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Plan of the course

� Chapter 0: Motivation and overview

� Chapter 1: Definition of stable convergence and its properties

� Chapter 2: Some basic facts about semimartingale theory

� Chapter 3: Stable convergence theorem of Jacod

� Chapter 4: High frequency observations of Itô semimartingales

� Chapter 5: Optimal estimation of volatility functionals

� Chapter 6: New optimality results for supremum, local times and
occupation time measure
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Chapter 0: Motivation and overview
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The setting

� In this course we are focusing on 1-dimensional Itô semimartingales
of the form

Xt = X0 +
∫ t

0
asds +

∫ t

0
σsdWs + Jt t ≥ 0

defined on a filtered probability space (Ω,F , (Ft)t≥0,P). Here

� W is a standard Brownian motion

� a is the drift process

� σ is the volatility process

� J is a compound Poisson process

� We observe high frequency data

X0,X∆n ,X2∆n , . . . ,XbT/∆nc∆n

where T > 0 is fixed and ∆n → 0.
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Example: Asset prices in financial markets
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Low vs. high frequency data

Low frequency data

Observed data
X1,X2, ...,Xn i .i .d . ∼ F

Asymptotic knowledge

distribution function F

Identifiable objects

functionals of F

High frequency data

Observed data
X0(ω),X∆n (ω), ...,XbT/∆nc∆n (ω)

Asymptotic knowledge

(Xt(ω))t∈[0,T ]

Identifiable objects

functionals of (Xt(ω))t∈[0,T ]
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A list of classical estimation and testing problems

� How to estimate the quadratic variation

[X ]T =
∫ T

0
σ2

s ds +
∑

s∈[0,T ]

(∆Js)2 ∆Js := Js − Js−

of X?

� How to distinguish the volatility and the jump part of the quadratic
variation?

� Are jumps present in the price process?

� Is the Brownian part present in the price process?

� What are jump robust measures of the volatility?

� What are optimal measures of the volatility?
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A toy example

� Let us consider a simple model

Xt = X0 + at + σWt + Js

where a ∈ R, σ > 0 are constants and J is a Poisson process with
arrival rate λ > 0. Assume that we observe the process X on the
interval [0, 1].

� We can identify: the volatility σ2, the realised jumps (∆Js)s∈[0,1] and
the quadratic variation process ([X ]s)s∈[0,1].

� We can not identify: the drift a and the arrival rate λ.
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Main goals of the course

� In this lecture we will study asymptotic behaviour of statistics of the
type

V (X , f ,∆n)t = an

bt/∆nc∑
i=1

f
(
bn(Xi∆n − X(i−1)∆n )

)
where f : R→ R is a measurable function and an, bn are certain
deterministic sequences. A particularly important case is f (x) = |x |p,
which is often referred to as power variation.

� The probably most famous example is the following theorem:

Theorem
Assume that X is continuous. Then it holds that

∆−1/2
n

bt/∆nc∑
i=1

(
Xi∆n − X(i−1)∆n

)2 − [X ]t

 dst→
√
2
∫ t

0
σ2

s dW ′s

where W ′ is a new Brownian motion independent of F .
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Selected milestones in the theory of high frequency data

� Jacod (94): Limit of random measures associated with the
increments of a Brownian semimartingale.

� Jacod (97): On continuous conditional Gaussian martingales and
stable convergence in law.

� Mancini (01): Disentangling the jumps of the diffusion in a
geometric jumping Brownian motion.

� Barndorff–Nielsen & Shephard (02): Econometric analysis of realised
volatility and its use in estimating stochastic volatility models.

� Andersen, Bollerslev, Diebold & Labys (03): Modeling and
forecasting realized volatility.

� Barndorff–Nielsen, Graversen, Jacod, P. & Shephard (06): A central
limit theorem for realised power and bipower variations of continuous
semimartingales.
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Chapter 1: Definition of stable convergence and its
properties
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Motivation

Definition
We say that a random variable Y has a mixed normal distribution
with conditional mean 0 and conditional variance V 2 > 0 if

Y = V · N with N ∼ N (0, 1) and V |= N

In this case we write Y ∼MN (0,V 2).

� In high frequency setting we often obtain convergence in distribution

Yn
d→ Y ∼MN (0,V 2)

To construct confidence regions we would like to have that

Yn/V
d→ N (0, 1)

� This does not work in general, since

Yn
d→ Y 6⇒ (Yn,V ) d→ (Y ,V )
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Another example

� When estimating a random parameter Q, we will often show that

an(Qn − Q) d→ Y with an →∞

Assume that we are rather interested in g(Q) for some function
g ∈ C1(R). In this case we want to obtain the δ-method, i.e.

an (g(Qn)− g(Q)) d→ g ′(Q)Y

� However, this again does not work in general, since

(an(Qn − Q),Q) d→ (Y ,Q)

is not guaranteed!
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Define a new weak type convergence Yn → Y that guarantees the
joint convergence

(Yn,Z ) d→ (Y ,Z )

for all F-measurable random variables Z .

Our goal
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Stable convergence

Definition (Renyi 63)
Let (Yn)n∈N be a sequence of real valued random variables defined on
(Ω,F ,P). We say that (Yn)n∈N converges stably in law towards Y ,
defined on the extended space (Ω′,F ′,P′), if

P ({Yn ≤ y} ∩ B)→ P′ ({Y ≤ y} ∩ B) as n→∞

holds for any B ∈ F and any dense countable set of points y ∈ R. We
write

Yn
dst→ Y

� Stable convergence is a property of Yn not only PYn ! Let
Yn = Y ∼ N (0, 1), then

Yn
d→ −Y but Yn 6

dst→ −Y
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Some immediate consequences

Corollary
It holds that

(i) Yn
dst→ Y implies Yn

d→ Y .

(ii) Yn
P→ Y implies Yn

dst→ Y .

Proof: To show (i) take B = Ω. To prove (ii) observe that

(Yn, 1B) P→ (Y , 1B)

and hence we readily deduce that (Yn, 1B) d→ (Y , 1B). This immediately
implies that Yn

dst→ Y .
2
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A useful characterisation

Proposition
The following statements are equivalent

(i) Yn
dst→ Y .

(ii) (Yn,Z ) d→ (Y ,Z ) for all F-measurable rv’s Z .

(iii) (Yn,Z ) dst→ (Y ,Z ) for all F-measurable rv’s Z .

Proof: (i)⇒(ii) Let A be a measurable set. Then it holds that

P(Yn ≤ y ,Z ∈ A)→ P′(Y ≤ y ,Z ∈ A)

and hence (Yn,Z ) d→ (Y ,Z ). 2

(ii)⇒(i) Assume that (Yn,Z ) d→ (Y ,Z ) for all F-measurable rv’s Z . For
any A ∈ F , set Z = 1A. Then it holds that

P(Yn ≤ y , {Z = 1})→ P′(Y ≤ y , {Z = 1})

which implies the stable convergence Yn
dst→ Y . 2
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End of the proof

(ii)⇒(iii) Let Z ′,Z ′′ be F-measurable rv’s and set Z = (Z ′,Z ′′). By
assumption we know that

((Yn,Z ′),Z ′′)
d→ ((Y ,Z ′),Z ′′)

But we just showed that this implies the stable convergence

(Y , n,Z ′) dst→ (Y ,Z ′)

which completes the proof.
2
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Why do we need an extension of the probability space?

