Esercizi di Calcolo delle Probabilità della 8^a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova).

Esercizio 1. Un vettore aleatorio X a valori in \mathbb{R}^d si dice **gaussiano** se, per ogni $y \in \mathbb{R}^d$, si ha che $\langle y, X \rangle$ è una variabile aleatoria gaussiana.

- 1. Dimostrare che ogni componente X_i , $i=1,\ldots,d$, è una variabile aleatoria reale di legge $N(m_i,\sigma_{ii})$, dove indichiamo $m=(m_1,\ldots,m_d)$ il vettore delle medie di X e $\Sigma=(\sigma_{ij})_{ij}$ la matrice delle covarianze (si indica allora $X\sim N(m,\Sigma)$).
- 2. Dimostrare che la funzione caratteristica di X è

$$\varphi_X(t) = \mathbb{E}[e^{i\langle t, X \rangle}] = \exp\left(i\langle t, m \rangle - \frac{1}{2}\langle \Sigma t, t \rangle\right)$$

3. Se due vettori aleatori gaussiani X e Y sono tali che $m_X = m_Y$ e $\Sigma_X = \Sigma_Y$, allora hanno la stessa legge.

Esercizio 2. Siano date variabili aleatorie indipendenti gaussiane $X_i \sim N(m_i, \sigma_i^2)$, $i = 1, \ldots, d$.

- 1. Dimostrare che il vettore aleatorio $X = (X_1, \ldots, X_d)$ è gaussiano, e calcolarne vettore delle medie e matrice delle covarianze.
- 2. Dimostrare che, se Y è un vettore aleatorio gaussiano con componenti scorrelate, allora le componenti sono indipendenti.

Esercizio 3. Sia $X \sim N(0,1)$.

- 1. Dimostrare che esiste a>0 tale che $\mathbb{P}\{|X|>a\}=\frac{1}{2}.$
- 2. Definita

$$Y := X \mathbf{1}_{\{|X| \le a\}} - X \mathbf{1}_{\{|X| > a\}}$$

dimostrare che $Y \sim N(0,1)$.

3. Dimostrare che X e Y non sono indipendenti, ma Cov (X,Y)=0.

Esercizio 4. Siano $X, Y \sim Ca(1)$ indipendenti.

- 1. Calcolare la legge di 2X?
- 2. Calcolare la legge di X + Y.
- 3. Fornire un controesempio all'affermazione (falsa): se due variabili aleatorie X e Y sono tali che $\varphi_X \varphi_Y = \varphi_{X+Y}$, allora sono indipendenti.

Soluzioni su http://www.math.unipd.it/~vargiolu/CalPro/