HIERARCHICAL PRINCIPAL-AGENT PROBLEMS IN CONTINUOUS-TIME

Emma HUBERT¹,

with the relevant ideas and useful advice of Dylan Possamaï (Columbia University).

12th European Summer School in Financial Mathematics. Padova, Italia, September 2–6, 2019.

¹LAMA, Université Paris–Est Marne–la–Vallée, France.

- 1. The one-period model
- 2. The continuous-time model

A similar framework but in continuous-time Resolution of the two Stackelberg equilibria

- 3. Numerical Results
- 4. Conclusion and extensions

THE ONE-PERIOD MODEL

► A hierarchical Principal-Agent model in one-period with moral hazard.

- ► A hierarchical Principal-Agent model in one-period with moral hazard.
- The Principal (she) is risk-neutral and represents the shareholders (or the investors) of a firm.

- ► A hierarchical Principal-Agent model in one-period with moral hazard.
- The Principal (she) is risk-neutral and represents the shareholders (or the investors) of a firm.
- The Agents are the n + 1 risk-averse workers of the firm (with CARA utility).

- ► A hierarchical Principal-Agent model in one-period with moral hazard.
- The Principal (she) is risk-neutral and represents the shareholders (or the investors) of a firm.
- The Agents are the n + 1 risk-averse workers of the firm (with CARA utility). Each Agent i $\in \{0, ..., N\}$ (he) produces the random outcome Xⁱ by carrying out his own task:

$$\mathsf{X}^{\mathsf{i}} = \boldsymbol{\alpha}^{\mathsf{i}} + \sigma^{\mathsf{i}}\mathsf{W}^{\mathsf{i}},$$

where $W^i \sim \mathcal{N}(0, 1)$ are i.i.d.

- ► A hierarchical Principal-Agent model in one-period with moral hazard.
- **The Principal** (she) is risk-neutral and represents the shareholders (or the investors) of a firm.
- The Agents are the n + 1 risk-averse workers of the firm (with CARA utility). Each Agent i $\in \{0, ..., N\}$ (he) produces the random outcome Xⁱ by carrying out his own task:

$$\mathsf{X}^{\mathsf{i}} = \boldsymbol{\alpha}^{\mathsf{i}} + \sigma^{\mathsf{i}}\mathsf{W}^{\mathsf{i}},$$

where $W^i \sim \mathcal{N}(0, 1)$ are i.i.d.

The effort of the i-th Agent is the variable α^i , inducing him a cost $c^i(\alpha^i) \ge 0$.

Hierarchical contracting:

(i) the Principal offers a contract at time t = 0 for a designated Manager (Agent i = 0) to incentivise him to improve the benefit of the firm;

Hierarchical contracting:

- (i) the Principal offers a contract at time t = 0 for a designated Manager (Agent i = 0) to incentivise him to improve the benefit of the firm;
- (ii) the Manager in turn offers contracts for the remaining Agents at time t = 0 and increases his own outcome by making an effort α^0 at time t = 1;

Hierarchical contracting:

- (i) the Principal offers a contract at time t = 0 for a designated Manager (Agent i = 0) to incentivise him to improve the benefit of the firm;
- (ii) the Manager in turn offers contracts for the remaining Agents at time t = 0 and increases his own outcome by making an effort α^0 at time t = 1;
- (iii) each Agent $i \in \{1, ..., n\}$ makes an effort α^i at time t = 1 to increase his own outcome in exchange of the compensation.

Hierarchical contracting:

- (i) the Principal offers a contract at time t = 0 for a designated Manager (Agent i = 0) to incentivise him to improve the benefit of the firm;
- (ii) the Manager in turn offers contracts for the remaining Agents at time t = 0 and increases his own outcome by making an effort α^0 at time t = 1;
- (iii) each Agent $i \in \{1, ..., n\}$ makes an effort α^i at time t = 1 to increase his own outcome in exchange of the compensation.

► Interlinked Principal-Agent problems – Sequence of Stackelberg equilibria.

Figure: Sung's Model

Moral hazard in this hierarchical contracting problem:

 (i) the Manager does not observe the effort αⁱ of the i−th Agent, he only observes the output Xⁱ, for i ∈ {1,..., n}.

Moral hazard in this hierarchical contracting problem:

- (i) the Manager does not observe the effort α^i of the i-th Agent, he only observes the output X^i , for $i \in \{1, ..., n\}$.
 - ▶ The contract ξ^i for the i−th Agent is indexed on Xⁱ.

