HIERARCHICAL PRINCIPAL–AGENT PROBLEMS IN CONTINUOUS–TIME

Emma HUBERT1,
with the relevant ideas and useful advice of Dylan Possamaï (Columbia University).

12th European Summer School in Financial Mathematics.

1LAMA, Université Paris–Est Marne–la–Vallée, France.
1. The one-period model

2. The continuous-time model
 A similar framework but in continuous-time
 Resolution of the two Stackelberg equilibria

3. Numerical Results

4. Conclusion and extensions
THE ONE–PERIOD MODEL

A hierarchical Principal–Agent model in one–period with moral hazard.

A hierarchical Principal–Agent model in one–period with moral hazard.

The Principal (she) is risk–neutral and represents the shareholders (or the investors) of a firm.

► A hierarchical Principal–Agent model in one–period with moral hazard.

The Principal (she) is risk–neutral and represents the shareholders (or the investors) of a firm.

The Agents are the n + 1 risk–averse workers of the firm (with CARA utility).

A hierarchical Principal–Agent model in one–period with moral hazard.

The Principal (she) is risk–neutral and represents the shareholders (or the investors) of a firm.

The Agents are the $n+1$ risk–averse workers of the firm (with CARA utility). Each Agent $i \in \{0, \ldots, N\}$ (he) produces the random outcome X^i by carrying out his own task:

$$X^i = \alpha^i + \sigma^i W^i,$$

where $W^i \sim \mathcal{N}(0, 1)$ are i.i.d.

A hierarchical Principal–Agent model in one–period with moral hazard.

The Principal (she) is risk–neutral and represents the shareholders (or the investors) of a firm.

The Agents are the n + 1 risk–averse workers of the firm (with CARA utility). Each Agent \(i \in \{0, \ldots, N\} \) (he) produces the random outcome \(X_i \) by carrying out his own task:

\[
X_i = \alpha_i + \sigma_i W_i,
\]

where \(W_i \sim \mathcal{N}(0,1) \) are i.i.d.

The effort of the \(i \)–th Agent is the variable \(\alpha_i \), inducing him a cost \(c^i(\alpha^i) \geq 0 \).
Direct contracting: the Principal offers a contract at time $t = 0$ for each Agent to incentivise them to act in her best interest at time $t = 1$, i.e. to improve the benefit of the firm.
HIERARCHICAL CONTRACTING

Direct contracting: the Principal offers a contract at time $t = 0$ for each Agent to incentivise them to act in her best interest at time $t = 1$, i.e. to improve the benefit of the firm.

Hierarchical contracting:

(i) the Principal offers a contract at time $t = 0$ for a designated Manager (Agent $i = 0$) to incentivise him to improve the benefit of the firm;
Direct contracting: the Principal offers a contract at time $t = 0$ for each Agent to incentivise them to act in her best interest at time $t = 1$, i.e. to improve the benefit of the firm.

Hierarchical contracting:

(i) the Principal offers a contract at time $t = 0$ for a designated Manager (Agent $i = 0$) to incentivise him to improve the benefit of the firm;

(ii) the Manager in turn offers contracts for the remaining Agents at time $t = 0$ and increases his own outcome by making an effort α^0 at time $t = 1$;
Hierarchical Contracting

Direct contracting: the Principal offers a contract at time $t = 0$ for each Agent to incentivise them to act in her best interest at time $t = 1$, i.e. to improve the benefit of the firm.

Hierarchical contracting:

(i) the Principal offers a contract at time $t = 0$ for a designated Manager (Agent $i = 0$) to incentivise him to improve the benefit of the firm;

(ii) the Manager in turn offers contracts for the remaining Agents at time $t = 0$ and increases his own outcome by making an effort α^0 at time $t = 1$;

(iii) each Agent $i \in \{1, \ldots, n\}$ makes an effort α^i at time $t = 1$ to increase his own outcome in exchange of the compensation.
Direct contracting: the Principal offers a contract at time $t = 0$ for each Agent to incentivise them to act in her best interest at time $t = 1$, i.e. to improve the benefit of the firm.

Hierarchical contracting:

(i) the Principal offers a contract at time $t = 0$ for a designated Manager (Agent $i = 0$) to incentivise him to improve the benefit of the firm;

(ii) the Manager in turn offers contracts for the remaining Agents at time $t = 0$ and increases his own outcome by making an effort α^0 at time $t = 1$;

(iii) each Agent $i \in \{1, \ldots, n\}$ makes an effort α^i at time $t = 1$ to increase his own outcome in exchange of the compensation.

