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Latency

▸ Latency is the time delay between an exchange streaming market
data to a trader, the trader processing information and deciding to
trade, and the exchange receiving the order from the trader.

▸ Some facts:
▸ No market participant has zero latency!

▸ Latency is random.

▸ Main consequences for liquidity
▸ takers: marketable orders are not always executed/filled at the

observed price,

▸ makers: stale limit orders are picked off.
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Process market information
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Send FoK (or IoC) order to buy at 115.402
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Current best ask is too high
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Exchange rejects order and notifies client
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Optimal discretion: ‘Observed best ask’ plus δ
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Figure: Misses, latency, and discretion.
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Problem

Is there an optimal trade-off between costs and misses?
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Outline

Outline:

▸ The model (fairly general)

▸ FBSDE arising from the vanishing Gâteaux derivative

▸ Global minimum

▸ Future work
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The model

Let N = {(Tn, Zn)}(n≥1) be a marked point process.

▸ (Tn) are the times at which the client trades

▸ (Zn) are the changes in price due to latency

We associate the random measure p to the marked point process N

p(ω , [0, t], A) = ∑
n

1{Tn(ω)≤t}1{Zn(ω)∈A} .

We assume the compensator is

p̃(dz ,dt) = φt(dz)λtdt .
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The model

For a given change in prices z , and discretion δ

▸ The cost is

z F (δ − z) =

⎧⎪⎪
⎨
⎪⎪⎩

z , if z ≤ δ trade filled

0, if z > δ trade missed

where, F (x) ∶= 1x≥0.

▸ A miss trade is

D(z) = G(δ − z) =

⎧⎪⎪
⎨
⎪⎪⎩

0, if z ≤ δ trade filled

1, if z > δ trade missed

which is 1 − F (δ − z).
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The model

▸ The running cost of strategy δ is

C δt = ∫

t

0
∫
R
z F (δs − z)p(dz ,ds) .

▸ The running number of missed trades is

Dδ
t = ∫

t

0
∫
R
(1 − F (δs − z)) p(dz ,ds) .
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The model

We study the functional J ∶ A ↦ R

J(δ) = E [C δT +αDδ
T + γ (Dδ

T )
2
] ,

where α, γ ≥ 0 and set of admissible strategies

A = {δ = (δt){0≤t≤T} ∣ δ is F − predictable and E [ sup
0≤t≤T

(δt)
2
] < ∞} .

▸ J is not a quasi-convex functional
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The model
The value function is not quasiconvex

Figure: Value function for “half-constant” controls. Parameters: T = 1, α = 0.5,
γ = 0.01, λ = 100, µ = 1, and σ = 1.
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Outline

Next steps:

▸ Gâteaux derivative

▸ Existence and uniqueness

▸ Global minimum
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Gâteaux Differentiability

Let w , δ ∈ A. The Gâteaux derivative of J(δ) in the direction of w , is
defined as

⟨D J(δ),w⟩ = lim
ε→0

J(δ + εw) − J(δ)

ε
.

Theorem
The functional J is everywhere Gâteaux differentiable and

⟨D J(δ),w⟩ = E [∫

T

0
wt φt(δt) [δt − 2γ Et− [D

δ
T ] − (γ +α)] dAt] .

ESSFM, Padova, 2019 Optimal Order Placement 17



Finding Extrema

Theorem
The Gâteaux derivative vanishes in all directions if and only if there is
δ∗ ∈ A that satisfies the FBSDE

δ∗t = 2γ Et− [D
δ∗

T ] + γ +α ,

almost everywhere in [0,T ] ×Ω.
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The FBSDE

Next steps:

▸ Existence and Uniqueness of
▸ BSDE
▸ SDE
▸ FBSDE
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The FBSDE

The FBSDE

δt = 2γ Et− [D
δ
T ] + γ +α , (1)

Dδ
t = ∫

t

0
∫
R
G(δs − z)p(dz ,ds) , Dδ

0 = 0 ,

with δ ∈ A and D ∈ C, is equivalent to the FBSDE

δ̃t = 2γ Et [∫

T

t
∫
R
G(δ̃s− + 2γD δ̃

s− − z)p(dz ,ds)] + γ +α , (2)

D δ̃
t = ∫

t

0
∫
R
G(δ̃s− + 2γD δ̃

s− − z)p(dz ,ds) , D δ̃
0 = 0 ,

with δ̃, D δ̃ ∈ C
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The BSDE

Theorem
Fix V ∈ A. Define Φt as

Φt(x) = ∫
x

−∞
φt(y)dy ,

and take Φt to be uniformly Lipschitz (in [0,T ] ×Ω) with constant k, and
let λ̄ be an upper bound of the stochastic intensity λ. The functional
Ψ ∶ A → A has a unique fixed point:

Ψ(U)t = 2γ Et [∫

T

t
∫
R
G(U s− + 2γ V s− − z)p(dz ,ds)] + γ +α , V ∈ A.