Moral hazard in this hierarchical contracting problem:

(i) the Manager does not observe the effort α^i of the i-th Agent, he only observes the output X^i , for $i \in \{1, ..., n\}$.

▶ The contract ξ^i for the i−th Agent is indexed on Xⁱ.

(ii) the Principal only observes the net benefit of the total hierarchy,

$$\zeta := \sum_{i=0}^n X^i - \sum_{i=1}^n \xi^i.$$

Moral hazard in this hierarchical contracting problem:

- (i) the Manager does not observe the effort α^i of the i-th Agent, he only observes the output X^i , for $i \in \{1, ..., n\}$.
 - ▶ The contract ξ^i for the i−th Agent is indexed on X^{*i*}.

(ii) the Principal only observes the net benefit of the total hierarchy,

$$\zeta := \sum_{i=0}^n X^i - \sum_{i=1}^n \xi^i.$$

▶ The contract ξ^0 for the Manager is indexed on ζ .

▶ No optimal contract in this case (see the forcing contracts in Mirrlees 1999).

▶ No optimal contract in this case (see the forcing contracts in Mirrlees 1999).

But, linear contracts are optimal in the case of drift control only and continuous-time (see Sannikov 2008).

▶ No optimal contract in this case (see the forcing contracts in Mirrlees 1999).

But, linear contracts are optimal in the case of drift control only and continuous-time (see Sannikov 2008).

► It is common in one-period models to restrict the study to linear contracts:

$$\xi^i = \xi^i_0 - \sup_{a \in \mathbb{R}} \left\{ a Z^i - c^i(a) \right\} + Z^i X^i + \frac{1}{2} R^i \left(Z^i \right)^2 \mathbb{V}\mathrm{ar}(X^i),$$

where Zⁱ is a parameter chosen by the Manager.

▶ No optimal contract in this case (see the forcing contracts in Mirrlees 1999).

But, linear contracts are optimal in the case of drift control only and continuous-time (see Sannikov 2008).

► It is common in one-period models to restrict the study to linear contracts:

$$\xi^{i} = \xi^{i}_{0} - \sup_{a \in \mathbb{R}} \left\{ a Z^{i} - c^{i}(a) \right\} + Z^{i} X^{i} + \frac{1}{2} R^{i} \left(Z^{i} \right)^{2} \mathbb{V}\mathrm{ar}(X^{i}),$$

where Zⁱ is a parameter chosen by the Manager.

▶ Optimal effort: $\hat{\alpha}^{i}(Z^{i})$.

$$\begin{split} \zeta &= \boldsymbol{\alpha}^{0} + \sigma^{0} W^{0} - \sum_{i=1}^{n} \left(\xi_{0}^{i} - \widehat{\alpha}^{i} (\mathsf{Z}^{i}) + \mathsf{c}^{i} (\widehat{\alpha}^{i} (\mathsf{Z}^{i})) + \frac{1}{2} \mathsf{R}^{i} (\mathsf{Z}^{i} \sigma^{i})^{2} \right) \\ &+ \sum_{i=1}^{n} (1 - \mathsf{Z}^{i}) \sigma^{i} W^{i}. \end{split}$$

$$\begin{split} \zeta &= \boldsymbol{\alpha}^{0} + \sigma^{0} W^{0} - \sum_{i=1}^{n} \left(\xi_{0}^{i} - \widehat{\alpha}^{i} (\boldsymbol{Z}^{i}) + c^{i} (\widehat{\alpha}^{i} (\boldsymbol{Z}^{i})) + \frac{1}{2} R^{i} (\boldsymbol{Z}^{i} \sigma^{i})^{2} \right) \\ &+ \sum_{i=1}^{n} (1 - \boldsymbol{Z}^{i}) \sigma^{i} W^{i}. \end{split}$$

The variance of ζ is not observed by the Principal, and thus the contract cannot be indexed on it.

$$\begin{split} \zeta &= \boldsymbol{\alpha}^{0} + \sigma^{0} W^{0} - \sum_{i=1}^{n} \left(\xi_{0}^{i} - \widehat{\alpha}^{i} \left(\boldsymbol{Z}^{i} \right) + c^{i} \left(\widehat{\alpha}^{i} \left(\boldsymbol{Z}^{i} \right) \right) + \frac{1}{2} R^{i} \left(\boldsymbol{Z}^{i} \sigma^{i} \right)^{2} \right) \\ &+ \sum_{i=1}^{n} \left(1 - \boldsymbol{Z}^{i} \right) \sigma^{i} W^{i}. \end{split}$$

The variance of ζ is not observed by the Principal, and thus the contract cannot be indexed on it.