When we have a true stable convergence we always need to extend the
original probability space, as the next lemma demonstrates.

Lemma

Assume that Yn
dst→ Y and the rv Y is F-measurable. Then it holds that

Yn
P→ Y

Proof: Since Y is F-measurable, we conclude by the previous
proposition

(Yn,Y ) d→ (Y ,Y )
and hence by continuous mapping theorem

Yn − Y d→ 0

But this implies the convergence Yn
P→ Y .

2
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Classical central limit theorem

To better understand the nature of stable convergence, we consider the
classical central limit theorem. Assume that (Xn)n∈N is a sequence of
i.i.d. rv’s with E[X1] = 0 and E[X 2

1 ] = 1. Define the statistic

Sn := 1√
n

n∑
i=1

Xi
d→ N (0, 1)

Theorem
Assume that F = σ{Xn : n ∈ N}. Then it holds that

Sn
dst→ S ∼ N (0, 1)

where S is independent of F .
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Proof: Recall that it suffices to show that

(Sn,Z ) d→ (S,Z )

for all F-measurable rv’s Z . Since F = σ{Xn : n ∈ N} it is enough to
prove the joint convergence

(Sn,X1, . . . ,Xk) d→ (S,X1, . . . ,Xk)

for any fixed k ∈ N. Define

Sk
n := n−1/2

n∑
i=k+1

Xi

Then Sk
n |= (X1, . . . ,Xk) and we readily deduce that

(Sk
n ,X1, . . . ,Xk) d→ (S,X1, . . . ,Xk)

On the other hand, we have that Sn − Sk
n

P→ 0, which completes the
proof of the theorem.
2
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An important lemma

Note that we need the assumption F = σ{Xn : n ∈ N} to perform the
last proof. What if the σ-field F is much richer? As the next lemma
shows, the main result remains valid.

Lemma (Aldous & Eagleson 78)
Let (Ω,F ,P) be an arbitrary probability space. If the convergence

(Yn,Y1, . . . ,Yk) d→ (Y ,Y1, . . . ,Yk)

holds for all k ∈ N and Y |= (Y1,Y2, . . .), then we obtain the stable
convergence

Yn
dst→ Y

and Y is independent of F .
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An interesting application

Theorem (Tukey 38)
Let {x} = x − bxc denote the fractional part of x ∈ R. Consider a rv T
with a Lebesgue density f . Then it holds that

{nT} dst→ U ∼ U(0, 1)

and U |= F .

Sketch of proof: According to the previous lemma, it suffices to prove
that

P(T ∈ [a, b], {nT} ∈ [0, c])→ cP(T ∈ [a, b])
for any c ∈ [0, 1]. We have

P(T ∈ [a, b], {nT} ∈ [0, c]) =
∫ b

a
1[0,c]({nx})f (x)dx

=
bnbc∑

i=bnac

∫ i−1+c
n

i−1
n

f (x)dx + o(1)
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Cont.

= c
n

bnbc∑
i=bnac

f (ξi,n)dx + o(1)→ c
∫ b

a
f (x)dx = cP(T ∈ [a, b]).

2
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Useful results

Proposition

Assume that Yn
dst→ Y .

(i) If Zn
P→ Z then it holds that

(Yn,Zn) dst→ (Y ,Z )

(ii) Continuous mapping theorem: If g ∈ C(R) then it holds

g(Yn) dst→ g(Y )

Proof: (i) For any F-measurable rv X we have (Yn,Z ,X ) d→ (Y ,Z ,X ).
Since Zn

P→ Z , we deduce that

(Yn,Zn,X ) d→ (Y ,Z ,X )

But this means (Yn,Zn) dst→ (Y ,Z ). 2
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Cont.

(ii) Similarly, for any F-measurable rv X , we have (Yn,X ) d→ (Y ,X ).
Applying the classical continuous mappring theorem for convergence in
law, we deduce that

(g(Yn),X ) d→ (g(Y ),X )

Hence, we obtain g(Yn) dst→ g(Y ). 2

� In practical applications we will often obtain the stable convergence

Yn
dst→ Y ∼MN (0,V 2)

If we find a rv Vn > 0 such that V 2
n

P→ V 2, then by the previous
proposition we conclude that

Yn/Vn
d→ N (0, 1)

The latter result is very important for statistical inference.
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δ-method

Theorem
Assume that

an(Xn − X ) dst→ Y

for some sequence an →∞ and let g ∈ C1(R). Then it holds that

an (g(Xn)− g(X )) dst→ g ′(X )Y

Proof: The mean value theorem implies the identity

an (g(Xn)− g(X )) = ang ′(Zn)(Xn − X )

with |Zn − X | ≤ |Xn − X |, and hence Zn
P→ X . Hence, we deduce the

convergence
(an(Xn − X ),Zn) dst→ (Y ,X )

But this implies the desired stable convergence by the continuous
mapping theorem. 2
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Stable convergence for stochastic processes

Definition
Let (Y n)n∈N be a sequence of stochastic processes taking values in a
Polish space (E , E) (a separable completely metrizable space). We say
that (Y n)n∈N converges stable in law towards Y , defined on an
extended probability space (Ω′,F ′,P′), if

lim
n→∞

E[g(Y n)Z ] = E′[g(Y )Z ]

holds for any continuous bounded function g : E → R and any bounded
F-measurable rv Z . In this case we write Y n dst→ Y .

We will often deal with the space (C [0,T ], ‖ · ‖∞). In this situation the
stable convergence Y n dst→ Y is equivalent to finite dimensional
convergence (

Y n
t1
, . . . ,Y n

tk

) dst→ (Yt1 , . . . ,Ytk ) ∀tj ∈ [0,T ]

and tightness of the sequence (Y n)n∈N.
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Example: Donsker’s invariance principle

Theorem
Assume that (Xn)n∈N is a sequence of i.i.d. rv’s with E[X1] = 0 and
E[X 2

1 ] = 1. Define the statistic

Sn
t := 1√

n

bntc∑
i=1

Xi + (nt − bntc)Xbntc+1


Then it holds that

Sn dst→W ′ on (C [0,T ], ‖ · ‖∞)

where W ′ is a Brownian motion defined on an extended space
(Ω′,F ′,P′) and independent of F .

