Esame di Calcolo de atica, Università de				del 25 s	ettembre :	2003 (Corso d	i Laurea in Matem-
Cognome				Nome			Matricola
	Es. 1	Es. 2	Es. 3	Es. 4	Somma	Voto finale	

Attenzione: si consegnano SOLO i fogli di questo fascicolo.

Esercizio 1. Siano $(X_n)_n$ i.i.d. di legge U(0,1), e poniamo $M_n := \max(X_1, \ldots, X_n)$. Dimostrare che $n(1 - M_n) \rightharpoonup Exp(1)$. (suggerimento: usare una caratterizzazione della convergenza in legge)

Esercizio 2. Per $\alpha \in \mathbb{R}^+$ fissato, siano $(X_n)_n$ i.i.d. di legge $U(-\alpha,2)$, e definiamo

$$Y_n := \frac{X_1 + \ldots + X_n - n\mathbb{E}[X_1]}{n^{\alpha}}$$

- a) Calcolare la funzione caratteristica di Y_n .
- b) Studiare, per i diversi possibili valori di α , la convergenza in legge di $(Y_n)_n$.
- c) Tramite una legge forte dei grandi numeri, studiare, per i diversi possibili valori di α , la convergenza quasi certa di $(Y_n)_n$.

Esercizio 3. Siano $(X_n)_n$ indipendenti e tali che $X_n \sim Exp(n+1)$, e N indipendente dalle $(X_n)_n$ e di legge $Po(\mu)$, con $\mu > 0$. Trovare la funzione di ripartizione e la densità della variabile aleatoria X_N .

Esercizio 4. In una popolazione di batteri, supponiamo che nel passaggio da una generazione all'altra ogni individuo i della generazione n generi un numero (naturale!) aleatorio $Y_i^{(n)}$ di altri individui e muoia; supponiamo che le $(Y_i^{(n)})_{i,n}$ siano i.i.d. di media μ e varianza σ^2 . Il numero di batteri alla n-esima generazione sarà quindi

$$S_{n+1} = \sum_{i=1}^{S_n} Y_i^{(n)}$$

Supponiamo che $S_0 = 1$, e definiamo $X_n = S_n/\mu^n$.

- 1. Dimostrare che X è una martingala rispetto alla sua filtrazione naturale.
- 2. Calcolare $\mathbb{E}[S_{n+1}^2]$ in funzione di momenti di S_n (suggerimento: condizionare rispetto a S_n).
- 3. Dedurne un'espressione ricorsiva per $\mathbb{E}[X_n^2],$ e dimostrare che se $\mu>1$

$$\mathbb{E}[X_n^2] = 1 + \frac{\sigma^2}{\mu(\mu - 1)} \frac{\mu^n - 1}{\mu^n}$$

- 4. Dedurne che se $\mu > 1$ allora $(X_n)_n$ converge quasi certamente ad una variabile aleatoria \bar{X} .
- 5. Dimostrare che S_n converge quasi certamente ad una variabile aleatoria che assume solo i valori $0 \in +\infty$.

Soluzioni

Esercizio 1. Ricordiamo che $Y_n \to Y$ se e solo se $F_{Y_n}(t) \to F_Y(t)$ per ogni t in cui F_Y è continua. Per ogni t < 0, abbiamo che $\mathbb{P}\{n(1 - M_n) > t\} = 1$, mentre per ogni $t \in [0, n)$ abbiamo che

$$\mathbb{P}\{n(1-M_n) > t\} = \mathbb{P}\left\{1 - M_n > \frac{t}{n}\right\} = \mathbb{P}\left\{M_n < 1 - \frac{t}{n}\right\} = \left(1 - \frac{t}{n}\right)^n$$

Al tendere di $n \to \infty$, abbiamo quindi che $\mathbb{P}\{n(1-M_n) > t\} \to e^{-t}$ per ogni $t \ge 0$, quindi $F_{n(1-M_n)}(t) = \mathbb{P}\{n(1-M_n) \le t\} \to 1-e^{-t}$, mentre $F_{n(1-M_n)}(t) = 0 \to 0$ per t < 0. Dato che la funzione $\mathbf{1}_{t\ge 0}(1-e^{-t})$ è la funzione di ripartizione di una variabile aleatoria di legge Exp(1), abbiamo la tesi.