- Interlinked Principal–Agent problems – Sequence of Stackelberg equilibria.
SEQUENCE OF STACKELBERG EQUILIBRIA

Figure: Sung’s Model
Moral hazard in direct contracting: the Principal does not observe the effort α^i of the i–th Agent, she only observes his output X^i, for $i \in \{0, \ldots, n\}$.
Moral hazard in **direct contracting**: the Principal does not observe the effort α_i of the i–th Agent, she only observes his output X_i, for $i \in \{0, \ldots, n\}$.

Moral hazard in this **hierarchical contracting** problem:

(i) the Manager does not observe the effort α_i of the i–th Agent, he only observes the output X_i, for $i \in \{1, \ldots, n\}$.
Moral hazard in direct contracting: the Principal does not observe the effort α^i of the i–th Agent, she only observes his output X^i, for $i \in \{0, \ldots, n\}$.

Moral hazard in this hierarchical contracting problem:

(i) the Manager does not observe the effort α^i of the i–th Agent, he only observes the output X^i, for $i \in \{1, \ldots, n\}$.

▶ The contract ξ^i for the i–th Agent is indexed on X^i.
Moral hazard in **direct contracting**: the Principal does not observe the effort α^i of the i–th Agent, she only observes his output X^i, for $i \in \{0, \ldots, n\}$.

Moral hazard in this **hierarchical contracting** problem:

(i) the Manager does not observe the effort α^i of the i–th Agent, he only observes the output X^i, for $i \in \{1, \ldots, n\}$.

\blacktriangleright The contract ξ^i for the i–th Agent is indexed on X^i.

(ii) the Principal only observes the net benefit of the total hierarchy,

$$
\zeta := \sum_{i=0}^{n} X^i - \sum_{i=1}^{n} \xi^i.
$$
Moral hazard in **direct contracting**: the Principal does not observe the effort α^i of the i–th Agent, she only observes his output X^i, for $i \in \{0, \ldots, n\}$.

Moral hazard in this **hierarchical contracting** problem:

(i) the Manager does not observe the effort α^i of the i–th Agent, he only observes the output X^i, for $i \in \{1, \ldots, n\}$.

- The contract ξ^i for the i–th Agent is indexed on X^i.

(ii) the Principal only observes the net benefit of the total hierarchy,

$$\zeta := \sum_{i=0}^{n} X^i - \sum_{i=1}^{n} \xi^i.$$

- The contract ξ^0 for the Manager is indexed on ζ.
In Sung 2015, the output processes are Gaussian, thus the monotone likelihood ratio is not bounded from below.
In Sung 2015, the output processes are Gaussian, thus the monotone likelihood ratio is not bounded from below.

▶ No optimal contract in this case (see the forcing contracts in Mirrlees 1999).
In Sung 2015, the output processes are Gaussian, thus the monotone likelihood ratio is not bounded from below.

» No optimal contract in this case (see the forcing contracts in Mirrlees 1999).

But, linear contracts are optimal in the case of drift control only and continuous–time (see Sannikov 2008).
In Sung 2015, the output processes are Gaussian, thus the monotone likelihood ratio is not bounded from below.

▶ No optimal contract in this case (see the forcing contracts in Mirrlees 1999).

But, linear contracts are optimal in the case of drift control only and continuous–time (see Sannikov 2008).

▶ It is common in one–period models to restrict the study to linear contracts:

\[
\xi^i = \xi_0^i - \sup_{a \in \mathbb{R}} \left\{ aZ^i - c^i(a) \right\} + Z^iX^i + \frac{1}{2}R^i(Z^i)^2\text{Var}(X^i),
\]

where \(Z^i \) is a parameter chosen by the Manager.
In Sung 2015, the output processes are Gaussian, thus the monotone likelihood ratio is not bounded from below.

▶ **No optimal contract** in this case (see the forcing contracts in Mirrlees 1999).

But, **linear contracts are optimal** in the case of drift control only and continuous–time (see Sannikov 2008).

▶ It is common in one–period models to restrict the study to linear contracts:

\[
\xi^i = \xi_0^i - \sup_{a \in \mathbb{R}} \left\{ aZ^i - c^i(a) \right\} + Z^iX^i + \frac{1}{2} R^i (Z^i)^2 \text{Var}(X^i),
\]

where \(Z^i \) is a parameter chosen by the Manager.