Proof: We know that the sequence (Sn)n∈N is tight. On the other hand
we have proved earlier that(

Sn
t1
, . . . ,Sn

tk

) dst→
(
W ′t1

, . . . ,W ′tk

)
∀tj ∈ [0,T ]

Hence, we obtain the desired stable convergence Sn dst→W ′. 2 29



Chapter 2: Some basic facts about semimartingale theory
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Localised classes

Definition
Let C be a class of stochastic processes defined on (Ω,F , (Ft)t≥0,P).
Then Cloc denotes the localised class, i.e. X ∈ Cloc if there exists an
increasing sequence of (Ft)-stopping times (Tn)n∈N such that

XTn := (Xt∧Tn )t≥0 ∈ C and Tn
a.s.→ ∞

In particular, we denote byMloc the class of local martingales and by
Bloc the class of locally bounded process.

It is well known that e.g. cáglád processes are locally bounded. Cádlág
processes are not necessarily locally bounded.
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Itô integral in a nutshell

Let W denote a standard Brownian motion on (Ω,F , (Ft)t≥0,P).
Definition

(a) For any basic stochastic process (Ht)t≥0 of the form

Ht = A · 1(a,b](t) where A is bounded Fa-measurable

the integral
∫ t

0 HsdWs is defined via∫ t

0
HsdWs := A(Wb∧t −Wa∧t)

(b) The definition is directly extended to linear combination of basic
processes by linearity.

(c) By an approximation argument the Itô integral can be defined for
any progressively measurable stochastic process (Ht)t≥0 satisfying∫∞

0 H2
s ds <∞ almost surely.
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Some basic properties

Proposition
Let (Ht)t≥0 and (Gt)t≥0 denote progressively measurable stochastic
processes satisfying E

∫∞
0 H2

s ds <∞ and E
∫∞

0 G2
s ds <∞.

(a) The stochastic process (
∫ t

0 HsdWs)t≥0 is an (Ft)-martingale.

(b) It holds that

E
[∫ t

0
HsdWs ·

∫ t

0
GsdWs

]
= E

[∫ t

0
HsGsds

]

(c) For any continuous local martingales X ,Y the covariation process
([X ,Y ]t)t≥0 is defined as

[X ,Y ]t := P− lim
n→∞

n∑
i=1

(Xti − Xti−1 )(Yti − Yti−1 )

where (ti )0≤i≤n is a partition of [0, t] with maxi |ti − ti−1| → 0.
[X ] := [X ,X ] is called the quadratic variation process of X.
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Semimartingales

The following identity is straightforward[∫ ·
0
HsdWs ,

∫ ·
0
GsdWs

]
t

=
∫ t

0
HsGsds

Definition
A stochastic process (Xt)t≥0 is called a continuous semimartingale if
it admits a decomposition

Xt = X0 + At + Mt

where (At)t≥0 has finite total variation, (Mt)t≥0 is a continuous local
martingale and A0 = M0 = 0. The process (Xt)t≥0 is called a
continuous Itô semimartingale if it admits a decomposition

Xt = X0 +
∫ t

0
asds +

∫ t

0
σsdWs
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Important inequality

Theorem (Burkholder-Davis-Gundy inequality)
Let (Xt)t≥0 be a continuous local martingale defined on
(Ω,F , (Ft)t≥0,P). Then, for any p > 0, there exist constants
cp,Cp > 0 such that

cpE
[
[X ]p/2

t

]
≤ E

[
sup

s∈[0,t]
|Xs |p

]
≤ CpE

[
[X ]p/2

t

]

Example: Let Xt =
∫ t

0 HsdWs and assume that H is a bounded process.
Then, for any ∆ > 0, it holds that

E [|Xt+∆ − Xt |p] ≤ CpE

(∫ t+∆

t
H2

s ds
)p/2

 = O(∆p/2)

In other words, the increments of X have the same order as the
increments of the driving Brownian motion W .

35



Chapter 3: Stable convergence theorem of Jacod
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Continuous time setting

� Despite the availability of the notion of stable convergence, "ready to
use" limit theorems for the high frequency setting were not known
for a long time.

� In a seminal paper of 97 Jean Jacod has established a general
theorem, which perfectly fits the high frequency framework. Until
now it remains the only general theorem in this setting.

� To demonstrate the result, we consider a sequence (Y n)n∈N of
continuous local martingales defined on (Ω,F , (Ft)t≥0,P). We also
consider another continuous local martingale (Mt)t≥0, which we
refer to as reference martingale. Roughly speaking, M is a "major
martingale" determining Y n.
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Jacod’s theorem: Continuous time version

Theorem (Jacod 97)
Assume that there exist (Ft)-adapted processes u, v and w such that
the following holds for all t ∈ [0,T ]:

(i) [Y n]t
P→ Ft =

∫ t
0 (v2

s u2
s + w2

s )ds

(ii) [Y n,M]t
P→ Gt =

∫ t
0 vsu2

s ds

(iii) [Y n,N]t
P→ 0

where [M]t =
∫ t

0 u2
s ds and the last convergence holds for all bounded

continuous martingales N with [M,N] = 0. Then it holds that Y n dst→ Y
on (C [0,T ], ‖ · ‖∞), and

Yt =
∫ t

0
vsdMs +

∫ t

0
wsdW ′s

where W ′ is a Brownian motion defined on an extended space
(Ω′,F ′, (F ′t )t≥0,P′) and independent of F .
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Some remarks

� The intuition behind the limit theorem is similar to orthogonal
representation of vectors in linear spaces.

� Condition (ii) identifies the part of the quadratic variation of Y ,
which can be attributed to the reference martingale M.

� Condition (iii) says that no other continuous local martingales N
defined on the original space (Ω,F , (Ft)t≥0,P) contribute to the
quadratic variation of Y .

� Finally, condition (i) determines the portion of the quadratic
variation of Y , which needs to be explained by the new Brownian
motion W ′ defined on the extended space (Ω′,F ′, (F ′t )t≥0,P′).
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Is there a discretized version of the stable limit theorem?
Question
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The discrete setting

� We consider statistics of the form

Y n
t =

bt/∆nc∑
i=1

Xin

where ∆n → 0 and Xin’s are Fi∆n -measurable square integrable rv’s.

