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the one–period model



the one–period framework

Sung 2015 – Pay for performance under hierarchical contracting.

▶ A hierarchical Principal–Agent model in one–period with moral haz-
ard.

The Principal (she) is risk–neutral and represents the shareholders
(or the investors) of a firm.

The Agents are the n + 1 risk–averse workers of the firm (with CARA
utility). Each Agent i ∈ {0, . . . ,N} (he) produces the random out-
come Xi by carrying out his own task:

Xi = αi + σiWi,

where Wi ∼ N (0, 1) are i.i.d.
The effort of the i−th Agent is the variable αi, inducing him a cost

ci(αi) ≥ 0.
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hierarchical contracting

Direct contracting: the Principal offers a contract at time t = 0 for each
Agent to incentivise them to act in her best interest at time t = 1, i.e.
to improve the benefit of the firm.

Hierarchical contracting:

(i) the Principal offers a contract at time t = 0 for a designated Man-
ager (Agent i = 0) to incentivise him to improve the benefit of the
firm;

(ii) the Manager in turn offers contracts for the remaining Agents at
time t = 0 and increases his own outcome by making an effort
α0 at time t = 1;

(iii) each Agent i ∈ {1, . . . ,n} makes an effort αi at time t = 1 to
increase his own outcome in exchange of the compensation.

▶ Interlinked Principal–Agent problems – Sequence of Stackelberg
equilibria.
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sequence of stackelberg equilibria

Principal

Manager

Agent 1 Agent 2 . . . Agent n− 1 Agent n

ξ0

ξ1 ξ2 ξn−1 ξn

Figure: Sung’s Model
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double moral hazard

Moral hazard in direct contracting: the Principal does not observe
the effort αi of the i−th Agent, she only observes his output Xi, for
i ∈ {0, . . . ,n}.

Moral hazard in this hierarchical contracting problem:

(i) the Manager does not observe the effort αi of the i−th Agent, he
only observes the output Xi, for i ∈ {1, . . . ,n}.

▶ The contract ξi for the i−th Agent is indexed on Xi.
(ii) the Principal only observes the net benefit of the total hierarchy,

ζ :=
n∑

i=0

Xi −
n∑
i=1

ξi.

▶ The contract ξ0 for the Manager is indexed on ζ .
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solving the manager–agent problem

In Sung 2015, the output processes are Gaussian, thus the monotone
likelihood ratio is not bounded from below.

▶ No optimal contract in this case (see the forcing contracts in Mir-
rlees 1999).
But, linear contracts are optimal in the case of drift control only and
continuous–time (see Sannikov 2008).
▶ It is common in one–period models to restrict the study to linear
contracts:

ξi = ξi0 − sup
a∈R

{
aZi − ci(a)

}
+ ZiXi + 1

2R
i(Zi)2Var(Xi),

where Zi is a parameter chosen by the Manager.
▶ Optimal effort: α̂i(Zi).
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solving the principal–manager problem

▶ The Manager controls the mean and the variance of his state vari-
able ζ .

ζ = α0 + σ0W0 −
n∑
i=1

(
ξi0 − α̂i(Zi)+ ci

(
α̂i(Zi))+ 1

2R
i(Ziσi)2)

+
n∑
i=1

(
1− Zi

)
σiWi.

▶ The variance of ζ is not observed by the Principal, and thus the
contract cannot be indexed on it.
▶ Sung 2015 restrict again the study to linear contracts, without the
variance term.
▶ But, in continuous–time with volatility control, linear contracts are
not optimal, see Cvitanić, Possamaï, and Touzi 2018...
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the continuous–time model



a similar framework but in continuous–time

The i−th Agent

▶ controls the drift of a process Xi with dynamic dXit = αi
tdt+σidWi

t;

▶ receives a terminal payment ξi which is a function of (Xi)t∈[0,1].

The Manager

▶ controls the drift of a process X0 with dynamic dX0t = α0
t dt +

σ0dW0
t ;

▶ designs the contracts ξi for i ∈ {1, . . . ,n};
▶ receives a terminal payment ξ0.

