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Construction of the Set of Beliefs

• Let (Ω,F ,P0) be a probability space such that Ω = C0(R+),
F = B(Ω), and P0 is the Wiener measure and let (Bt)t be the
canonical process.

• For all [σ, σ]-valued, (Ft)t-adapted processes σ = (σt)t , where
σ ≥ σ > 0, we define the process

Bσt :=

∫ t

0

σsdBs

and the measure Pσ by

Pσ := P0 ◦ (Bσ)−1.

• Denote by P the closure of all such measures under the topology of
weak convergence.
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G-Expectation and G-Brownian Motion

• Now we define the sublinear expectation

Ê[X ] := sup
P∈P

EP [X ].

• By Denis, Hu, and Peng (2011), Ê corresponds to the G-expectation
on L1G (Ω) and (Bt)t is a G-Brownian motion under Ê.

• The G-Brownian motion has an uncertain volatility, which implies

σ2t ≤ 〈B〉t ≤ σ2t.

• Henceforth, statements hold quasi-surely, i.e., P-a.s. for all P ∈ P.
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Space of Admissible Integrands

• From now on we fix a finite time horizon τ <∞.

• Let M̃p,0
G (0,T ) be the space of all processes φ of the form

φ(t, s) =
N−1∑
i=0

ϕi
t1[si ,si+1)(s)

for 0 = s0 < s1 < ... < sN = τ and ϕi ∈ Mp
G (0,T ).

• Denote by M̃p
G (0,T ) the completion of M̃p,0

G (0,T ) under the norm

‖ φ ‖M̃p
G (0,T ):=

(∫ τ

0

Ê
[ ∫ T

0

∣∣φ(t, s)
∣∣pdt]ds) 1

p

.
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Stochastic Integrals and Fubini’s Theorem

• For processes φ ∈ M̃2
G (0,T ), we can define the integrals∫ T

0

∫ τ

0

φ(t, s)dsdBt ,

∫ τ

0

∫ T

0

φ(t, s)dBtds,

and ∫ T

0

φ(t, s)dBt for almost every s ∈ [0, τ ].

Theorem 1.1
Let φ ∈ M̃2

G (0,T ). Then it holds∫ T

0

∫ τ

0

φ(t, s)dsdBt =

∫ τ

0

∫ T

0

φ(t, s)dBtds.
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Sufficient Conditions

• Let φ : [0,T ]× [0, τ ]→ R be a (deterministic) function such that

φ ∈ L2([0,T ]× [0, τ ]).

Then we have φ ∈ M̃2
G (0,T ).

• Let

φ(t, s) = ηtψ(s)

for η ∈ M2
G (0,T ) and ψ ∈ L2([0, τ ]). Then it holds φ ∈ M̃2

G (0,T ).
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Forward Rate

• For t ≤ T ≤ τ , we denote the forward rate by f (t,T ).

• The evolution of the forward rate is described by the dynamics

f (t,T ) =f (0,T ) +

∫ t

0

α(s,T )ds +

∫ t

0

β(s,T )dBs

+

∫ t

0

γ(s,T )d〈B〉s

for some initial integrable forward curve T → f (0,T ).

• The short rate process (rt)t is determined by rt := f (t, t).
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Bond Market

• The market offers zero-coupon bonds for all maturities T ∈ [0, τ ].

• The price at time t ≤ T of such a bond is given by

P(t,T ) := exp
(
−
∫ T

t

f (t, s)ds
)
.

• In addition, there is the money-market account

Mt := exp
(∫ t

0

rsds
)
.

• The money-market account is mainly used for discounting, i.e.,

P̃(t,T ) := M−1t P(t,T ).
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Assumptions

Assumption 1 (Regularity of the Forward and Short Rate)
We assume that α, β, γ ∈ M̃2

G (0, τ).

• Furthermore, we define the processes a, b, and c by

a(t,T ) :=

∫ T

t

α(t, s)ds, b(t,T ) :=

∫ T

t

β(t, s)ds

c(t,T ) :=

∫ T

t

γ(t, s)ds.

• We have a(·,T ), b(·,T ), c(·,T ) ∈ M2
G (0, τ) for all T ∈ [0, τ ].

Assumption 2 (Regularity of the Discounted Bonds)
We assume that b(·,T )2 ∈ M2

G (0, τ) for all T ∈ [0, τ ].
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Dynamics of the Discounted Bond

Lemma 2.1
The integral of the forward rate satisfies the dynamics∫ T

t

f (t, u)du =

∫ T

0

f (0, u)du +

∫ t

0

(
a(u,T )− ru

)
du

+

∫ t

0

b(u,T )dBu +

∫ t

0

c(u,T )d〈B〉u.

Proposition 2.1
The discounted bond price process satisfies the G-SDE

P̃(t,T ) =P̃(0,T )−
∫ t

0

a(u,T )P̃(u,T )du −
∫ t

0

b(u,T )P̃(u,T )dBu

−
∫ t

0

(
c(u,T )− 1

2b(u,T )2
)
P̃(u,T )d〈B〉u.
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Market Structure

Definition 2.1
An admissible market strategy is a process π ∈ M̃2

G (0, τ) such that

πaP̃ ∈ M̃1
G (0, τ), πbP̃ ∈ M̃2

G (0, τ), and π(c − 1
2b

2)P̃ ∈ M̃1
G (0, τ). The

corresponding portfolio value process (ṽt(π))t is given by

ṽt(π) =

∫ τ

0

∫ t∧T

0

π(s,T )dP̃(s,T )dT .