� As before M denotes the reference (local) martingale with
[M]t =

∫ t
0 u2

s . We define

M⊥b =
{
bounded (Ft)-martingales N with [M,N] = 0

}
� In the following we write Z n u.c.p.→ Z to denote the uniform

convergence
sup

t∈[0,T ]
|Z n

t − Zt |
P→ 0

for any T > 0.
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Jacod’s theorem: Discrete version

Theorem (Jacod 97)
Assume that there exist (Ft)-adapted processes u, v , w and a finite
variation process B such that the following holds for all t ∈ [0,T ]:

(i)
∑bt/∆nc

i=1 E[Xin|F(i−1)∆n ] u.c.p.→ Bt

(ii)
∑bt/∆nc

i=1 (E[X 2
in|F(i−1)∆n ]−E[Xin|F(i−1)∆n ]2) P→ Ft =

∫ t
0 (v2

s u2
s +w2

s )ds

(iii)
∑bt/∆nc

i=1 E[Xin(Mi∆n −M(i−1)∆n )|F(i−1)∆n ] P→ Gt =
∫ t

0 vsu2
s ds

(iv)
∑bt/∆nc

i=1 E[Xin(Ni∆n − N(i−1)∆n )|F(i−1)∆n ] P→ 0 ∀N ∈ M⊥b

(v)
∑bt/∆nc

i=1 E[X 2
in1{|Xin|>ε}|F(i−1)∆n ] P→ 0 ∀ε > 0

Then it holds that Y n dst→ Y on (C [0,T ], ‖ · ‖∞), and

Yt = Bt +
∫ t

0
vsdMs +

∫ t

0
wsdW ′s

where W ′ is a new Brownian motion independent of F .
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Remarks

� Conditions (ii)-(iv) are discrete versions of the covariation
assumptions in the continuous case.

� Condition (i) determines the finite variation part of the
semimartingale Y .

� Condition (v) is a standard assumption, which ensures that there are
no jumps in the limiting process Y .

� In most applications the reference martingale M is the Brownian
motion W , which is "driving" the rv’s Xin.
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Example 1

� Define the rv’s Xin by

Xin = ∆−1/2
n σ2

(i−1)∆n

(
(∆n

i W )2 −∆n
)

∆n
i W := Wi∆n−W(i−1)∆n

where σ is a continuous adapted process. We are interested in the
asymptotic behaviour of Y n

t =
∑bt/∆nc

i=1 Xin. We choose M = W .

� To check (i) observe that

E[Xin|F(i−1)∆n ] = ∆−1/2
n σ2

(i−1)∆n
E[(∆n

i W )2 −∆n|F(i−1)∆n ] = 0

and hence Bt = 0.

� For (ii) we compute

E[X 2
in|F(i−1)∆n ] = ∆−1

n σ4
(i−1)∆n

E[
(
(∆n

i W )2 −∆n
)2 |F(i−1)∆n ]

= 2∆nσ
4
(i−1)∆n

and thus Ft = 2
∫ t

0 σ
4
s ds.
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Cont.

� To prove (iii), observe that the Brownian motion has symmetric
distribution. Consequently

E[Xin∆n
i W |F(i−1)∆n ] = 0

and Gt = 0.

� To show (iv) observe the identity

(∆n
i W )2 −∆n = 2

∫ i∆n

(i−1)∆n

(Ws −W(i−1)∆n )dWs

Hence, we deduce for all N ∈ M⊥b :

E[Xin∆n
i N|F(i−1)∆n ] = 2∆−1/2

n σ2
(i−1)∆n

× E[
∫ i∆n

(i−1)∆n

(Ws −W(i−1)∆n )dWs ·∆n
i N|F(i−1)∆n ]

= 2∆−1/2
n σ2

(i−1)∆n
E[
∫ i∆n

(i−1)∆n

(Ws −W(i−1)∆n )d [W ,N]s |F(i−1)∆n ] = 0
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Cont.

� To prove (v), observe that E[X 4
in|F(i−1)∆n ] = C∆2

nσ
8
(i−1)∆n

for some
C > 0. Consequently, we obtain that

E[X 2
in1{|Xin|>ε}|F(i−1)∆n ] ≤ ε−2E[X 4

in|F(i−1)∆n ] = Cε−2∆2
nσ

8
(i−1)∆n

But this means that
bt/∆nc∑

i=1
E[X 2

in1{|Xin|>ε}|F(i−1)∆n ] P→ 0

for all ε > 0.

� We now deduce the convergence Y n dst→ Y with

Yt =
√
2
∫ t

0
σ2

s dW ′s ∼MN
(
0, 2

∫ t

0
σ4

s ds
)

2
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Example 2

� Define the rv’s Xin by

Xin = ∆1/2
n a(i−1)∆n

(
f (∆−1/2

n ∆n
i W )− E[f (∆−1/2

n ∆n
i W )]

)
where a is a continuous adapted process. Assume that f is an even
function with at most polynomial growth. Choose again M = W .

� Using exactly the same methods as in Example 1, we obtain the
convergence Y n dst→ Y with

Yt = λ

∫ t

0
asdW ′s , λ = var (f (N (0, 1)))

2
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Chapter 4: High frequency observations of Itô
semimartingales
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Chapter 4.1: Limit theorems in the continuous case
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The model and observation scheme

� We consider a 1-dimensional Itô semimartingales of the form

Xt = X0 +
∫ t

0
asds +

∫ t

0
σsdWs t ≥ 0

defined on a filtered probability space (Ω,F , (Ft)t≥0,P). Here a and
σ are assumed to be continuous adapted processes.

� The observation scheme is given as

X0,X∆n ,X2∆n , . . . ,X∆nbT/∆nc

where T > 0 is fixed and ∆n → 0.

� We focus on statistics of the type

V (X , f ,∆n)t = ∆n

bt/∆nc∑
i=1

f
(

∆−1/2
n ∆n

i X
)
, ∆n

i X := Xi∆n−X(i−1)∆n

where f : R→ R is a measurable function.
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Law of large numbers

Theorem (Barndorff-Nielsen, Graversen, Jacod, P. & Shephard (06))
Assume that the function f : R→ R is continuous with at most
polynomial growth. Then it holds that

V (X , f ,∆n)t
u.c.p.→ V (X , f )t :=

∫ t

0
ρσs (f )ds

where the map x 7→ ρx (f ) is defined as

ρx (f ) = E[f (xN)], N ∼ N (0, 1)

In the power variation setting fp(x) := |x |p, p > 0, we obtain the
convergence

V (X , fp,∆n)t
u.c.p.→ mp

∫ t

0
|σs |pds, mp := E[|N|p]

In other words, we can estimate integrated powers of the volatility σ.
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Crucial approximation

� First, we write

Xt = X0 +
∫ t

0
asds +

∫ t

0
σsdWs =: X0 + At + Mt

and assume for the moment that the processes a and σ are bounded.

� Due to BDG inequality, we observe that

∆−1/2
n ∆n

i X = ∆−1/2
n ∆n

i A︸ ︷︷ ︸
‖·‖Lp =O(∆1/2

n )

+ ∆−1/2
n ∆n

i M︸ ︷︷ ︸
‖·‖Lp =O(1)

≈ ∆−1/2
n ∆n

i M

Hence, we obtain the first order approximation

∆−1/2
n ∆n

i X ≈ αn
i := ∆−1/2

n σ(i−1)∆n ∆n
i W

This observation is key to all proofs!
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Law of large numbers

Theorem (Barndorff-Nielsen, Graversen, Jacod, P. & Shephard (06))
Assume that the function f : R→ R is continuous with at most
polynomial growth. Then it holds that

V (X , f ,∆n)t
u.c.p.→ V (X , f )t :=

∫ t

0
ρσs (f )ds

where the map x 7→ ρx (f ) is defined as

ρx (f ) = E[f (xN)], N ∼ N (0, 1)
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Road map for the proof

The proof consists of three steps:

Step 1: Show that it is sufficient to prove the theorem in the setting
where a and σ are bounded in (ω, t). This step is called localisation
procedure.

