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Motivation

I Important volumes of American options traded in exchange market.
I Typically only American (and no European) options are traded on

individual stocks (as opposed to stock indexes).
I Typically short maturities (T ≤ 2Y ).
I Calibration of a model to American options (industry practice) :

– Compute implied vol from American options.
– Input this smile as it was European.
– Calibrate a model with standard methods (e.g local vol from Dupire’s

formula).

I How relevant is the approximation of American implied vol to
European implied vol ?

I In the presentation :
– Short-time expansions for the American put prices.
– Estimates of the difference between American and European implied

vol.
– Upper / lower bounds for the American implied vol.
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Pricing of an American put

I Time-homogeneous LV model for stock price :

dSt
St

= rdt+ σ (St) dWt.

I American put : holder gets the payoff (K − Su)+ if exercised at
u ≤ T .

I Optimal stopping problem (Bensoussan 84’, Karatzas 88’) :

A (t, s,K) = sup
u∈[t,T ]

E
[
e−r(u−t) (K − Su)+

∣∣∣St = s
]
, u stopping time.

I Parabolic obstacle PDE :
∂tA+ rs∂sA+ 1

2σ (s)
2
s2∂ssA− rA = 0, t < T, s > sT (t)

A (t, s,K) > (K − s)+ , t < T, s > sT (t)

A (t, s,K) = (K − s)+ , t < T, s ≤ sT (t)

A (T, s,K) = (K − s)+ , t = T, s > 0.

I sT (t) is the exercise boundary.
3
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Exercise boundary
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Early premium formula

I τ := T − t time to maturity.

I Homogeneous Markov process : sT (t) = s̄ (T − t) = s̄ (τ) .

I Decomposition of the American put (early premium formula) :

A (τ, s,K) = E0,s

[
e−rτ (K − Sτ )+

]
+ rK

∫ τ

0

e−ruE0,s

[
1Su≤s̄(τ−u)

]
du

= P (τ, s,K) + p (τ, s,K) .

see (McKean 65’, Moerbeke 76’, Myneni 92’).

I P (τ, s,K) : European price, p (τ, s,K) : premium.

I Continuation condition : A (τ, s(τ),K) = (K − s(τ)) .

– Integral equation for s̄(τ).

K − s̄(τ) = E0,s̄(τ)

[
e−rτ (K − Sτ )+

]
+ rK

∫ τ

0

e−ruE0,s̄(τ)

[
1Su≤s̄(τ−u)

]
du.
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Exercise boundary

I s̄(0) = K, s(τ) decreasing on [0, T ].
I Lower and upper bounds for the exercise boundary :

∀u ∈ [0, τ ], s̄(τ) ≤ s̄(τ − u) ≤ K.
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Exercise boundary close to the maturity

I Define x̄(τ) = ln s̄(τ). Geodesic distance : d(x̄(τ), lnK) =
∫ lnK
x̄(τ)

dp
σ(ep) .

I Theorem
We have as τ → 0,

d2 (x̄(τ), lnK) = τ ln

(
γ (K)

τ

)1 +
2

ln2
(
γ(K)
τ

) +O

(
1

ln3
(

1
τ

))
 ,

Consequently :

x̄(τ) = lnK − σ (K)

√
τ ln

(
γ (K)

τ

)1 +
1

ln2
(
γ(K)
τ

) +O

(
1

ln3
(
1
τ

))
 .

see (Lamberton 95’, Chevalier 05’, De Marco, Henry-Labordere 17’
and many others).

I γ(K) = σ2(K)
8πr2

→ homogeneous to time. It plays the role of a

time-scale. In BS model γBS = σ2

8πr2
≈ 4 for typical values.
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Short-time asymptotics for the density

I Heat-kernel expansion for the transition density of the logarithmic
stock price Xu = ln(Su) starting at X0 = x :

fX (u, y|x) =
e−

d2(x,y)
2u

√
2πu

(u0 (x, y) +O (u;x, y)) , (u→ 0)

where :

u0 (x, y) := σ (ex)
1
2 σ (ey)−

3
2 e
− 1

2
(y−x)+r

∫ y
x

dp

σ2(ep) ,

d(x, y) =

∫ y

x

dp

σ (ep)
,

and the following uniform estimate holds :

∃C > 0, ∀ (x, y) ∈ R2,∀u ∈ (0, τ ], |O (u;x, y)| ≤ Cu.
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European put price expansion

I Put price is a Laplace-type integral :

P (τ, s,K) =
Ke−rτ√

2πτ

∫ 0

−∞
(1− ez) (u0 (ln s, lnK + z) +O (τ)) e−

d2(ln s,z+lnK)
2τ dz.

P (τ, s = K) =
sσ (s)√

2π

√
τ − rs

2
τ +A2(s)

s√
2π
τ
√
τ(1 + o(1)) (K = s),

P (τ, s,K) =
u0 (ln s, lnK)Kσ (K)2√

2πd2 (lnK, ln s)
e−

d2(lnK,ln s)
2τ τ

√
τ(1 + o(1)) (K < s),

P (τ, s,K) = K
(
1− e−rτ

)
− u0 (ln s, lnK)Kσ (K)2√

2πd2 (lnK, ln s)
e−

d2(lnK,ln s)
2τ τ

√
τ(1 + o(1)) (K > s).

where A2(s) depends only on σ(s), σ′(s), σ′′(s).