Esercizio 2. Innanzitutto abbiamo che $\mathbb{E}[X_1] = 1 - \frac{\alpha}{2}$.

a) Abbiamo che $\varphi_{X_n}(t) = \frac{e^{2it} - e^{-\alpha it}}{(2+\alpha)it}$, quindi

$$\varphi_{Y_n}(t) = \varphi_{X_1 + \dots + X_n - n\mathbb{E}[X_1]} \left(\frac{t}{n^{\alpha}}\right) = \varphi_{X_1 + \dots + X_n} \left(\frac{t}{n^{\alpha}}\right) \varphi_{\mathbb{E}[X_1]} \left(-\frac{t}{n^{\alpha - 1}}\right) =$$

$$= \varphi_{X_1}^n \left(\frac{t}{n^{\alpha}}\right) e^{-i\frac{t}{n^{\alpha - 1}}(1 + \frac{\alpha}{2})} = \left(\frac{e^{2i\frac{t}{n^{\alpha}}} - e^{-\alpha i\frac{t}{n^{\alpha}}}}{(2 + \alpha)i\frac{t}{n^{\alpha}}}\right)^n e^{-i\frac{t}{n^{\alpha - 1}}(1 + \frac{\alpha}{2})} =$$

$$= \left(\frac{e^{i\frac{t}{n^{\alpha}}(1 + \frac{\alpha}{2})} - e^{-i\frac{t}{n^{\alpha}}(1 + \frac{\alpha}{2})}}{(2 + \alpha)i\frac{t}{n^{\alpha}}}\right)^n$$

- b) Poichè le $X_n \in L^2$, per $\alpha = 1/2$ e $\alpha = 1$, la risposta ci viene data rispettivamente dal teorema limite centrale e dalla legge debole dei grandi numeri: infatti, poichè $\sigma^2 := \text{Var}[X_1] = \frac{(2+\alpha)^2}{12}$, si ha che:
 - $\operatorname{per} \alpha = 1/2$

$$Y_n = \sigma \frac{X_1 + \ldots + X_n - n\mathbb{E}[X_1]}{\sigma \sqrt{n}}$$

- e quindi $Y_n \to N(0, \sigma^2) = N(0, \frac{25}{48}).$
- per $\alpha = 1$ si ha invece che $Y_n \rightharpoonup 0$.

In generale, usando lo sviluppo in serie dell'esponenziale fino al terzo ordine, possiamo scrivere:

$$\varphi_{Y_n}(t) = \left(1 - \frac{1}{3} \frac{t^2}{n^{2\alpha}} \left(1 + \frac{\alpha}{2}\right)^2 + o(n^{-2\alpha})\right)^n = \left(1 - \frac{1}{3} \frac{t^2}{n^{2\alpha - 1}n} \left(1 + \frac{\alpha}{2}\right)^2 + o(n^{-2\alpha})\right)^n$$

e si hanno diversi comportamenti asintotici a seconda del segno di $2\alpha - 1$:

– per $\alpha=1/2$, si ha che $2\alpha-1=0$, e quindi

$$\varphi_{Y_n}(t) = \left(1 - \frac{1}{3} \frac{t^2}{n} \left(\frac{5}{4}\right)^2 + o(n^{-2\alpha})\right)^n \to e^{-\frac{25}{48}t^2}$$

e riotteniamo $Y_n \rightharpoonup N(0, \frac{25}{48})$.

– per $\alpha < 1/2$, si ha che $2\alpha - 1 < 0$ (ricordiamo che stiamo sempre supponendo $\alpha > 0$), e quindi

$$\varphi_{Y_n}(t) \simeq e^{-\frac{1}{3}\frac{t^2}{n^{2\alpha-1}}(1+\frac{\alpha}{2})^2}$$

e il limite per $n \to \infty$ è uguale alla funzione $\mathbf{1}_0(t)$, che è discontinua, quindi non può essere funzione caratteristica di nessuna legge; si ha quindi che il limite in legge non esiste.

– per $\alpha > 1/2$, si ha che $2\alpha - 1 > 0$ (ricordiamo che stiamo sempre supponendo $\alpha > -2$), e quindi

$$\varphi_{Y_n}(t) \simeq e^{-\frac{1}{3}\frac{t^2}{n^{2\alpha-1}}(1+\frac{\alpha}{2})^2}$$

e stavolta il limite per $n \to \infty$ è uguale alla funzione identicamente uguale a 1, che è la funzione caratteristica della costante 0; si ha quindi che $Y_n \to 0$ per ogni $\alpha > 1/2$ (e non solo per $\alpha = 1$ come avevamo trovato con la legge dei grandi numeri).