Step 2: Prove the theorem when the increments ∆−1/2
n ∆n

i X are replaced
by the approximation αn

i .

Step 3: Show that the approximation in the previous step is
asymptotically negligible.

54



Step 1: Localisation

Since the processes a and σ are continuous, they are locally bounded.
Hence, there exists an increasing sequence of stopping times (Tk)k∈N

with Tk
a.s.→ ∞ such that

|as(ω)|+ |σs(ω)| ≤ k ∀s ≤ Tk(ω)

Define

X (k)
t := X0 +

∫ t

0
as∧Tkds +

∫ t

0
σs∧TkdWs

V (k)(f )n
t := V (X (k), f ,∆n)t

V (k)(f )t :=
∫ t

0
ρσs∧Tk

(f )ds

Note that, for all t < Tk(ω), it holds that

X (k)
t = Xt , V (k)(f )n

t = V (X , f ,∆n)t , V (k)(f )t = V (X , f )t

55



Step 1: Cont.

Assume that we have proven the convergence

V (k)(f )n
t

u.c.p.→ V (k)(f )t

for a fixed k, in which case the drift and volatility are bounded processes.
Then we may conclude that

P

(
sup

t∈[0,T ]
|V (X , f ,∆n)t − V (X , f )t | > ε

)
≤ P(T ≥ Tk)

+ P

(
sup

t∈[0,T ]
|V (k)(f )n

t − V (k)(f )t | > ε,T < Tk

)
→ 0

as n→∞ and then k →∞. Hence, it is sufficient to prove the main
result for bounded processes a and σ. 2
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Step 2: Limit theorem for the approximation

We define the statistic

V ′(f )n
t := ∆n

bt/∆nc∑
i=1

f (αn
i ) , αn

i = ∆−1/2
n σ(i−1)∆n ∆n

i W

We will need the following lemma.
Lemma
Let Xin be square integrable Fi∆n -measurable rv’s. Assume that

(i)
∑bt/∆nc

i=1 E[Xin|F(i−1)∆n ] u.c.p.→ Vt for some stochastic process
(Vt)t∈[0,T ].

(ii)
∑bT/∆nc

i=1 E[X 2
in|F(i−1)∆n ] P→ 0

Then it holds that

sup
t∈[0,T ]

∣∣∣∣∣∣
bt/∆nc∑

i=1
Xin − Vt

∣∣∣∣∣∣ P→ 0

57



Step 2: Cont.

We apply the previous lemma to the case Xin = ∆nf (αn
i ). Note that

E[Xin|F(i−1)∆n ] = ∆nρσ(i−1)∆n
(f ), E[X 2

in|F(i−1)∆n ] = ∆2
nρσ(i−1)∆n

(f 2)

Since σ is continuous and bounded, we deduce that
bt/∆nc∑

i=1
E[Xin|F(i−1)∆n ] u.c.p.→ V (X , f )t =

∫ t

0
ρσs (f )ds

bT/∆nc∑
i=1

E[X 2
in|F(i−1)∆n ] P→ 0

Consequently, the limit theorem holds for the approximation αn
i , i.e.

V ′(f )n u.c.p.→ V (X , f )

2
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Step 3: Asymptotic negligibility of the approximation

For this step we only give an intuitive argument. We know that the
difference

∆−1/2
n ∆n

i X − αn
i

is small with high probability. Since f : R→ R is a continuous function,
the same is true for the difference

f (∆−1/2
n ∆n

i X )− f (αn
i )

Hence, we may conclude that

sup
t∈[0,T ]

|V (X , f ,∆n)t − V ′(f )n| ≤ ∆n

bT/∆nc∑
i=1

∣∣∣f (∆−1/2
n ∆n

i X
)
− f (αn

i )
∣∣∣

P→ 0

This completes the proof of the theorem. 2

59



What about a central limit theorem?
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Preliminary condition

� Recall that we proved the convergence

V (X , f ,∆n)t = ∆n

bt/∆nc∑
i=1

f
(

∆−1/2
n ∆n

i X
)

u.c.p.→
∫ t

0
ρσs (f )ds

and we now want to show the associated stable central limit
theorem.

� In this situation we require a stronger condition on the volatility
process σ. We assume that σ is also a continuous Itô semimartingale
of the form

σt = σ0 +
∫ t

0
a′sds +

∫ t

0
σ′sdWs +

∫ t

0
v ′sdVs

where V is an (Ft)-Brownian motion independent of W . This
condition is satisfied in most of financial models.
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Stable central limit theorem

Theorem (Barndorff-Nielsen, Graversen, Jacod, P. & Shephard (06))
Assume that the volatility process σ is a continuous Itô semimartingale
as defined before. Furthermore, suppose that f ∈ C1(R) is an even
function such that f , f ′ have at most polynomial growth. Then we
obtain the functional stable convergence

∆−1/2
n (V (X , f ,∆n)t − V (X , f )t) dst→

∫ t

0

√
ρσs (f 2)− ρσs (f )2 dW ′s

where W ′ is a new Brownian motion independent of F .

The result can be extended to certain non-differentiable functions. In
particular, the theorem remains valid for the power variation class
fp(x) = |x |p, p > 0. Furthermore, for p = 2 the semimartingale
assumption on σ is not required!
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Important example: Feasible estimation of the quadratic variation

Recall that [X ]t =
∫ t

0 σ
2
s ds and we deal with the function f2(x) = x2. We

obtain the identities

ρx (f2) = x2 and ρx (f 2
2 ) = 3x4

The stable central limit theorem implies that

∆−1/2
n

bt/∆nc∑
i=1

(∆n
i X )2 − [X ]t

 dst→
√
2
∫ t

0
σ2

s dW ′s ∼MN
(
0, 2

∫ t

0
σ4

s ds
)

The law of large numbers gives us V (X , f4,∆n)t
P→ 3

∫ t
0 σ

4
s ds. Hence, we

obtain a feasible central limit theorem

∆−1/2
n

(∑bt/∆nc
i=1 (∆n

i X )2 − [X ]t
)

√
2
3V (X , f4,∆n)t

d→ N (0, 1)

This result can be used to construct confidence regions.
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Stable central limit theorem

Theorem (Barndorff-Nielsen, Graversen, Jacod, P. & Shephard (06))
Assume that the volatility process σ is a continuous Itô semimartingale
as defined before. Furthermore, suppose that f ∈ C1(R) is an even
function such that f , f ′ have at most polynomial growth. Then we
obtain the functional stable convergence

∆−1/2
n (V (X , f ,∆n)t − V (X , f )t) dst→

∫ t

0

√
ρσs (f 2)− ρσs (f )2 dW ′s

where W ′ is a new Brownian motion independent of F .
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Road map for the proof

The proof consists of three steps:

Step 1: Show that it is sufficient to prove the theorem in the setting
where all processes a, a′, σ, σ′, v ′ are bounded in (ω, t). This step is
performed in a similar fashion as in the law of large numbers.