Definition 2.2
An admissible market strategy π is called arbitrage strategy if it holds

ṽτ (π) ≥ 0 q.s. and P
(
ṽτ (π) > 0

)
> 0 for at least one P ∈ P.



Model Framework Forward Rate Model Examples Conclusion

Market Structure

Definition 2.1
An admissible market strategy is a process π ∈ M̃2

G (0, τ) such that

πaP̃ ∈ M̃1
G (0, τ), πbP̃ ∈ M̃2

G (0, τ), and π(c − 1
2b

2)P̃ ∈ M̃1
G (0, τ). The

corresponding portfolio value process (ṽt(π))t is given by
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Girsanov Transformation

• Let (Bt , B̃t)t be a 2-dimensional G-Brownian motion on the

extended G̃ -expectation space (Ω̃τ , L
1
G̃

(Ω̃τ ), ÊG̃ ) such that

〈B, B̃〉t = t.

• By Hu, Ji, Peng, and Song (2014), we know that

B̄t := Bt −
∫ t

0

κsds −
∫ t

0

λsd〈B〉s

is a G-Brownian motion under Ẽ, where Ẽ(·) := ÊG̃ (E·) and

E = exp
(∫ τ

0

λtdBt +

∫ τ

0

κtdB̃t − 1
2

∫ τ

0

λ2td〈B〉t

−
∫ τ

0

λtκtdt − 1
2

∫ τ

0

κ2td〈B̃〉t
)
.
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Drift Condition

Theorem 2.1
Suppose that the processes κ and λ satisfy the drift condition

a(t,T ) + b(t,T )κt = 0,

c(t,T )− 1
2b(t,T )2 + b(t,T )λt = 0.

Then the discounted bond price process (P̃(t,T ))t is a symmetric
G-martingale under Ẽ and the forward rate satisfies

f (t,T ) = f (0,T ) +

∫ t

0

β(s,T )dB̄s +

∫ t

0

β(s,T )b(s,T )d〈B〉s .

Corollary 2.1
If the drift condition is satisfied, then the market is arbitrage-free.
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Consistency Check

• If there is no volatility uncertainty, that is, σ = 1 = σ, we have

〈B〉t = t

and (Bt)t is a standard Brownian motion.

• Then the dynamics of the forward rate are given by

f (t,T ) =f (0,T ) +

∫ t

0

β(s,T )dBs +

∫ t

0

(
α(s,T ) + γ(s,T )

)
ds.

• The drift condition implies

a(t,T ) + c(t,T )− 1
2b(t,T )2 + b(t,T )(κt + λt) = 0.
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Ho-Lee Model

• Suppose that β(t,T ) = σ.

• Then the risk-neutral dynamics of the forward rate are given by

f (t,T ) = f (0,T ) + σB̄t + σ2

∫ t

0

(T − s)d〈B〉s .

• Moreover, we can derive the related short rate dynamics,

rt = r0 +

∫ t

0

(
∂uf (0, u) + σ2〈B〉u

)
du + σB̄t .

• In this case, the bond prices are given by

P(t,T ) = exp
(
−
∫ T

t

f (0, u)du + (T − t)f (0, t)

+ σ2

2 〈B〉t(T − t)2 − (T − t)rt
)
.
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Hull-White Model

• Suppose that β(t,T ) = σe−θ(T−t).

• Then we obtain

rt = r0 +

∫ t

0

(
∂uf (0, u) + θf (0, u)

+ σ2

∫ u

0

e−2θ(u−s)d〈B〉s − θru
)
du + σB̄t .

• The bond prices are now given by

P(t,T ) = exp
(
−
∫ T

t

f (0, u)du + 1
θ

(
1− e−θ(T−t)

)
f (0, t)

− σ2

2θ2

(
1− e−θ(T−t)

)2 ∫ t

0

e−2θ(t−s)d〈B〉s

− 1
θ

(
1− e−θ(T−t)

)
rt
)
.
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Vasicek Model

• The Vasicek model has the same volatility structure but a constant
mean reversion level.

• Hence, we set β(t,T ) = σe−θ(T−t) and, for µ ∈ R, it has to hold

∂t f (0, t) + θf (0, t) + σ2

∫ t

0

e−2θ(t−s)d〈B〉s = µ.

• Therefore, we cannot obtain the classical Vasicek model, since

σ2

∫ t

0

e−2θ(t−s)d〈B〉s 6= µ− ∂t f (0, t)− θf (0, t).
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Conclusion

• Extension of the Stochastic Integral from Peng (2010)

→ Integration w.r.t. Two Integrators
→ Version of Fubini’s Theorem

• Construction of a Forward Rate Model under Volatility Uncertainty

→ Derivation of a No-Arbitrage Condition
→ Characterization of the Forward Rate Dynamics

• Investigation of the Relation to Short Rate Models

→ Ho-Lee Model X
→ Hull-White Model X
→ Vasicek Model
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