ESSFM, Padova, 2019 Optimal Order Placement 21



The SDE

Theorem
Fix U ∈ A. Let the distribution function Φt be uniformly Lipschitz with constant
k and let λ̄ be an upper bound of the stochastic intensity. The functional
Θ ∶ C → C has a unique fixed point:

Θ(V )t = ∫

t

0
∫
R
G(U s− + 2γV s− − z)p(dz ,ds) , U ∈ C .
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The FBSDE

Theorem
Let the distribution function Φt be uniformly Lipschitz with constant k, such that
k T λ̄ (max{1 ,2γ})

2
< 1. There exits unique solution to the system of FBSDEs,

i.e. the functional Υ ∶ C ⊗C → C⊗C defined by

Υ(U ,V )t = (
H(U ,V )t
I (U ,V )t

) =
⎛

⎝

2γ Et [∫
T
t ∫RG(Us− + 2γVs− − z)p(dz ,ds)] + γ

∫
t

0 ∫RG(Us− + 2γVs− − z)p(dz ,ds)

⎞

⎠
,

with
∥Υ(U ,V )∥

C⊗C
= ∥H(U ,V )∥

C
+ ∥I (U ,V )∥

C
,

has a unique fixed point.
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Optimality results

Theorem
J is continuous.

Lemma
If J has a global minimum δ̂ ∈ A, then

⟨D J(δ̂),w⟩ ≥ 0 ∀w ∈ A .

Theorem
If J has a global minimum δ̂ ∈ A , then

δ̂ = δ∗ a.e. in [0,T ] ×Ω .
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Results
Optimal control

Theorem
Let δ̃t = h(t,D δ̃

t , λt). The function h (hence δ̃ and δ∗) satisfies the PIDE

0 = ∂th(t,D, λ) + L
λ
t h(t,D, λ)

+ (∫

∞

h(t,D,λ)
λφt(z)dz) (h(t,D + 1, λ) − h(t,D, λ)) , (3)

with boundary and terminal conditions

lim
D→∞

h(t,D, λ) = ∞ and h(T ,D, λ) = 2γD + γ + α .

Here, Lλt h(t,D, λ) is the infinitesimal generator of the arrival intensity
process λ acting on the function h.
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Results

Numerical experiments:

▸ Take λ = 100 for all t ∈ [0,T ], so Tn −Tn−1 ∼ exp(100). And
Zn ∼ N(0.2,1).

▸ Model parameters are α = 0, γ = 0.07 (when not specified).
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Results
Optimal control
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Figure: Sample paths for the optimal discretion δ∗ (top left panel), number of missed trades D (lower left panel), cost of
strategy C (top right panel), and number of trade attempts N (lower right panel) for three simulations of the MPP.
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Results
Optimal control
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Figure: Top left panel: Histogram of the extra cost per filled trade (CT /(NT − DT )) for various values of γ. Top right

panel: Histogram of the cost (CT ) of the strategy for various values of γ. Bottom left panel: Histogram of the number of

misses (DT ) for various values of γ. Bottom right panel: Histogram of percentage of misses (DT /NT ) for various values of γ.
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Results
Optimal control
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Figure: The left-hand side corresponds to fixed discretion strategies and the right-hand corresponds to the strategy δ∗ when
changing γ. The top panels plot P (DT < 0.1NT ) and the bottom panels the E [CT ]. The marker is placed where the smallest
value of E [CT ] is when P (DT < 0.1NT ) ≥ 0.99. The model parameters are: λ = 100, α = 0, and Zn ∼ N(0.2, 1) for every n.
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Conclusions

Summary:

▸ We found a global minimum for the tradeoff between costs and misses

▸ This framework can be applied to other problems (e.g. “last look”)

▸ We proved existence and uniqueness of a new FBSDE

ESSFM, Padova, 2019 Optimal Order Placement 30



Future work
Preliminary results

▸ Compute the “shadow price of latency” in a similar way to Cartea, Á,
and Sánchez-Betancourt, L. (2018)

▸ Include a latent processes modulating the shocks.
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Future work
Preliminary results
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Future work

The framework developed in the previous model can still be applied for
HMM modulating the changes in price. Empirical experiments using FX
data over April 2019 for EUR/USD show three distinguishable regimes.

Table: Probability distribution of Zn under each regime (3 regimes in total).

Y/Z -5 -4 -3 -2 -1 0 1 2 3 4 5

1 3.5% 3.0% 5.6% 10.3% 15.4% 26.3% 14.5% 9.5% 5.5% 3.0% 3.5%
2 0.0% 0.1% 0.6% 3.3% 12.5% 66.4% 12.7% 3.3% 0.8% 0.2% 0.0%
3 0.0% 0.0% 0.1% 0.3% 1.4% 96.2% 1.5% 0.3% 0.1% 0.0% 0.0%
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Future work

Similarly, the transition matrix for the latent process Y is given by

Table: Transition probability matrix for Y .

Y/Y 1 2 3

1 77.4% 22.6% 0.0%
2 5.6% 86.8% 7.6%
3 3.1% 3.5% 93.4%

ESSFM, Padova, 2019 Optimal Order Placement 34



Future work
Preliminary results

Figure: Optimal strategy under each regime. Left panel is regime one, middle panel is for regime two, and right panel is for
regime three.
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Thank you for your time!

Details can be found in SSRN:

▸ Cartea, Jaimungal, S-B. (2019) Latency and Liquidity Risk

▸ Cartea, S-B. (2018) The Shadow Price of Latency: Improving
Intraday Fill Ratios in Foreign Exchange Markets
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