Step 2: Prove the theorem when the increments ∆−1/2
n ∆n

i X are replaced
by the approximation αn

i = ∆−1/2
n σ(i−1)∆n ∆n

i W .

Step 3: Show that the approximation in the previous step is
asymptotically negligible.
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Step 2: Central limit theorem for the approximation

Define the random variable

βn
i := ∆1/2

n
(
f (αn

i )− E[f (αn
i )|F(i−1)∆n ]

)
= ∆1/2

n
(
f (αn

i )− ρσ(i−1)∆n
(f )
)

We want to prove the functional stable convergence

Un
t :=

bt/∆nc∑
i=1

βn
i

dst→ Ut :=
∫ t

0

√
ρσs (f 2)− ρσs (f )2 dW ′s

By construction E[βn
i |F(i−1)∆n ] = 0. On the other hand, we have

E[(βn
i )2|F(i−1)∆n ] = ∆n

(
ρσ(i−1)∆n

(f 2)− ρσ(i−1)∆n
(f )2)

which implies that
bt/∆nc∑

i=1
E[(βn

i )2|F(i−1)∆n ] P→ Ft =
∫ t

0

(
ρσs (f 2)− ρσs (f )2) ds
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Step 2: Cont.

Recall again that αn
i = ∆−1/2

n σ(i−1)∆n ∆n
i W and the function f is even.

Hence, the function x 7→ xf (x) is odd, and we conclude

E[βn
i ∆n

i W |F(i−1)∆n ] = 0

We also have that
bt/∆nc∑

i=1
E[(βn

i )21{|βn
i |>ε}|F(i−1)∆n ] ≤ ε−2

bt/∆nc∑
i=1

E[(βn
i )4|F(i−1)∆n ] = ε−2OP(∆n)

Hence,
bt/∆nc∑

i=1
E[(βn

i )21{|βn
i |>ε}|F(i−1)∆n ] P→ 0 ∀ε > 0
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Step 2: Cont.

Finally, let N ∈W⊥b . We introduce the filtration F̃t = F(i−1)∆n+t for
t ∈ [0,∆n] and define

Ht := E[f (αn
i )|F̃t ]

Note that H is a martingale and βn
i =
√

∆n ∆n
0H. By martingale

representation theorem we obtain

Ht = H0 +
∫ t

(i−1)∆n

ηs dWs

for some predictable process η. Now we deduce the identity

E[βn
i ∆n

i N|F(i−1)∆n ] =
√

∆n E[∆n
0H∆n

i N|F(i−1)∆n ]

=
√

∆n E[
∫ i∆n

(i−1)∆n

ηsd [W ,N]s |F(i−1)∆n ] = 0

Thus, it follows

Un
t =

bt/∆nc∑
i=1

βn
i

dst→ Ut =
∫ t

0

√
ρσs (f 2)− ρσs (f )2 dW ′s

2
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Step 3: Negligibility of the approximation

It now remains to prove that the approximative statistic Un
t is

asymptotically equivalent to the original one. This is performed in several
steps.

Step 3.1: Introduce the more "natural" statistic

Un
t := ∆1/2

n

bt/∆nc∑
i=1

(
f (∆−1/2

n ∆n
i X )− E[f (∆−1/2

n ∆n
i X )|F(i−1)∆n ]

)
and show that Un − Un u.c.p.→ 0.

Step 3.2: Prove that

∆1/2
n

bt/∆nc∑
i=1

∫ i∆n

(i−1)∆n

(
ρσs (f )− ρσ(i−1)∆n

(f )
)
ds u.c.p.→ 0

Step 3.3: Finally, show that

∆1/2
n

bt/∆nc∑
i=1

E[f (∆−1/2
n ∆n

i X )− f (αn
i )|F(i−1)∆n ] u.c.p.→ 0
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Step 3: First arguments

To complete Step 3.1 we observe that Un − Un =
∑bt/∆nc

i=1 γn
i with

E[γn
i |F(i−1)∆n ] = 0. Thus, the proof of the statement Un − Un u.c.p.→ 0 is

completed if we show that
bT/∆nc∑

i=1
E[(γn

i )2|F(i−1)∆n ] P→ 0

which is relatively straightforward. 2

To show the convergence in Step 3.2 we use the mean value theorem

∆1/2
n

bt/∆nc∑
i=1

∫ i∆n

(i−1)∆n

(
ρσs (f )− ρσ(i−1)∆n

(f )
)
ds

≈ ∆1/2
n

bt/∆nc∑
i=1

ρ′σ(i−1)∆n
(f )
∫ i∆n

(i−1)∆n

(
σs − σ(i−1)∆n

)
ds

along with the semimartingale assumption on σ. 2
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Step 3: Last argument

It remains to prove the convergence in Step 3.3:

∆1/2
n

bt/∆nc∑
i=1

E[f (∆−1/2
n ∆n

i X )− f (αn
i )|F(i−1)∆n ] u.c.p.→ 0

For this purpose we need the precise understanding of the approximation
error under the semimartingale assumption on σ:

∆−1/2
n ∆n

i X − αn
i ≈ ∆1/2

n a(i−1)∆n + ∆−1/2
n

∫ i∆n

(i−1)∆n

(
σs − σ(i−1)∆n

)
dWs

≈ ∆1/2
n a(i−1)∆n + ∆−1/2

n

∫ i∆n

(i−1)∆n

(
σ′(i−1)∆n

(
Ws −W(i−1)∆n

)
+v ′(i−1)∆n

(
Vs − V(i−1)∆n

))
dWs
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Step 3: Cont.

The fact that the function f ∈ C1(R) is even, and hence f ′ is odd, turns
out to be absolutely crucial. Indeed, we deduce that

∆1/2
n

bt/∆nc∑
i=1

E[f (∆−1/2
n ∆n

i X )− f (αn
i )|F(i−1)∆n ]

≈ ∆1/2
n

bt/∆nc∑
i=1

E[f ′(αn
i )(∆−1/2

n ∆n
i X − αn

i )|F(i−1)∆n ]

≈ ∆1/2
n

bt/∆nc∑
i=1

E[f ′(αn
i )(∆1/2

n a(i−1)∆n + ∆−1/2
n

∫ i∆n

(i−1)∆n

(σ′(i−1)∆n
(Ws −W(i−1)∆n ) + v ′(i−1)∆n

(Vs − V(i−1)∆n ))dWs)|F(i−1)∆n ]

= 0

2
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Final remarks

� The asymptotic theory for high frequency observations of
semimartingales easily extends to the multivariate setting.