(Ref. see e.g Henry-Labordere 08’, Gatheral et al. 12’).
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Black-Scholes put price
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European implied volatility expansion

I Define the European implied vol σE(τ, s,K) as solution to :

P (τ, s,K) = PBS(τ, s,K;σE(τ, s,K)).

I Using the European put price expansion gives a polynomial
expansion:

σE (τ, s,K) = σ0 (s,K) + σ1 (s,K)τ +O
(
τ2
)
,

σ0 (s,K) =
ln
(
s
K

)
d (lnK, ln s)

,

σ1 (s,K) =
σ3

0 (s,K)

ln
(
s
K

)2 ln

(
u0 (ln s, lnK)σ2 (K)

σ0 (s,K)

)
− σ3

0 (s,K)

2 ln
(
s
K

) +
rσ0 (s,K)

ln
(
s
K

) .

I Continuity of the coefficients as K → s.

11



A time-homogeneous LV model : CEV

I CEV model : σ(s) = δs
β
2
−1 with δ > 0, β ∈ R (Schroder 89’).

P0,s [Sτ ≤ K] =

 Q
(

2a; 2
2−β , 2b

)
if β < 2

Q
(

2b; 2 + 2
β−2 , 2a

)
if β > 2

,

– Q (z; ν, ε) : complementary noncentral χ2 c.d.f
– ν : degrees of freedom, ε : noncentral parameter.

k =
2r

δ2 (2− β)
[
er(2−β)τ − 1

] , a = ks2−βer(2−β)τ , b = kK2−β.

I European put : closed formula.

I American put : integral equation for the CEV exercise boundary.
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European implied vol asymptotics
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Upper and lower bounds

I ∀u ∈ [0, τ ], s̄(τ) ≤ s̄(τ − u)≤ K.
I Recall the formulation for the premium :

p(τ, s,K) = rK

∫ τ

0

e−ruE0,s

[
1Su≤s̄(τ−u)

]
du

= rK

∫ τ

0

e−ru
∫ s̄(τ−u)

0

fS(u, s, y)dydu.

I Define associated upper/lower bounds for the premium :

p (τ, s,K) = rK

∫ τ

0
e−ruE0,s

[
1Su≤s̄(τ)

]
du,

p (τ, s,K) = rK

∫ τ

0
e−ruE0,s [1Su≤K ] du.

I Corresponding bounds for the American price :

A(τ, s,K) = P (τ, s,K) + p (τ, s,K),

A(τ, s,K) = P (τ, s,K) + p (τ, s,K) 14



Upper and lower bounds

I ∀u ∈ [0, τ ], s̄(τ) ≤ s̄(τ − u)≤ K.
I Recall the formulation for the premium :

p(τ, s,K) = rK

∫ τ

0

e−ruE0,s

[
1Su≤s̄(τ−u)

]
du

= rK

∫ τ

0

e−ru
∫ s̄(τ−u)

0

fS(u, s, y)dydu.

I Define associated upper/lower bounds for the premium :

p (τ, s,K) = rK

∫ τ

0
e−ruE0,s

[
1Su≤s̄(τ)

]
du,

p (τ, s,K) = rK

∫ τ

0
e−ruE0,s [1Su≤K ] du.

I Corresponding bounds for the American price :

A(τ, s,K) = P (τ, s,K) + p (τ, s,K),

A(τ, s,K) = P (τ, s,K) + p (τ, s,K) 14



Upper and lower bounds

I ∀u ∈ [0, τ ], s̄(τ) ≤ s̄(τ − u)≤ K.
I Recall the formulation for the premium :

p(τ, s,K) = rK

∫ τ

0

e−ruE0,s

[
1Su≤s̄(τ−u)

]
du

= rK

∫ τ

0

e−ru
∫ s̄(τ−u)

0

fS(u, s, y)dydu.

I Define associated upper/lower bounds for the premium :

p (τ, s,K) = rK

∫ τ

0
e−ruE0,s

[
1Su≤s̄(τ)

]
du,

p (τ, s,K) = rK

∫ τ

0
e−ruE0,s [1Su≤K ] du.

I Corresponding bounds for the American price :

A(τ, s,K) = P (τ, s,K) + p (τ, s,K),

A(τ, s,K) = P (τ, s,K) + p (τ, s,K) 14



ATM premium short-time expansions

Theorem
Let l(τ) = ln

(
σ(s)2

8πr2τ

)
and Σ(τ, s) = C0

l(τ) + C1
ln2(l(τ))
l2(τ)

+ C2
ln(l(τ))
l2(τ)

+ C3
l2(τ)

with C0, C1, C2, C3 universal constants. We have as τ → 0 :

p (τ, s) =
rs

2
τΣ(τ, s) (1 + o (1)) .

