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Controller vs Stopper Games

Controller vs Stopper games were first studied in a discrete
time zero-sum framework by Maitra and Sudderth (1996).
Zero-sum Stochastic Differential Games:

e Karatzas and Sudderth (2001);
e Karatzas and Zamfirescu (2006)-(2008);
e Bayraktar and Huang (2013);
e Nutz and Zhang (2015);
e Hernandez et al. (2015).
Nonzero-sum Stochastic Differential Games:
e Karatzas and Sudderth (2006), Karatzas and Li (2012).



Why Impulse Controls?

e if fixed and proportional costs apply intervening
continuously over time is not feasible;
e more realistic financial models (e.g. fixed transaction costs
and liquidity risk):
(i) Execution delay, Bruder and Pham (2009);
(i) Foreign exchange, Cadenillas and Zapatero (1999) ;
(iii) Liquiditation, Chevalier et al. (2016);
(iv) Portfolio selection, Ly Vath et al. (2007);

e among others.



Impulse Controls in Stochastic
Differential Games

e nonzero-sum impulse games:
(i) Aid et al. (2016) developed a general model and
verification theorem;
(il) Ferrari-Koch (2017) studied a strategic model of pollution
control;
(iii) Basei et al. (2019) generalised Aid et al.'s model to the
N-player and Mean Field cases;
e zero-sum impulse games:
(i) Cosso (2013) proved existence of an equilibrium in the
viscosity sense;
(i) Azimzadeh (2017) analysed an asymmetric setting: classic
controller vs impulse controller with precommitment;
(iii) among others.



Two-Player Nonzero-sum Stochastic
Differential Game

(Q,F,P) with F = (F¢)>0 complete and right continuous;
Uncontrolled state variable X = X*:

dX; = b(X)dt + o(X)dW;,  Xo- = X,

existence of a strong unique solution is granted;
P1’s strategy is u = (7, 0n)n>o0:
e 7, strictly increasing sequence of stopping times;
e 0, suchthat X, = XT; +dn.

P2’s strategy is a stopping time n with values in [0, oc].



Payoffs Specification

Both players want to maximize their respective objectives
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e ¢(X;,—,dn) is P1’s intervention cost, (X, —, ) is P2’s gain any
time P1 intervenes;

e X" is the controlled process
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Nash Equilibrium

Given x € RY, we say that (u*,n*) € Ay is a Nash equilibrium
of the game if

Ji(x; ut,n®) > Ji(x;u,n*)Yu st (u,n®) € Ax
by, u*,n*) > do(x; u*,n) Vn s.t. (U*,n) € Ax

where A, is the set of admissible pairs (u, 7).
Finally, the equilibrium payoffs of the game are defined as

Vi(x) := Ji(x; u*, n*)



The QVIs’ Operators

We aim at identifying a good system of QVIs for the
computation of Nash equilibria.

The following operators will play a crucial role:
* {0(x)} = argmaxsez{ V1(x +0) — ¢(x,4)};
o MVi(x) = Vi(x + d(x)) — ¢(x,6(x));
o HVa(x) = Va(x +0(x)) + ¥ (x, 6(x));
1

o AV(x) =b-VV(x)+ =tr(co!D?V)(x).

N



The Quasi-Variational Inequalities
System

We are interested in the following quasi-variational inequalities
for V1, Vs:

MV -V <0 everywhere
Vo—k>0 everywhere
HVo— Vo =0 in{MV; —V; =0}
Vi=h in{Vz =k}
max{AVy —nVi +f MV - V;} =0 in{Vo > k}

max{AV2—r2V2+g,k—V2}:0 in {MV1—V1 <O}



The Verification Result

Theorem
Let Vi, Vo : RY — R. Set
Ci:={MV; —V; <0}, Co:={Vo—k>O0}

Moreover, assume that:

e V; and V, solve the system of QVIs;

e Vi€ C3(C;\ 9C) N C'(Cj) N C(RY), both with polynomial growth;

e JC; is Lipschitz, and V;’s 2nd order derivatives are loc. bdd near 9C;.
Finally, let x € R and (u*,n*) € Ax, with u* = (7n,6n)n>1 Such that

Tn = |nf{t > Tn71;XI S C‘f}
{6n} = argmax;s{ V4 (XT; +0)— qS(XT;,é)}

and’ﬂ* = mf{t >0: VQ(XI) = k(X[)}
Then, (u*,n*) is a Nash Equilibrium and V; = J;(x; u*,n*) fori € {1,2}.