� Let X be a d-dimensional Itô semimartingale and k ∈ N. For a
measurable function f : (Rd )k → Rm, we consider the statistic

V (X , f ,∆n)t = ∆n

bt/∆nc∑
i=1

f
(

∆−1/2
n ∆n

i X , . . . ,∆−1/2
n ∆n

i+k−1X
)

We can derive the complete asymptotic theory in this setting. In
particular, it holds that

V (X , f ,∆n)t
u.c.p.→ V (X , f )t :=

∫ t

0
ρσs (f )ds, ρx (f ) = E[f (xN)]

and N = (N1, . . . ,Nk) with Nj i.i.d. ∼ Nd (0, id).

� A particularly useful class are multipower variations that
correspond to d = 1 and f (x) =

∏k
j=1 |xj |pj .
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Chapter 4.2: Limit theorems in the discontinuous case

74



The model and main statistics

� We consider a 1-dimensional Itô semimartingales of the form

Xt = X0 +
∫ t

0
asds +

∫ t

0
σsdWs + Jt t ≥ 0

defined on a filtered probability space (Ω,F , (Ft)t≥0,P). Here a and
σ are assumed to be cádllág adapted processes, and J is a
compound Poisson process, i.e.

Jt =
Nt∑

j=1
Zj where N ∼ Po(λ) and (Zj)j∈N are i.i.d.

We denote ∆Xs = ∆Js := Js − Js− and assume that (N,Z ) |= W .

� In the discontinuous setting we only consider power variations of the
form

V (X , p,∆n)t =
bt/∆nc∑

i=1
|∆n

i X |p p > 0
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Law of large numbers

Theorem (Jacod (08))

(i) When p > 2 it holds that

V (X , p,∆n)t
P→
∑

s∈[0,t]

|∆Xs |p

(ii) When p = 2 it holds that

V (X , 2,∆n)t
P→ [X ]t =

∫ t

0
σ2

s ds +
∑

s∈[0,t]

|∆Xs |2

(iii) When p < 2 it holds that

∆1−p/2
n V (X , p,∆n)t

P→ mp

∫ t

0
|σs |pds
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Important application: Separation of volatility and jumps

In financial applications it is crucial to separate the continuous part of
the quadratic variation from the discontinuous one. There are two
classical methods in the literature:

Multipower variation: This approach has been proposed in
Barndorff-Nielsen & Shephard (04). Their idea is based upon using
multipower variations of the form

V (X , p1, . . . , pk ,∆n)t =
bt/∆nc∑

i=1

k−1∏
j=0
|∆n

i+jX |pj

with
∑k

j=1 pj = 2 to obtain a jump robust measure of
∫ t

0 σ
2
s ds.

Threshold estimator: The idea stems from Mancini (01). The jump
robust estimator of

∫ t
0 σ

2
s ds is obtained via

TRV n
t =

bt/∆nc∑
i=1

(∆n
i X )21{|∆n

i X |≤∆νn } ν ∈ (0, 1/2)
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Limit theory for multipower variation

Theorem (Barndorff-Nielsen & Shephard (04))

Assume that k > 1 and
∑k

j=1 pj = 2. Then it holds that

V (X , p1, . . . , pk ,∆n)t
P→

( k∏
j=1

mpj

)
·
∫ t

0
σ2

s ds

If moreover maxj(pj) < 1, then we obtain the stable convergence

∆−1/2
n

(
V (X , p1, . . . , pk ,∆n)t −

( k∏
j=1

mpj

)
·
∫ t

0
σ2

s ds
)

dst→ √mp1,...,pk

∫ t

0
σ2

s dW ′s

where W ′ is a new Brownian motion independent of F and mp1,...,pk is
a certain constant.
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Sketch of the proof

Since J is a compound Poisson process, there is at most one jump in the
interval [i∆n, (i + k)∆n] with high probability. Define the set

Ωn
jump := {i ≤ bt/∆nc : there is a jump in [i∆n, (i + k)∆n]}

Applying the limit theory for continuous Itô semimartingales we conclude
that ∑

i 6∈Ωn
jump

k−1∏
j=0
|∆n

i+jX |pj P→

( k∏
j=1

mpj

)
·
∫ t

0
σ2

s ds

On the other hand, we have that

∑
i∈Ωn

jump

k−1∏
j=0
|∆n

i+jX |pj = OP(∆maxj (pj )/2
n )

The latter implies the assertion of the theorem. 2
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Limit theory for the threshold estimator

Theorem (Mancini (01))
It holds that

∆−1/2
n

(
TRV n

t −
∫ t

0
σ2

s ds
)

dst→
√
2
∫ t

0
σ2

s dW ′s

where W ′ is a new Brownian motion independent of F . In other words,
the jump part J does not affect the central limit theorem.

For this result to hold it is essential that J has finite variation. In the
setting of infinite variation jumps the statement fails to hold.
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Sketch of the proof

Recall the definition

TRV n
t =

bt/∆nc∑
i=1

(∆n
i X )21{|∆n

i X |≤∆νn } ν ∈ (0, 1/2)

Let us denote by

X c
t = X0 +

∫ t

0
asds +

∫ t

0
σsdWs t ≥ 0

the continuous part of X . By the law of iterated logarithm for the
Brownian motion, we deduce for any ν ∈ (0, 1/2):

P(|∆n
i X c | < ∆ν

n ) = 1 and P(|∆n
i J | < ∆ν

n )→ 0

when J has jumps on [(i − 1)∆n, i∆n). Hence, the threshold
asymptotically eliminates the jumps and we obtain the same stable limit
theorem as in the continuous case. 2
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What about limit theorems when jumps are dominating?
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Some notations

� We again consider the power variation case. Similar to the law of
large numbers, the weak limit theory strongly depends on the
considered power p > 0.

� We write fp(x) = |x |p and introduce random variables

(U+
m )m∈N, (U−m )m∈N i.i.d. N (0, 1) and (κm)m∈N i.i.d. U(0, 1)

that are defined on the extended space (Ω′,F ′,P′) and independent
of F .

