf Ean—hﬂn—l I-p] ( n—1+1,8n [p]> x

1-—p*
N—n—-2
y l—n[ B 1414580141 [P]> y

£3
=0 p

X [V (Sno1t) = Vaet = Pn_1Sn—1(u = D]T + (1 = Ea,_, 5., [P]) X

n
N

—n—1
Ea"—l jsBn—1 *
+]pﬁ* = [p] [Vn (Sn—ld) - Vn—l - ’ébn_1sn_1(d - 1)]+ .
7=0
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The slope of this linear expression in ,,_; is again equal to zero. Choosing
e.g. (10) as v,_1 we obtain

1-FEy,_ 8.1
Jn—l(sn—la Vn—l) = 5 [p] X

1-p*
N—n—1
Eo,_14j.Bar+1 +
% H o 1+Jli 1+ [p] [V',::fl(s’nfl) _anl] )
s P
]_
The inductive step is complete, and so is the proof. O

Corollary 5.2. Lettingn = 0 in Theorem 5.1, the minimal discounted shortfall risk
18

i) if p* < Eag po+N-1[p], then

N-1
1= Boy gors .
Jo(So, Vo) = H l(m—&):”[p] [V (So) — Vo] ' ;

i=0 —P

ii) if Eaoti,o+N-1-i[p] < P* < Eagtit1,80+N—2-ilp], wherei=0,...,N -2,
then
N—-2—3
1-F ;
TS, Vo) = | ] —fi";lﬂ )
=0

i

x H an+]§ﬁo+N*1*i [p] [VE)*(S()) i VO]+ —

=0 p*
S Bngeso )\ (VT L Bagrier goss
= H % H a0+z+1;50+] [VO* (S(]) _ V0]+ ’
j=0 j=0
iii) if p* > Eao+N—1,5, [p], then
N-1
E, ;i
7o, o) = | TT 2ot | v (50) - Vol
7=0

The minimizing investment strategies are those of Theorem 5.1.

Remark 5.3. In the case when p is unknown we obtain formulas that are similar to
those of the case when p is known, with the following difference: while in the case
when p is known we know immediately whether p > p* or not, and that relation
either holds at all times n or does not hold, when p is unknown we cannot know
whether p > p* or not, so we must use the Bayes estimators of p. Obviously these
estimators change over time, so we obtain products of different factors depending
on p* and on the Bayes estimators of p, while in the case when p is known these
factors are all equal either to p/p* or to (1 — p)/(1 — p*). We also notice that the
investment strategies are equal to those when p is known; this happens because
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the Bayes estimators of p enter linearly in the DP algorithm and do not modify
the optimum.

Remark 5.4. Also when p is unknown, if we impose V' > 0, we obtain different
results: in fact in this case too our strategy succeeds in replicating perfectly the
claim in all the states of nature but one (see [7]); with the constraint V' > 0, it
may happen that this is not possible, so that the optimal solution gives a shortfall
higher than in our case. However, also in this case (as in the case when p is known),
if V is near Vj, then V remains positive at all times prior to the maturity N,
so the two strategies that we obtain by imposing or not the constraint V' > 0
coincide.
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