- c) Anche qui si hanno diversi comportamenti asintotici a seconda dei diversi valori di α :
 - caso $\alpha \geq 1$: Siccome le $(X_n)_n$ sono i.i.d. e in L^1 , sappiamo che per $\alpha = 1$, per la legge forte dei grandi numeri di Kolmogorov-Khintchine, $Y_n = \bar{X}_n \mathbb{E}[X_1] \stackrel{q.c.}{\to} 0$. Questo significa che anche per $\alpha > 1$ si ha che $Y_n = n^{1-\alpha}(X_n \mathbb{E}[X_1]) \stackrel{q.c.}{\to} 0$.
 - caso $\alpha < 1/2$: Siccome avevamo visto che non esiste il limite in legge, non può esistere nemmeno il limite quasi certo: infatti se esistesse Y tale che $Y_n \stackrel{q.c.}{\to} Y$, si avrebbe anche $Y_n \stackrel{\rightharpoonup}{\to} Y$, contro quello che avevamo trovato nel punto b).
 - caso $1/2 \le \alpha < 1$: Sappiamo che $Y_n \to 0$, e quindi per la teoria svolta durante il corso $Y_n \stackrel{\mathbb{P}}{\to} 0$, e quindi esiste una sottosuccessione $(Y_{n_k})_k$ tale che $Y_{n_k} \stackrel{q.c.}{\to} 0$. Per ottenere la convergenza quasi certa di tutta la successione, però, dovremmo fare del lavoro ulteriore.

Esercizio 3. Possiamo usare la disintegrazione di \mathbb{P} rispetto a N: siccome N ha legge discreta, possiamo scrivere:

$$F_{X_N}(t) = \mathbb{P}\{X_N \le t\} = \sum_{n=0}^{\infty} \mathbb{Q}_n\{X_N \le t\} \mathbb{P}\{N=n\} = \sum_{n=0}^{\infty} \mathbb{Q}_n\{X_n \le t\} e^{-\mu} \frac{\mu^n}{n!}$$

dove $\mathbb{Q}_n(\cdot) = \mathbb{P}(\cdot | \{N = n\})$ è la disintegrazione di \mathbb{P} rispetto a N. Siccome le $(X_n)_n$ sono indipendenti da N, si ha che $\mathbb{Q}_n\{X_n \leq t\} = \mathbb{P}\{X_n \leq t\} = 1 - e^{-(n+1)t}$, e quindi

$$F_{X_N}(t) = \sum_{n=0}^{\infty} e^{-\mu} \frac{\mu^n}{n!} (1 - e^{-(n+1)t}) = 1 - e^{-\mu - t} \sum_{n=0}^{\infty} \frac{(\mu e^{-t})^n}{n!} = 1 - e^{-\mu - t} e^{\mu e^{-t}}$$

Si vede quindi che X_N è una variabile aleatoria continua. Per ottenerne la densità, basta derivare F_{X_N} , e si ottiene:

$$F'_{X_N}(t) = (1 + \mu e^{-t})e^{-\mu - t + \mu e^{-t}}$$

Esercizio 4.

a) Innanzitutto notiamo che la filtrazione naturale di X è tale che $\mathcal{F}_n^X := \sigma(X_1, \dots, X_n) = \sigma(S_1, \dots, S_n) = \sigma(Y_i^{(1)}, \dots, Y_i^{(n-1)} | i \geq 1)$. Allora si ha:

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n^X] = \mathbb{E}\left[\frac{\sum_{i=1}^{S_n} Y_i^{(n)}}{\mu^{n+1}} \mid \mathcal{F}_n^X\right] = \frac{\sum_{i=1}^{S_n} \mathbb{E}[Y_i^{(n)}|\mathcal{F}_n^X]}{\mu^{n+1}} = \frac{\sum_{i=1}^{S_n} \mathbb{E}[Y_i^{(n)}]}{\mu^{n+1}} = \frac{S_n \mu}{\mu^{n+1}} = X_n$$

b) Questo punto si può fare in due modi: o considerando la speranza condizionale rispetto a S_n , oppure la legge condizionale rispetto a S_n . Partiamo con il primo metodo:

$$\mathbb{E}[S_{n+1}^2] = \mathbb{E}[\mathbb{E}[S_{n+1}^2 \mid S_n]] = \mathbb{E}\left[\mathbb{E}\left[\sum_{i=1}^{S_n} (Y_i^{(n)})^2 + \sum_{i,j=1,i\neq j}^{S_n} Y_i^{(n)} Y_j^{(n)} \mid S_n\right]\right] =$$

$$= \mathbb{E}[S_n \mathbb{E}[(Y_i^{(n)})^2] + S_n(S_n - 1) \mathbb{E}[Y_i^{(n)}]^2] =$$

$$= (\mu^2 + \sigma^2) \mathbb{E}[S_n] + \mu^2 \mathbb{E}[S_n^2] - \mu^2 \mathbb{E}[S_n] = \mu^2 \mathbb{E}[S_n^2] + \sigma^2 \mathbb{E}[S_n]$$