▶ Sung 2015 restrict again the study to linear contracts, without the variance term.

$$\begin{split} \zeta &= \boldsymbol{\alpha}^{0} + \sigma^{0} W^{0} - \sum_{i=1}^{n} \left(\xi_{0}^{i} - \widehat{\alpha}^{i} (\boldsymbol{Z}^{i}) + c^{i} (\widehat{\alpha}^{i} (\boldsymbol{Z}^{i})) + \frac{1}{2} R^{i} (\boldsymbol{Z}^{i} \sigma^{i})^{2} \right) \\ &+ \sum_{i=1}^{n} (1 - \boldsymbol{Z}^{i}) \sigma^{i} W^{i}. \end{split}$$

The variance of ζ is not observed by the Principal, and thus the contract cannot be indexed on it.

▶ Sung 2015 restrict again the study to linear contracts, without the variance term.

▶ But, in continuous-time with volatility control, linear contracts are not optimal, see Cvitanić, Possamaï, and Touzi 2018...

THE CONTINUOUS-TIME MODEL

• controls the drift of a process Xⁱ with dynamic $dX_t^i = \alpha_t^i dt + \sigma^i dW_t^i$;

- ► controls the drift of a process Xⁱ with dynamic $dX_t^i = \alpha_t^i dt + \sigma^i dW_t^i$;
- ▶ receives a terminal payment ξ^i which is a function of $(X^i)_{t \in [0,1]}$.

- controls the drift of a process Xⁱ with dynamic $dX_t^i = \alpha_t^i dt + \sigma^i dW_t^i$;
- ▶ receives a terminal payment ξ^i which is a function of $(X^i)_{t \in [0,1]}$.

The Manager

► controls the drift of a process X^0 with dynamic $dX_t^0 = \alpha_t^0 dt + \sigma^0 dW_t^0$;

- controls the drift of a process Xⁱ with dynamic $dX_t^i = \alpha_t^i dt + \sigma^i dW_t^i$;
- ▶ receives a terminal payment ξ^i which is a function of $(X^i)_{t \in [0,1]}$.

The Manager

- ► controls the drift of a process X^0 with dynamic $dX_t^0 = \alpha_t^0 dt + \sigma^0 dW_t^0$;
- ▶ designs the contracts ξ^i for $i \in \{1, ..., n\}$;

- controls the drift of a process Xⁱ with dynamic $dX_t^i = \alpha_t^i dt + \sigma^i dW_t^i$;
- ▶ receives a terminal payment ξ^i which is a function of $(X^i)_{t \in [0,1]}$.

The Manager

- ► controls the drift of a process X^0 with dynamic $dX_t^0 = \alpha_t^0 dt + \sigma^0 dW_t^0$;
- ▶ designs the contracts ξ^i for $i \in \{1, ..., n\}$;

• receives a terminal payment ξ^0 .

- controls the drift of a process Xⁱ with dynamic $dX_t^i = \alpha_t^i dt + \sigma^i dW_t^i$;
- ▶ receives a terminal payment ξ^i which is a function of $(X^i)_{t \in [0,1]}$.

The Manager

- ► controls the drift of a process X^0 with dynamic $dX_t^0 = \alpha_t^0 dt + \sigma^0 dW_t^0$;
- ▶ designs the contracts ξ^i for $i \in \{1, ..., n\}$;
- receives a terminal payment ξ^0 .

The Principal only observes in continuous-time the process ζ

$$\zeta_t = \sum_{i=0}^n X_t^i - \sum_{i=1}^n \xi_t^i,$$

for $t \in [0, 1]$, and indexes the contract ξ^0 for the Manager on it.

$$V_0^i(\xi^i) := \sup_{\alpha^i} \mathbb{E}^{\mathbb{P}^i} \bigg[- \exp\bigg(- R^i \bigg(\xi^i - \int_0^1 C^i(\alpha^i_t) dt \bigg) \bigg) \bigg].$$

We will assume for simplicity that $c^{i}(a) = a^{2}/2k^{i}$ (quadratic costs).