▶ **Optimal effort**: \(\hat{\alpha}^i(Z^i) \).
The Manager controls the mean and the variance of his state variable ζ.

$$\zeta = \alpha^0 + \sigma^0 W^0 - \sum_{i=1}^{n} \left(\xi_i^0 - \hat{\alpha}^i(Z^i) + c^i(\hat{\alpha}^i(Z^i)) + \frac{1}{2} R^i(Z^i \sigma^i)^2 \right)$$

$$+ \sum_{i=1}^{n} (1 - Z^i) \sigma^i W^i.$$
The Manager controls the mean and the variance of his state variable ζ.

$$\zeta = \alpha^0 + \sigma^0 W^0 - \sum_{i=1}^{n} \left(\xi^i_0 - \hat{\alpha}^i (Z^i) + c^i (\hat{\alpha}^i (Z^i)) + \frac{1}{2} R^i (Z^i \sigma^i)^2 \right)$$

$$+ \sum_{i=1}^{n} (1 - Z^i) \sigma^i W^i.$$

The variance of ζ is not observed by the Principal, and thus the contract cannot be indexed on it.
The Manager controls the mean and the variance of his state variable ζ.

$$\zeta = \alpha^0 + \sigma^0 W^0 - \sum_{i=1}^{n} \left(\xi_0^i - \tilde{\alpha}^i(Z^i) + c^i(\tilde{\alpha}^i(Z^i)) + \frac{1}{2} R^i(Z^i \sigma^i)^2 \right)$$

$$+ \sum_{i=1}^{n} (1 - Z^i) \sigma^i W^i.$$

The variance of ζ is not observed by the Principal, and thus the contract cannot be indexed on it.

Sung 2015 restrict again the study to linear contracts, without the variance term.
The Manager controls the mean and the variance of his state variable ζ.

\[
\zeta = \alpha^0 + \sigma^0 W^0 - \sum_{i=1}^{n} \left(\xi^i_0 - \hat{\alpha}^i(Z^i) + c^i(\hat{\alpha}^i(Z^i)) + \frac{1}{2} R^i(Z^i \sigma^i)^2 \right) \\
+ \sum_{i=1}^{n} (1 - Z^i) \sigma^i W^i.
\]

The variance of ζ is not observed by the Principal, and thus the contract cannot be indexed on it.

Sung 2015 restrict again the study to linear contracts, without the variance term.

But, in continuous–time with volatility control, linear contracts are not optimal, see Cvitanić, Possamaï, and Touzi 2018...
THE CONTINUOUS–TIME MODEL
The i–th Agent

- controls the drift of a process X^i with dynamic $dX^i_t = \alpha^i_t dt + \sigma^i_t dW^i_t$;
The i–th Agent

- controls the drift of a process X^i with dynamic $dX^i_t = \alpha^i_t dt + \sigma^i_t dW^i_t$;
- receives a terminal payment ξ^i which is a function of $(X^i)_{t \in [0,1]}$.
A SIMILAR FRAMEWORK BUT IN CONTINUOUS–TIME

The i–th Agent

- controls the drift of a process X^i with dynamic $dX^i_t = \alpha^i_t dt + \sigma^i_t dW^i_t$;
- receives a terminal payment ξ^i which is a function of $(X^i)_{t \in [0,1]}$.

The Manager

- controls the drift of a process X^0 with dynamic $dX^0_t = \alpha^0_t dt + \sigma^0_t dW^0_t$;
The i–th Agent

- controls the drift of a process X^i with dynamic $dX^i_t = \alpha^i_t dt + \sigma^i_t dW^i_t$;
- receives a terminal payment ξ^i which is a function of $(X^i)_t \in [0,1]$.

The Manager

- controls the drift of a process X^0 with dynamic $dX^0_t = \alpha^0_t dt + \sigma^0_t dW^0_t$;
- designs the contracts ξ^i for $i \in \{1, \ldots, n\}$;
The i–th Agent

- controls the drift of a process X_i with dynamic $dX_i^t = \alpha_t^i dt + \sigma_t^i dW_t^i$;
- receives a terminal payment ξ_i which is a function of $(X_i^t)_{t \in [0,1]}$.

The Manager

- controls the drift of a process X_0 with dynamic $dX_0^t = \alpha_t^0 dt + \sigma_0^0 dW_0^t$;
- designs the contracts ξ_i for $i \in \{1, \ldots, n\}$;
- receives a terminal payment ξ^0.