Corollary

We have as τ → 0 :

p(τ, s) =
4r2s

σ (s)

τ
√
τ

l
3
2 (τ)

(1 + o(1)),

p (τ, s) =
rs

2
τ +

s√
2π

(
− 2r2

3σ (s)
+
rσ (s)

3
+
rsσ′ (s)

3

)
τ
√
τ(1 + o(1)).
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ATM American price approximation
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ATM premium price approximation
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ITM / OTM premium short-time expansions

Theorem
Suppose K < s, then we have as τ → 0 :

p (τ, s,K) = P(s,K)
τ

5
2

2l(τ, σ(s))
e−

d2(lnK,ln s)
2τ (1 + o (1)) ,

p (τ, s,K) = P(s,K)τ
5
2 e−

d2(lnK,ln s)
2τ (1 + o (1)) ,

p (τ, s,K) = P(s,K)τ
5
2 e−

d2(lnK,x)
2τ e

−d(lnK,x)

√
ln( γτ )
τ

(
1+O

(
1

ln2( γγ )

))
(1 + o (1)) .

where P(s,K) = 2rKu0(ln s,lnK)σ(K)√
2πd3(lnK,ln s)

.

Similarly for K > s :

p (τ, s,K) ∼ Ke−rτ − s− p (τ, s,K) ,

p (τ, s,K) ∼ Ke−rτ − s− p (τ, s,K) .
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American / European put price

19



American implied vol

Same analysis for the American implied vol ?

I Define the American implied vol σA(τ, s,K) as solution to :

A(τ, s,K) = ABS(τ, s,K;σA(τ, s,K)).

I Define upper/lower bounds for the American implied volatilities :

A(τ, s,K) = ABS(τ, s,K;σA(τ, s,K)),

A(τ, s,K) = ABS(τ, s,K;σA(τ, s,K)).
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ATM American implied vol

Theorem
We have as τ → 0 :

σA(τ, s) = σE(τ, s) +O
(

τ

l (τ)

)
= σ0(s) + σ1(s)τ +O

(
τ

l (τ)

)
,

σA(τ, s) = σ (s) +

√
π

2
r
√
τ (1 + Σ(s, τ)(1 + o(1))) ,

σA(τ, s) = σ (s)−
√
π

2
r
√
τΣ(s, τ)(1 + o(1)),

where Σ(τ, s) = C0
l(τ) + C1

ln2(l(τ))
l2(τ)

+ C2
ln(l(τ))
l2(τ)

+ C3
l2(τ)

.

I Up to the order τ
l(τ) , American and European implied vol match.
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ATM American implied volatility
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ITM / OTM American implied vol

Theorem

σA(τ, s,K) = σE(τ, s,K) +O
(
τ2

l (τ)

)
= σ0(s,K) + σ1(s,K)τ + σ2(s,K)τ2 +O

(
τ2

l (τ)

)
,

σA(τ, s,K) = σ0(s,K) + σ1(s,K)τ +

(
σ2(s,K)− 2σ0 (s,K) r

d3 (lnK, ln s)σ (K)

)
τ2(1 + o(1)),

σA(τ, s,K) = σ0(s,K) + σ1(s,K)τ + σ2(s,K)τ2

−
√

2π

s
P(s,K)

τ2

2l(τ, σ(s))
e−

d2(lnK,ln s)
2τ (1 + o (1)) ,

I Discontinuity in the 2nd coefficient for σA(τ, s,K).
I Up to the order τ2

l(τ) , American and European implied vol match.

I Quality of the expansion depends on : γ(s) = σ2(s)
8πr2

. 23



Error is less than 10−2%
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Extensions

I Derive exact coefficient for the American implied vol.

I Continuous dividend rate q 6= 0 :

dSt
St

= (r − q)dt+ σ(St)dWt

Different behaviours for s̄(τ) (depending if r > q or r < q) hence on
p(τ).

I Inhomogeneous local volatility :

dSt
St

= (r − q)dt+ σ(t, St)dWt.
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Conclusion

I Short-time expansions for the American put prices.

I Estimates of the difference between American and European implied
vol.

I Upper / lower bounds for the American implied vol.
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Reminder : Laplace’s method (see De Bruijn 1981’)

I f, g sufficient smooth functions.
I g strict minimum over [a, b] at an interior point c i.e :

– g′(c) = 0, g
′′
(c) > 0 and assume f(c) 6= 0.

I Leading behaviour as λ→∞ of the integral :

I (λ) =

∫ b

a

f (t)e−λg(t)dt

≈ e−λg(c)
∫ c+ε

c−ε
f (t) e−λ(g(t)−g(c))dt

≈ e−λg(c)f (c)

∫ c+ε

c−ε
e−

λ
2 g

′′(c)(t−c)2dt

≈ e−λg(c)f (c)

∫ ∞
−∞

e−
λ
2 g

′′(c)(t−c)2dt

= e−λg(c)f (c)

√
2π

λg′′ (c)
.
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