The i-th Agent:

$$V_0^i(\xi^i) := \sup_{\alpha^i} \mathbb{E}^{\mathbb{P}^i} \bigg[- \exp\bigg(- R^i \bigg(\xi^i - \int_0^1 C^i(\alpha^i_t) dt \bigg) \bigg) \bigg].$$

We will assume for simplicity that $c^{i}(a) = a^{2}/2k^{i}$ (quadratic costs).

The Manager:

$$V_0^0(\xi^0) := \sup_{\boldsymbol{\alpha}^0, (\xi^i)_{i=1,\dots,n}} \mathbb{E}^{\mathbb{P}^0} \bigg[- \exp\bigg(- \mathsf{R}^0 \bigg(\xi^0 - \int_0^1 c^0(\boldsymbol{\alpha}^0_t) dt \bigg) \bigg) \bigg]$$

The i-th Agent:

$$V_0^i(\xi^i) := \sup_{\alpha^i} \mathbb{E}^{\mathbb{P}^i} \bigg[- \exp\bigg(- R^i \bigg(\xi^i - \int_0^1 C^i(\alpha^i_t) dt \bigg) \bigg) \bigg].$$

We will assume for simplicity that $c^{i}(a) = a^{2}/2k^{i}$ (quadratic costs).

The Manager:

$$V_0^0(\xi^0) := \sup_{\boldsymbol{\alpha}^0, (\boldsymbol{\xi}^1)_{i=1,\dots,n}} \mathbb{E}^{\mathbb{P}^0} \bigg[- \exp\bigg(- \mathsf{R}^0 \bigg(\xi^0 - \int_0^1 \mathsf{C}^0(\boldsymbol{\alpha}^0_t) \mathrm{d} t \bigg) \bigg) \bigg]$$

The Principal:

$$\mathsf{V}_0 = \sup_{\boldsymbol{\xi}^0} \mathbb{E}^{\mathbb{P}^{\star}} \left[\zeta_1 - \boldsymbol{\xi}_1^0 \right].$$

► The **optimal** form of contracts for the i-th Agent is (see Sannikov 2008):

$$\xi^{i} = \xi_{0}^{i} - \int_{0}^{1} \mathcal{H}^{i}(Z_{s}^{i}) \mathrm{d}s + \int_{0}^{1} Z_{s}^{i} \mathrm{d}X_{s}^{i} + \frac{1}{2} R^{i} \int_{0}^{1} (Z_{s}^{i})^{2} \mathrm{d}\langle X^{i} \rangle_{s}, \qquad (1)$$

► The **optimal** form of contracts for the i-th Agent is (see Sannikov 2008):

$$\xi^{i} = \xi^{i}_{0} - \int_{0}^{1} \mathcal{H}^{i}(Z^{i}_{s}) \mathrm{d}s + \int_{0}^{1} Z^{i}_{s} \mathrm{d}X^{i}_{s} + \frac{1}{2} R^{i} \int_{0}^{1} (Z^{i}_{s})^{2} \mathrm{d}\langle X^{i} \rangle_{s}, \qquad (1)$$

where

(i) Z^i is a payment rate chosen by the Manager; (ii) $\mathcal{H}^i(z) = \sup_{a \in \mathbb{R}} \{az - c^i(a)\}$ is the i-th Agent's Hamiltonian.

► The **optimal** form of contracts for the i-th Agent is (see Sannikov 2008):

$$\xi^{i} = \xi^{i}_{0} - \int_{0}^{1} \mathcal{H}^{i}(\boldsymbol{Z}^{i}_{s}) \mathrm{d}s + \int_{0}^{1} \boldsymbol{Z}^{i}_{s} \mathrm{d}\boldsymbol{X}^{i}_{s} + \frac{1}{2} \boldsymbol{R}^{i} \int_{0}^{1} \left(\boldsymbol{Z}^{i}_{s}\right)^{2} \mathrm{d}\langle \boldsymbol{X}^{i} \rangle_{s}, \qquad (1)$$

where

(i) Zⁱ is a payment rate chosen by the Manager;

(ii) $\mathcal{H}^i(z) = \sup_{a \in \mathbb{R}} \{az - c^i(a)\}$ is the i-th Agent's Hamiltonian.

► The optimal effort of the i−th Agent is $\hat{\alpha}_t^i = k^i Z_t^i$, and we can compute the dynamics of X^i and ξ^i with this optimal effort.

RESOLUTION OF THE PRINCIPAL-MANAGER PROBLEM (1)

The Manager controls α^0 and Z^i , for $i \in \{1, ..., n\}$.