A SIMILAR FRAMEWORK BUT IN CONTINUOUS–TIME

The i–th Agent

- controls the drift of a process X^i with dynamic $dX^i_t = \alpha^i_t dt + \sigma^i dW^i_t$;
- receives a terminal payment ξ^i which is a function of $(X^i)_t \in [0,1]$.

The Manager

- controls the drift of a process X^0 with dynamic $dX^0_t = \alpha^0_t dt + \sigma^0 dW^0_t$;
- designs the contracts ξ^i for $i \in \{1, \ldots, n\}$;
- receives a terminal payment ξ^0.

The Principal only observes in continuous–time the process ζ

$$\zeta_t = \sum_{i=0}^n X^i_t - \sum_{i=1}^n \xi^i_t,$$

for $t \in [0,1]$, and indexes the contract ξ^0 for the Manager on it.
The i–th Agent:

\[V^i_0(\xi^i) := \sup_{\alpha^i} \mathbb{E}^{\nu^i} \left[- \exp \left(- R^i \left(\xi^i - \int_0^1 c^i(\alpha^i_t)dt \right) \right) \right]. \]

We will assume for simplicity that $c^i(a) = a^2/2k^i$ (quadratic costs).
VALUE FUNCTIONS

The i–th Agent:

$$V_i^0(\xi^i) := \sup_{\alpha^i} \mathbb{E}^{p_i}\left[- \exp \left(- R^i \left(\xi^i - \int_0^1 c^i(\alpha^i_t) dt \right) \right) \right].$$

We will assume for simplicity that $c^i(a) = a^2/2k^i$ (quadratic costs).

The Manager:

$$V_0^0(\xi^0) := \sup_{\alpha^0, (\xi^i)_{i=1,\ldots, n}} \mathbb{E}^{p_0}\left[- \exp \left(- R^0 \left(\xi^0 - \int_0^1 c^0(\alpha^0_t) dt \right) \right) \right]$$
Value Functions

The i–th Agent:

$$V_i^0(\xi^i) := \sup_{\alpha^i} \mathbb{E}^{ip_i} \left[- \exp \left(- R^i \left(\xi^i - \int_0^1 c^i(\alpha^i_t) \, dt \right) \right) \right].$$

We will assume for simplicity that $c^i(a) = a^2 / 2k^i$ (quadratic costs).

The Manager:

$$V_0^0(\xi^0) := \sup_{\alpha^0, (\xi^i)_{i=1,\ldots,n}} \mathbb{E}^{ip_0} \left[- \exp \left(- R^0 \left(\xi^0 - \int_0^1 c^0(\alpha^0_t) \, dt \right) \right) \right].$$

The Principal:

$$V_0 = \sup_{\xi^0} \mathbb{E}^{ip^*} [\xi_1 - \xi^0_1].$$
Assumption: the compensation for the i-th Agent can only be indexed on his own outcome process X^i.
Assumption: the compensation for the i–th Agent can only be indexed on his own outcome process X^i.

The **optimal** form of contracts for the i–th Agent is (see Sannikov 2008):

$$
\xi^i = \xi_0^i - \int_0^1 \mathcal{H}^i(Z^i_s)ds + \int_0^1 Z^i_s dX^i_s + \frac{1}{2} R^i \int_0^1 (Z^i_s)^2 d\langle X^i \rangle_s,
$$ \hspace{1cm} (1)
Assumption: the compensation for the i–th Agent can only be indexed on his own outcome process X^i.

The optimal form of contracts for the i–th Agent is (see Sannikov 2008):

$$
\xi^i = \xi^i_0 - \int_0^1 \mathcal{H}^i(Z^i_s)ds + \int_0^1 Z^i_s dX^i_s + \frac{1}{2} R^i \int_0^1 (Z^i_s)^2 d\langle X^i \rangle_s,
$$

where

(i) Z^i is a payment rate chosen by the Manager;
(ii) $\mathcal{H}^i(z) = \sup_{a \in \mathbb{R}} \{az - c^i(a)\}$ is the i–th Agent’s Hamiltonian.
Assumption: the compensation for the i–th Agent can only be indexed on his own outcome process X^i.