Vediamo ora con il secondo metodo: chiamiamo $\mathbb{Q}_k := \mathbb{P}(\cdot | \{S_n = k\})$ (ricordiamo che le Y sono variabili intere, e quindi anche le S) ed \mathbb{E}_k la speranza calcolata rispetto a \mathbb{Q}_k , e abbiamo:

$$\mathbb{E}[S_{n+1}^{2}] = \sum_{k=0}^{\infty} \mathbb{P}\{S_{n} = k\} \mathbb{E}_{k}[S_{n+1}^{2}] = \sum_{k=0}^{\infty} \mathbb{P}\{S_{n} = k\} \mathbb{E}\left[\left(\sum_{i=1}^{k} Y_{i}^{(n)}\right)^{2}\right] =$$

$$= \sum_{k=0}^{\infty} \mathbb{P}\{S_{n} = k\} \mathbb{E}\left[\sum_{i=1}^{k} (Y_{i}^{(n)})^{2} + \sum_{i,j=1, i \neq j}^{k} Y_{i}^{(n)} Y_{j}^{(n)}\right] =$$

$$= \sum_{k=0}^{\infty} \mathbb{P}\{S_{n} = k\} (k(\mu^{2} + \sigma^{2}) + k(k-1)\mu^{2}) =$$

$$= \sum_{k=0}^{\infty} \mathbb{P}\{S_{n} = k\} (k\sigma^{2} + k^{2}\mu^{2}) = \mu^{2} \mathbb{E}[S_{n}^{2}] + \sigma^{2} \mathbb{E}[S_{n}]$$

c) Dal punto b) ricaviamo

$$\mathbb{E}[X_{n+1}^{2}] = \mathbb{E}[X_{n}^{2}] + \frac{\sigma^{2}}{\mu^{n+2}} \mathbb{E}[X_{n}]$$

Siccome X è una martingala e $X_0 = S_0 \equiv 1$, si ha che $\mathbb{E}[X_n] = 1$ per ogni $n \in \mathbb{N}$, e quindi per induzione si ha che

$$\mathbb{E}[X_{n+1}^2] = 1 + \sum_{i=0}^{n-1} \frac{\sigma^2}{\mu^2} \mu^{-i} = 1 + \frac{\sigma^2}{\mu^2} \frac{\mu^{-n} - 1}{\mu^{-1} - 1}$$

e si ottiene la tesi.

d) Se $\mu > 1$, si ha che la successione $n \to \mathbb{E}[X_n^2]$ è crescente, quindi

$$\sup_{n \in \mathbb{N}} \mathbb{E}[X_n^2] = \lim_{n \to \infty} 1 + \frac{\sigma^2}{\mu(\mu - 1)} \left(1 - \frac{1}{\mu^n} \right) = 1 + \frac{\sigma^2}{\mu(\mu - 1)}$$

Siccome $\mathbb{E}[X_n]^2 \leq \mathbb{E}[X_n^2] \leq 1 + \frac{\sigma^2}{\mu(\mu-1)}$ per ogni $n \in \mathbb{N}$, si ha che la martingala X è limitata in L^1 , e quindi converge quasi certamente ad una variabile aleatoria $\bar{X} \in L^1$.

e) Abbiamo che

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \mu^n X_n = \begin{cases} +\infty & \text{su } \{\bar{X} > 0\} \\ 0 & \text{su } \{\bar{X} = 0\} \end{cases}$$

Come interpretazione, la popolazione batterica all'infinito o esplode o si estingue, ma non si stabilizza.

Esame di Probabilità mod. B del 25 settembre 2003 (Corso di Laurea in Matematica, Universitá degli Studi di Padova) (docente: Tiziano Vargiolu)

Sono ammessi all'orale:

Callegaro Giorgia	25
Di Emidio Sara	20
Franceschi Daniele	17,5
Pavan Paola	13,5 (*)
Vanzini Laura	25

(*) vecchio ordinamento

Visione compiti e orali: venerdi' 26 settembre ore 10 nel mio studio.