The Manager controls α^0 and Z^i , for $i \in \{1, ..., n\}$.

Assumption: the Principal only observes ζ in continuous–time, where:

$$\begin{split} \mathrm{d}\zeta_t &= \alpha_t^0 \mathrm{d}t + \sigma^0 \mathrm{d}W_t^0 + \sum_{i=1}^n \left(k^i Z_t^i - \frac{1}{2} \big(Z_t^i\big)^2 \Big(k^i + R^i \big(\sigma^i\big)^2\big) \Big) \mathrm{d}t \\ &+ \sigma^i \sum_{i=1}^n \big(1 - Z_t^i\big) \mathrm{d}W_t^i, \end{split}$$

and thus its quadratic variation (see Bichteler 1981).

The Manager controls α^0 and Z^i , for $i \in \{1, \ldots, n\}$.

Assumption: the Principal only observes ζ in continuous–time, where:

$$\begin{split} \mathrm{d}\zeta_t &= \alpha_t^0 \mathrm{d}t + \sigma^0 \mathrm{d}W_t^0 + \sum_{i=1}^n \left(k^i Z_t^i - \frac{1}{2} \big(Z_t^i\big)^2 \Big(k^i + R^i \big(\sigma^i\big)^2\big) \Big) \mathrm{d}t \\ &+ \sigma^i \sum_{i=1}^n \big(1 - Z_t^i\big) \mathrm{d}W_t^i, \end{split}$$

and thus its quadratic variation (see Bichteler 1981).

> The Manager controls the volatility of his state variable ζ .

The Manager controls α^0 and Z^i , for $i \in \{1, ..., n\}$.

Assumption: the Principal only observes ζ in continuous–time, where:

$$\begin{split} \mathrm{d}\zeta_t &= \alpha_t^0 \mathrm{d}t + \sigma^0 \mathrm{d}W_t^0 + \sum_{i=1}^n \left(k^i Z_t^i - \frac{1}{2} \big(Z_t^i\big)^2 \Big(k^i + R^i \big(\sigma^i\big)^2\big) \Big) \mathrm{d}t \\ &+ \sigma^i \sum_{i=1}^n \big(1 - Z_t^i\big) \mathrm{d}W_t^i, \end{split}$$

and thus its quadratic variation (see Bichteler 1981).

> The Manager controls the volatility of his state variable ζ .

▶ By Cvitanić, Possamaï, and Touzi 2018, the **optimal** form of contracts is:

$$\xi^{0} = \xi_{0}^{0} - \int_{0}^{1} \mathcal{H}^{0}(Z_{s}, \Gamma_{s}) \mathrm{d}s + \int_{0}^{1} Z_{s} \mathrm{d}\zeta_{s} + \frac{1}{2} \int_{0}^{1} \left(\Gamma_{s} + R^{0} Z_{s}^{2} \right) \mathrm{d}\langle \zeta \rangle_{s}.$$
 (2)

► Considering contract of the form (2), we can easily solve the Manager's problem by maximising his Hamiltonian:

- ► Considering contract of the form (2), we can easily solve the Manager's problem by maximising his Hamiltonian:
 - (i) the optimal effort on the drift is $\alpha_t^0 := k^0 Z_t$;

- ► Considering contract of the form (2), we can easily solve the Manager's problem by maximising his Hamiltonian:
- (i) the optimal effort on the drift is $\alpha_t^0 := k^0 Z_t$;
- (ii) the optimal control on the i-th Agent's compensation is

$$Z_{t}^{i} := \frac{k^{i}Z_{t} - (\sigma^{i})^{2}\Gamma_{t}}{\left(k^{i} + R^{i}(\sigma^{i})^{2}\right)Z_{t} - (\sigma^{i})^{2}\Gamma_{t}}.$$

- ► Considering contract of the form (2), we can easily solve the Manager's problem by maximising his Hamiltonian:
- (i) the optimal effort on the drift is $\alpha_t^0 := k^0 Z_t$;
- (ii) the optimal control on the i-th Agent's compensation is

$$Z_{t}^{i} := \frac{k^{i}Z_{t} - (\sigma^{i})^{2}\Gamma_{t}}{\left(k^{i} + R^{i}(\sigma^{i})^{2}\right)Z_{t} - (\sigma^{i})^{2}\Gamma_{t}},$$

• We can the compute the dynamics of ζ and ξ^0 under optimal efforts.