Example Setting

The players want to maximize the respective payoff functions:
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where s, ¢, A, a, q, d, v, b are constants in R satisfying some
additional conditions:

a<l), b<~y 1-=Xr>0,  1-br>0.



The Candidates

The Solution of the QVI system
The QVI system suggests the following representation for W; and Wa:

ax if Wa(x) = —bx

VV1(X) = { 901(X) if WQ(X) > —bx and (MW1 — W1)(X) <0
MW;(x)  if Wa(x) > —bx and (MW — Wy)(x) =0
—bx if Wa(x)+ bx =

W2(X) = { QDQ(X) if WQ(X) > —bx and (M Wi, — W1)(X) <0
HWa(x) if Wa(x) > —bx and (MW — Wi)(x) =0

where ¢1 and o, are
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Heuristics - No simultaneous
Interventions

Ansatz: P1 intervenes when X is too low, whereas P2 does so
when it is too high

ax in [Xg, +00)
Wi(x) = { ©1(X) in (X1, X2)
©1(X{) —c = A(Xj —x) in(—o0,Xq]
—bx in [Xg, +00)
Wa(x) = { p2(X) in (X1, X2)
0a(X7) +d+ (x5 —x) in(—o0,Xq]

with Xy < X7 < Xo.



Semi-Explicit Solution

The parameters involved in W; and W» must be chosen so as to
satisfy the smooth pasting conditions in the verification theorem
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Existence of a Nash Equilibrium

Proposition
Assume 3 (z, W), solution to the system of QVI, satisfying some conditions,
then, a Nash equilibrium exists and is given by the strategies (u*,n*) defined

by
o =inf{t > 701, Xt € (—o0, X1]},  dn = (X{ — X)1(0o5,](X),
77* = mf{t Z 0: Xt S [)_(Za +OO)}

X1

X — 5, Mz Inw oy _mb g _ 17)\rv"v272+s
o 0 TR 2w z+1 1—ar
Moreover, the functions Wy, W. coincide with the equilibrium payoff functions
V1, V2 N
V1 = VV1 and Vg = Wz



Heuristics - P1 forces P2 stop

Ansatz: As before, but this time P1 forces P2 to stop, x| = Xo.

ax in [Xz, +00)
W1(X) = { ©q (X) in ()_(1,)_(2)
ax, — C — )\()_(2 — X) in (—OO,)_(1]
~bx in [%z, +00)
WQ(X) = { gOQ(X) in ()_(1,)_(2)
—bXo + d + (X2 — x) in(—o0, X{]

with )_(1 < )_(2.



Semi-Explicit Solution

Again, imposing the smooth pasting conditions to Wy and W
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w2(X) = —bX (CO-pasting in X,)
wa(%) = —b% + d + (% — ¥)(CO-pasting in %)
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Existence of a Nash Equilibrium

Proposition
Assume 3 W, solution to the system of QVI, satisfying some other conditions,
then, a Nash equilibrium exists and is given by the strategies (u*,n*) defined

by
T =inf{t> 7 4; Xt € (o0, Xi]},  0n = (Xe = X) V(oo .5 (X)
n* =inf{t>0:X € [%, +00)}
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Moreover, the functions Wy, W, coincide with the equilibrium payoff functions
V1, V2 N
V1 = VV1 and V2 = W2



Summary

Our main contributions:

o We formulate a general nonzero-sum impulse controller
and stopper game.

e We identify a new system of QVIs and prove a verification
theorem for NE.

e We study an example with linear payoffs and multiple NE
of threshold type.

Open Questions:
e Can the two types of NE coexist?
e Applications to energy economics, finance, real options ...
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