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Sung 2015 - Pay for performance under hierarchical contracting.

» A hierarchical Principal-Agent model in one-period with moral haz-
ard.

The Principal (she) is risk-neutral and represents the shareholders
(or the investors) of a firm.

The Agents are the n + 1 risk-averse workers of the firm (with CARA
utility). Each Agent i € {0,...,N} (he) produces the random out-
come X by carrying out his own task:

X = ol + o'W,
where W' ~ A/(0,1) are i.i.d.

The effort of the i—th Agent is the variable o/, inducing him a cost
c'(ad) > 0.
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Direct contracting: the Principal offers a contractattimet = 0 for each
Agent to incentivise them to act in her best interest at time t =1, i.e.
to improve the benefit of the firm.

Hierarchical contracting:

(i) the Principal offers a contract at time t = 0 for a designated Man-
ager (Agent i = 0) to incentivise him to improve the benefit of the
firm;

(if) the Manager in turn offers contracts for the remaining Agents at
time t = 0 and increases his own outcome by making an effort
a®attimet=1;

(iii) each Agent i € {1,...,n} makes an effort o' at time t = 1 to
increase his own outcome in exchange of the compensation.

» Interlinked Principal-Agent problems - Sequence of Stackelberg
equilibria.



SEQUENCE OF STACKELBERG EQUILIBRIA

o
¢ & gt ol
(Agent 1) [Agent{] [Ag\entn—1] (Agentn)

Figure: Sung's Model
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Moral hazard in this hierarchical contracting problem:

(i) the Manager does not observe the effort ' of the i—th Agent, he
only observes the output X/, fori € {1,...,n}.

» The contract ¢ for the i—th Agent is indexed on X'.
(i) the Principal only observes the net benefit of the total hierarchy,

Ci=> X=-3"¢.
i=0 i=1

» The contract £€° for the Manager is indexed on ¢.
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In Sung 2015, the output processes are Gaussian, thus the monotone
likelihood ratio is not bounded from below.

» No optimal contract in this case (see the forcing contracts in Mir-
rlees 1999).

But, linear contracts are optimal in the case of drift control only and
continuous-time (see Sannikov 2008).

» It is common in one—period models to restrict the study to linear
contracts:

¢ = ¢ —sup {aZ' — ci(a)} +ZX + %Ri(zi)zvm(x‘),
aeR

where Z' is a parameter chosen by the Manager.
» Optimal effort: a'(Z").



SOLVING THE PRINCIPAL—MANAGER PROBLEM

The Manager controls the mean and of his state vari-
able ¢.

n

(=a’+o'W° - Z (gg —a'(Z)+d(a'(z)) + ;Ri(z'a'f)

+> (1-7)'W.

i=1



SOLVING THE PRINCIPAL—MANAGER PROBLEM

The Manager controls the mean and of his state vari-
able ¢.

n

¢=a+o'W0 - > (gg —-a'(Z) +d(@(2) + ;Ri(z'a'f)

i=1

+Zn:(1 )o' W

The variance of ¢ is not observed by the Principal, and thus



SOLVING THE PRINCIPAL—MANAGER PROBLEM

The Manager controls the mean and of his state vari-
able ¢.

n

¢=a+o'W0 - > (gg —-a'(Z) +d(@(2) + ;Ri(z'a'f)

i=1
n . .
+ Z (1 — )J'W'.
i=1
The variance of ¢ is not observed by the Principal, and thus

» Sung 2015 restrict again the study to linear contracts, without the
variance term.



SOLVING THE PRINCIPAL—MANAGER PROBLEM

» The Manager controls the mean and the variance of his state vari-
able ¢.

n

¢=a+o'W0 - > (gg —-a'(Z) +d(@(2) + ;Ri(z'a'f)

i=1

+Zn:(1 —7)o'W.

» The variance of ¢ is not observed by the Principal, and thus the
contract cannot be indexed on it.

» Sung 2015 restrict again the study to linear contracts, without the
variance term.

» But, in continuous-time with volatility control, linear contracts are
not optimal, see Cvitanic, Possamai, and Touzi 2018...
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A SIMILAR FRAMEWORK BUT IN CONTINUOUS-TIME

The i—th Agent

» controls the drift of a process X' with dynamic dX = ajdt + o'dWi;

> receives a terminal payment &' which is a function of (Xi)tG[OJ]A
The Manager

» controls the drift of a process X° with dynamic dX? = addt +
a%dwy;

» designs the contracts ¢ forie {1,...,n};

» receives a terminal payment £°.

The Principal only observes in continuous—time the process ¢
G=D %-> &
i=0 i=1

for t € [0,1], and indexes the contract ¢° for the Manager on it.
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Vo(e®) = o E” { — exp ( RO (50 - /: c°(a?)dt>)}

The Principal:

Vo = supE¥" [¢ — ¢7].
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Assumption: the compensation for the i—th Agent can only be in-
dexed on his own outcome process X'.

» The optimal form of contracts for the i—th Agent is (see Sannikov
2008):
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where
(i) Z'is a payment rate chosen by the Manager;
(i) H'(z) = sup,er{az — c'(a)} is the i—th Agent’s Hamiltonian.

» The optimal effort of the i—th Agentis a} = k'Z}, and we can compute
the dynamics of X' and &' with this optimal effort.
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The Manager controls a® and Z', fori e {1,...,n}.

Assumption: the Principal only observes ¢ in continuous-time, where:
Ty
d¢ = afdt + o®dW? +Z (k 7 — E( DY (K +Ri(o) ))dt
+ o' Z dW't,

and thus its quadratic variation (see Bichteler 1981).

» The Manager controls the volatility of his state variable ¢.
» By Cvitanic, Possamai, and Touzi 2018, the optimal form of contracts
is:

0_ (0 1 0 1 1 1 072
€0 = ¢ /OH (ZS,Fs)ds+/0 stgs+2/ (s + R°Z2)d(C)s. ()

0
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» Considering contract of the form (2), we can easily solve the Man-
ager's problem by maximising his Hamiltonian:

(i) the optimal effort on the drift is f := k%Z;
(i) the optimal control on the i—th Agent’'s compensation is

KiZ, — (o)’
(ki + Ri(ai)2> — (o)’

» We can the compute the dynamics of ¢ and £° under optimal efforts.

Zit =
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RESOLUTION OF THE PRINCIPAL PROBLEM

The Principal’s problem is reduced to

Vo= sup EP [¢r—¢&7].
(Z,r)ER?

» The optimal payment rates for the Manager are given by the con-
stant processes Z and I' := —R°Z3 where Z is solution of a well-posed
maximisation problem.

» The optimal I is different from Sung 2015 where he forced [ =
—ROZ2.

» We can write the optimal contracts designed by the Principal to the
Manager, and by the Manager to each Agent.
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CONCLUSION AND EXTENSIONS

» We improve the results of Sung 2015 by moving to continuous-time,
since it allows to add a quadratic variation term in the contract for
the Manager.

» This model can be extended to

(i) a more general hierarchy;

(i) other forms of reporting ¢;

(ill) adding an "ability” parameter of the Manager.

» Extend to a more general model (work in progress) with:
(i) general output dynamics;

(ii

) general utility functions;
(iii) general cost functions;
)

(iv) general form of reporting ¢.
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