$$\mathsf{V}_{0} = \sup_{(\mathsf{Z},\mathsf{\Gamma})\in\mathbb{R}^{2}} \mathbb{E}^{\mathbb{P}^{0}} \big[\zeta_{\mathsf{T}} - \xi_{\mathsf{T}}^{0} \big].$$

$$V_0 = \sup_{(\mathsf{Z},\mathsf{\Gamma})\in\mathbb{R}^2} \mathbb{E}^{\mathbb{P}^0} \big[\zeta_{\mathsf{T}} - \xi_{\mathsf{T}}^0 \big].$$

► The optimal payment rates for the Manager are given by the constant processes Z and $\Gamma := -R^0Z^3$, where Z is solution of a well-posed maximisation problem.

$$V_0 = \sup_{(\mathsf{Z},\mathsf{\Gamma})\in\mathbb{R}^2} \mathbb{E}^{\mathbb{P}^0} \big[\zeta_{\mathsf{T}} - \xi_{\mathsf{T}}^0 \big].$$

► The optimal payment rates for the Manager are given by the constant processes Z and $\Gamma := -R^0Z^3$, where Z is solution of a well-posed maximisation problem.

► The optimal Γ is different from Sung 2015 where he forced $\Gamma = -R^0 Z^2$.

$$\mathsf{V}_0 = \sup_{(\mathsf{Z},\mathsf{\Gamma})\in\mathbb{R}^2} \mathbb{E}^{\mathbb{P}^0} \big[\zeta_\mathsf{T} - \xi_\mathsf{T}^0 \big].$$

► The optimal payment rates for the Manager are given by the constant processes Z and $\Gamma := -R^0Z^3$, where Z is solution of a well-posed maximisation problem.

► The optimal Γ is different from Sung 2015 where he forced $\Gamma = -R^0 Z^2$.

▶ We can write the optimal contracts designed by the Principal to the Manager, and by the Manager to each Agent.

NUMERICAL RESULTS

INCREASE THE MANAGER'S EFFORT...

Figure: Effort of the Manager depending on the number of Agents.

... TO DECREASE THE AGENTS' EFFORT

Figure: Effort of an Agent depending on the number of Agents.

GAIN IN UTILITY FOR THE PRINCIPAL

Figure: Value function of the Principal depending on the number of Agents.

CONCLUSION AND EXTENSIONS

► We improve the results of Sung 2015 by moving to continuous-time, since it allows to add a quadratic variation term in the contract for the Manager.

► We improve the results of Sung 2015 by moving to continuous-time, since it allows to add a quadratic variation term in the contract for the Manager.

- ▶ This model can be extended to
 - (i) a more general hierarchy;
- (ii) other forms of reporting ζ ;
- (iii) adding an "ability" parameter of the Manager.

► We improve the results of Sung 2015 by moving to continuous-time, since it allows to add a quadratic variation term in the contract for the Manager.

- ▶ This model can be extended to
 - (i) a more general hierarchy;
- (ii) other forms of reporting ζ ;
- (iii) adding an "ability" parameter of the Manager.
- > Extend to a more general model (work in progress) with:
 - (i) general output dynamics;
- (ii) general utility functions;
- (iii) general cost functions;
- (iv) general form of reporting ζ .

BIBLIOGRAPHY

- Bichteler, K. (1981). "Stochastic Integration and L^p—theory of Semimartingales". In: The Annals of Probability 9.1, pp. 49–89.
 - Cvitanić, J., D. Possamaï, and N. Touzi (2018). "Dynamic Programming Approach to Principal–Agent Problems". en. In: Finance and Stochastics 22.1, pp. 1–37. ISSN: 0949-2984, 1432-1122. DOI: 10.1007/s00780-017-0344-4.
 - Mirrlees, J. (1999). "The Theory of Moral Hazard and Unobservable Behaviour: Part I (Reprint of the Unpublished 1975 Version)". In: The Review of Economic Studies 66.1, pp. 3–21.
 - Sannikov, Y. (2008). "A Continuous–Time Version of the Principal: Agent Problem". en. In: The Review of Economic Studies 75.3, pp. 957–984.
 - Sung, J. (2015). "Pay for Performance under Hierarchical Contracting". en. In: Mathematics and Financial Economics 9.3, pp. 195–213. ISSN: 1862-9679, 1862-9660. DOI: 10.1007/s11579-014-0138-9.