The Principal only observes in continuous–time the process ζ

ζt =
n∑

i=0

Xit −
n∑
i=1

ξit,

for t ∈ [0, 1], and indexes the contract ξ0 for the Manager on it.
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value functions

The i−th Agent:

Vi0(ξi) := sup
αi

EPi
[
− exp

(
− Ri

(
ξi −

∫ 1

0
ci(αi

t)dt
))]

.

We will assume for simplicity that ci(a) = a2/2ki (quadratic costs).

The Manager:

V00(ξ0) := sup
α0,(ξi)i=1,...,n

EP0
[
− exp

(
− R0

(
ξ0 −

∫ 1

0
c0(α0

t )dt
))]

The Principal:

V0 = sup
ξ0

EP⋆[
ζ1 − ξ01

]
.
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resolution of the manager–agent problem

Assumption: the compensation for the i−th Agent can only be in-
dexed on his own outcome process Xi.

▶ The optimal form of contracts for the i−th Agent is (see Sannikov
2008):

ξi = ξi0 −
∫ 1

0
Hi(Zis)ds+

∫ 1

0
ZisdXis +

1
2R

i
∫ 1

0

(
Zis
)2d⟨Xi⟩s, (1)

where

(i) Zi is a payment rate chosen by the Manager;
(ii) Hi(z) = supa∈R{az− ci(a)} is the i−th Agent’s Hamiltonian.

▶ The optimal effort of the i−th Agent is α̂i
t = kiZit, and we can compute

the dynamics of Xi and ξi with this optimal effort.

12
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resolution of the principal–manager problem (1)

The Manager controls α0 and Zi, for i ∈ {1, . . . ,n}.

Assumption: the Principal only observes ζ in continuous–time, where:

dζt = α0
t dt+ σ0dW0

t +
n∑
i=1

(
kiZit −

1
2
(
Zit
)2(ki + Ri(σi)2))dt

+ σi
n∑
i=1

(
1− Zit

)
dWi

t,

and thus its quadratic variation (see Bichteler 1981).

▶ The Manager controls the volatility of his state variable ζ .
▶ By Cvitanić, Possamaï, and Touzi 2018, the optimal form of contracts
is:

ξ0 = ξ00 −
∫ 1

0
H0(Zs, Γs)ds+
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resolution of the principal–manager problem (2)

▶ Considering contract of the form (2), we can easily solve the Man-
ager’s problem by maximising his Hamiltonian:

(i) the optimal effort on the drift is α0
t := k0Zt;

(ii) the optimal control on the i−th Agent’s compensation is

Zit :=
kiZt −

(
σi)2Γt(

ki + Ri
(
σi
)2)Zt − (

σi
)2
Γt
.

▶We can the compute the dynamics of ζ and ξ0 under optimal efforts.
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resolution of the principal problem

The Principal’s problem is reduced to

V0 = sup
(Z,Γ)∈R2

EP0[
ζT − ξ0T

]
.

▶ The optimal payment rates for the Manager are given by the con-
stant processes Z and Γ := −R0Z3, where Z is solution of a well–posed
maximisation problem.

▶ The optimal Γ is different from Sung 2015 where he forced Γ =

−R0Z2.
▶ We can write the optimal contracts designed by the Principal to the
Manager, and by the Manager to each Agent.
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numerical results
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Figure: Effort of the Manager depending on the number of Agents.
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... to decrease the agents’ effort
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gain in utility for the principal
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conclusion and extensions



conclusion and extensions

▶We improve the results of Sung 2015 by moving to continuous–time,
since it allows to add a quadratic variation term in the contract for
the Manager.

▶ This model can be extended to

(i) a more general hierarchy;
(ii) other forms of reporting ζ ;
(iii) adding an ”ability” parameter of the Manager.

▶ Extend to a more general model (work in progress) with:

(i) general output dynamics;
(ii) general utility functions;
(iii) general cost functions;
(iv) general form of reporting ζ .
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