The optimal form of contracts for the i–th Agent is (see Sannikov 2008):

$$
\xi^i = \xi^i_0 - \int_0^1 H^i(Z^i_s)ds + \int_0^1 Z^i_s dX^i_s + \frac{1}{2} R^i \int_0^1 (Z^i_s)^2 d\langle X^i \rangle_s, \quad (1)
$$

where

(i) Z^i is a payment rate chosen by the Manager;

(ii) $H^i(z) = \sup_{a \in \mathbb{R}} \{az - c^i(a)\}$ is the i–th Agent’s Hamiltonian.

The optimal effort of the i–th Agent is $\alpha^i_t = k^i Z^i_t$, and we can compute the dynamics of X^i and ξ^i with this optimal effort.
The Manager controls α^0 and Z^i, for $i \in \{1, \ldots, n\}$.

Assumption: the Principal only observes Z^i in continuous-time, where:

$$
\begin{aligned}
&d_t = 0_t dt + 0_t dW_t + \sum_{i=1}^{n} (k_i Z^i_t - (k_i + R^i_t))^2 dt + \sum_{i=1}^{n} (1 - Z^i_t) dW^i_t;
\end{aligned}
$$

and thus its quadratic variation (see Bichteler 1981).

▶ The Manager controls the volatility of his state variable.

▶ By Cvitanić, Possamaï, and Touzi, 2018, the optimal form of contracts is:

$$
\begin{aligned}
&0_t = \int_0^1 H_0(Z_s; s) ds + \int_0^1 Z_s ds + \frac{1}{2} \int_0^1 (Z_s + R_0 Z^2_s) d\left\langle Z \right\rangle_s;
\end{aligned}
$$

(2)
The Manager controls α^0 and Z^i, for $i \in \{1, \ldots, n\}$.

Assumption: The Principal only observes ζ in continuous-time, where:

$$d\zeta_t = \alpha_t^0 dt + \sigma_t^0 dW_t^0 + \sum_{i=1}^n \left(k^i Z_t^i - \frac{1}{2} (Z_t^i)^2 \left(k^i + R^i (\sigma^i)^2 \right) \right) dt$$

$$+ \sigma^i \sum_{i=1}^n (1 - Z_t^i) dW_t^i,$$

and thus its quadratic variation (see Bichteler 1981).
The Manager controls α^0 and Z^i, for $i \in \{1, \ldots, n\}$.

Assumption: the Principal only observes ζ in continuous–time, where:

$$d\zeta_t = \alpha_t^0 dt + \sigma^0 dW_t^0 + \sum_{i=1}^n \left(k^i Z_t^i - \frac{1}{2} \left(Z_t^i \right)^2 \left(k^i + R^i (\sigma^i)^2 \right) \right) dt$$

$$+ \sigma^i \sum_{i=1}^n (1 - Z_t^i) dW_t^i,$$

and thus its quadratic variation (see Bichteler 1981).

▶ The Manager controls the volatility of his state variable ζ.
The Manager controls α^0 and Z^i, for $i \in \{1, \ldots, n\}$.

Assumption: the Principal only observes ζ in continuous–time, where:

$$
\begin{align*}
\frac{d\zeta_t}{dt} &= \alpha^0_t \, dt + \sigma^0 \, dW^0_t + \sum_{i=1}^{n} \left(k^i Z^i_t - \frac{1}{2} \left(Z^i_t \right)^2 \left(k^i + R^i \left(\sigma^i \right)^2 \right) \right) \, dt \\
&\quad + \sigma^i \sum_{i=1}^{n} \left(1 - Z^i_t \right) \, dW^i_t,
\end{align*}
$$

and thus its quadratic variation (see Bichteler 1981).

- The Manager controls the volatility of his state variable ζ.
- By Cvitanić, Possamaï, and Touzi 2018, the **optimal** form of contracts is:

$$
\xi^0 = \xi^0_0 - \int_0^1 \mathcal{H}^0(\zeta_s, \Gamma_s) \, ds + \int_0^1 Z_s \, d\zeta_s + \frac{1}{2} \int_0^1 \left(\Gamma_s + R^0 \zeta_s^2 \right) d\langle \zeta \rangle_s. \quad (2)
$$
Considering contract of the form (2), we can easily solve the Manager’s problem by maximising his Hamiltonian:
Considering contract of the form (2), we can easily solve the Manager’s problem by maximising his Hamiltonian:

(i) the optimal effort on the drift is \(\alpha_t^0 := k^0 Z_t \);
Considering contract of the form (2), we can easily solve the Manager’s problem by maximising his Hamiltonian:

(i) the optimal effort on the drift is $\alpha_t^0 := k^0 Z_t$;

(ii) the optimal control on the i–th Agent’s compensation is

$$Z_t^i := \frac{k^i Z_t - (\sigma^i)^2 \Gamma_t}{\left(k^i + R^i (\sigma^i)^2 \right) Z_t - (\sigma^i)^2 \Gamma_t}.$$
Considering contract of the form (2), we can easily solve the Manager’s problem by maximising his Hamiltonian:

(i) the optimal effort on the drift is $\alpha_t^0 := k^0 Z_t$;
(ii) the optimal control on the i–th Agent’s compensation is

$$Z_t^i := \frac{k^i Z_t - (\sigma^i)^2 \Gamma_t}{\left(k^i + R^i (\sigma^i)^2\right) Z_t - (\sigma^i)^2 \Gamma_t}.$$

We can compute the dynamics of ζ and ξ^0 under optimal efforts.
The Principal’s problem is reduced to

\[V_0 = \sup_{(Z, \Gamma) \in \mathbb{R}^2} \mathbb{E}^{\mathbb{P}^0} \left[\xi_T - \xi_T^0 \right]. \]
The Principal’s problem is reduced to

\[V_0 = \sup_{(Z, \Gamma) \in \mathbb{R}^2} \mathbb{E}_P^0 \left[\zeta_T - \xi_T^0 \right]. \]

The optimal payment rates for the Manager are given by the constant processes \(Z \) and \(\Gamma := -R^0 Z^3 \), where \(Z \) is solution of a well-posed maximisation problem.

\[\text{The optimal payment rates for the Manager are given by the constant processes } Z \text{ and } \Gamma := -R^0 Z^3, \text{ where } Z \text{ is solution of a well-posed maximisation problem.} \]
The Principal’s problem is reduced to

$$V_0 = \sup_{(Z, \Gamma) \in \mathbb{R}^2} \mathbb{E}_{\Pi^0}^L [\zeta_T - \xi_0^T].$$

- The optimal payment rates for the Manager are given by the constant processes Z and $\Gamma := -R_0Z^3$, where Z is solution of a well-posed maximisation problem.

- The optimal Γ is different from Sung 2015 where he forced $\Gamma = -R_0Z^2$.
The Principal’s problem is reduced to

\[V_0 = \sup_{(Z, \Gamma) \in \mathbb{R}^2} \mathbb{E}^{P^0} \left[\zeta_T - \xi_T \right]. \]

- The optimal payment rates for the Manager are given by the constant processes \(Z \) and \(\Gamma := -R^0Z^3 \), where \(Z \) is solution of a well-posed maximisation problem.

- The optimal \(\Gamma \) is different from Sung 2015 where he forced \(\Gamma = -R^0Z^2 \).

- We can write the optimal contracts designed by the Principal to the Manager, and by the Manager to each Agent.
NUMERICAL RESULTS
Figure: Effort of the Manager depending on the number of Agents.
... TO DECREASE THE AGENTS’ EFFORT

Figure: Effort of an Agent depending on the number of Agents.
GAIN IN UTILITY FOR THE PRINCIPAL

Figure: Value function of the Principal depending on the number of Agents.
CONCLUSION AND EXTENSIONS
We improve the results of Sung 2015 by moving to continuous-time, since it allows to add a quadratic variation term in the contract for the Manager.

This model can be extended to:

(i) a more general hierarchy;
(ii) other forms of reporting;
(iii) adding an "ability" parameter of the Manager.

Extend to a more general model (work in progress) with:

(i) general output dynamics;
(ii) general utility functions;
(iii) general cost functions;
(iv) general form of reporting.
CONCLUSION AND EXTENSIONS

► We improve the results of Sung 2015 by moving to continuous-time, since it allows to add a quadratic variation term in the contract for the Manager.

► This model can be extended to

 (i) a more general hierarchy;
 (ii) other forms of reporting \(\zeta \);
 (iii) adding an "ability" parameter of the Manager.
We improve the results of Sung 2015 by moving to continuous-time, since it allows to add a quadratic variation term in the contract for the Manager.

This model can be extended to

(i) a more general hierarchy;
(ii) other forms of reporting ζ;
(iii) adding an "ability" parameter of the Manager.

Extend to a more general model (work in progress) with:

(i) general output dynamics;
(ii) general utility functions;
(iii) general cost functions;
(iv) general form of reporting ζ.