� The stochastic processes W ′, U+, U− and κ are mutually
independent.
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Central limit theorem

Theorem (Jacod (08))
Let (Tm)m≥1 denote the jump times of X and define the process

L(p)t =
∑

m: Tm∈[0,t]

f ′p (∆XTm )
(√
κmσTm−U−m +

√
1− κm σTmU+

m
)

(i) When p > 3 it holds that

∆−1/2
n

(
V (X , p,∆n)t −

∑
s∈[0,t]

|∆Xs |p
)

dst→ L(p)t

(ii) When p = 2 it holds that

∆−1/2
n (V (X , 2,∆n)t − [X ]t) dst→ L(p)t +

√
2
∫ t

0
σ2

s dW ′s

(iii) When p < 1 and σ is a continuous Itô semimartingale

∆−1/2
n

(
∆1−p/2

n V (X , p,∆n)t − V (X , fp)t

)
dst→
√

m2p −m2
p

∫ t

0
|σs |pdW ′s
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A statistical remark

When the processes σ and J have no common jumps, the process L(p)
can be simplified to

L(p)t =
∑

m: Tm∈[0,t]

f ′p (∆XTm )σTmU+
m

Since (U+
m )m∈N are i.i.d. N (0, 1)-distributed and independent of F , we

readily deduce that

L(p)t ∼MN

0,
∑

m: Tm∈[0,t]

(
f ′p (∆XTm )σTm

)2


The condition variance can be estimated via the threshold approach:

bt/∆nc∑
i=1

(f ′p )2(∆n
i X ) σ̂2

(i−1)∆n
1{|∆n

i X |>∆νn } ν ∈ (0, 1/2)

The latter can be used for statistical applications.
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Central limit theorem

Theorem (Jacod (08))
Let (Tm)m≥1 denote the jump times of X and define the process

L(p)t =
∑

m: Tm∈[0,t]

f ′p (∆XTm )
(√
κmσTm−U−m +

√
1− κm σTmU+

m
)

(i) When p > 3 it holds that

∆−1/2
n

(
V (X , p,∆n)t −

∑
s∈[0,t]

|∆Xs |p
)

dst→ L(p)t

(ii) When p = 2 it holds that

∆−1/2
n (V (X , 2,∆n)t − [X ]t) dst→ L(p)t +

√
2
∫ t

0
σ2

s dW ′s

(iii) When p < 1 and σ is a continuous Itô semimartingale

∆−1/2
n

(
∆1−p/2

n V (X , p,∆n)t − V (X , fp)t

)
dst→
√

m2p −m2
p

∫ t

0
|σs |pdW ′s
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Sketch of the proof

We already showed how to deduce part (iii), hence we concentrate on the
argument behind part (i). Since J is a compound Poisson process, it is
easy to prove that

∆−1/2
n

(
V (J , p,∆n)t −

∑
s∈[0,t]

|∆Xs |p
)

P→ 0

In the next step we observe that |f ′p (x)| = p|x |p−1 and p− 1 > 2 since we
assumed that p > 3. Consequently, we obtain the asymptotic equivalence

∆−1/2
n

(
V (X , p,∆n)t − V (J , p,∆n)t

)
≈ ∆−1/2

n

bt/∆nc∑
i=1

f ′(∆n
i J)∆n

i X c

Recall our basic approximation

∆n
i X c ≈

∫ i∆n

(i−1)∆n

σsdWs
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Cont.

Let us now consider an arbitrary jump time Tm ∈ [0, t] of J and let im
denote the random index such that Tm ∈ [(im − 1)∆n, im∆n). It
obviously holds that

∆n
imJ

a.s.→ ∆JTm

On the other hand, since σ is cádlág, we have that

∆−1/2
n

∫ im∆n

(im−1)∆n

σsdWs = ∆−1/2
n

(∫ Tm

(im−1)∆n

σsdWs +
∫ im∆n

Tm

σsdWs

)
≈ ∆−1/2

n
(
σTm−(WTm −W(im−1)∆n ) + σTm (Wim∆n −WTm )

)
Finally, note the identity

∆−1
n (Tm − (im − 1)∆n) = {Tm/∆n}

dst→ κm ∼ U(0, 1)
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Cont.

Now it remains to put everything together. Due to mutual independence
of the involved processes we conclude that

∆−1/2
n

(
V (X , p,∆n)t − V (J , p,∆n)t

)
≈ ∆−1/2

n
∑

m
f ′(∆n

imJ)
(
σTm−(WTm −W(im−1)∆n ) + σTm (Wim∆n −WTm )

)
dst→

∑
m: Tm∈[0,t]

f ′p (∆XTm )
(√
κmσTm−U−m +

√
1− κm σTmU+

m
)

This completes the proof of part (i). 2
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Testing for jumps in price processes based on high frequency data
Key application
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Statistical formulation of the problem

� One of the classical questions in financial applications is whether the
unobserved path (Xt(ω))t∈[0,T ] has jumps or not. Let us define the
set

Ω0(T ) := {ω ∈ Ω : JT = 0}

and note that P(Ω0(T )) ∈ (0, 1). We set Ω1(T ) = Ω \ Ω0(T ).

� In the literature there are several approaches to test for

H0 : ω ∈ Ω0(T ) vs. H1 : ω ∈ Ω1(T )

based on high frequency data X0,X∆n , . . . ,XbT/∆nc∆n .

� Appropriate statistical formulation: Define by Pθ the probability
measure P restricted to Ωθ(T ) with θ = 0, 1. The formal statistical
test:

H0 : θ = 0 vs. H1 : θ = 1
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The bipower variation based test for jumps

� In Barndorff-Nielsen & Shephard (06) the authors propose to use
bipower variation to test for jumps in X . Their idea is based on the
following observation:

bT/∆nc∑
i=1

|∆n
i X ||∆n

i+1X |
P→ m2

1

∫ T

0
σ2

s ds

In particular, this statistic is robust to the presence of jumps.

� They introduced the test statistic

S(T )n := ∆−1/2
n

bT/∆nc∑
i=1

(∆n
i X )2 −m−2

1

bT/∆nc∑
i=1

|∆n
i X ||∆n

i+1X |


It is easy to see that S(T )n →∞ under P1, while

S(T )n
dst→MN (0, s2) under P0
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The power variation based test for jumps

� In Aït-Sahalia & Jacod (09) the authors propose to use the 4th
power variaion to test for jumps in X . Their idea is based upon
computing power variation at two different frequencies. In particular,
it holds that

R(T )n := V (X , 4, 2∆n)T
V (X , 4,∆n)T

P→

{
2 : θ = 0
1 : θ = 1

which follows from our asymptotic theory.

� The formal testing procedure is obtained by an application of stable
limit theorems presented in this chapter.
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Chapter 5: Optimal estimation of volatility functionals
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Are the estimators presented in the previous chapter optimal?
Central questions
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Background

� In the classical test theory the model parameters are deterministic
objects. There exist numerous approaches to access the optimality of
estimators: Cramer-Rao bounds, maximum likelihood theory,
minimax approach, Le Cam theory, etc.

� However, in the high frequency setting the objects of interests are
often random. Examples include quadratic variation, realised jumps,
supremum/infimum of a process, local times, occupation time
measures etc.

� In this framework very little is known about how to construct
optimal estimates.
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Motivating examples

� We have already obtained an estimator of the quadratic variation in
the continuous setting:

∆−1/2
n

bt/∆nc∑
i=1

(∆n
i X )2 −

∫ t

0
σ2

s ds

 dst→MN
(
0, 2

∫ t

0
σ4

s ds
)

Is this estimator efficient? The answer is: Yes!

� We also know that

∆−1/2
n

bt/∆nc∑
i=1

(∆n
i X )4 − 3

∫ t

0
σ4

s ds

 dst→MN
(
0, 96

∫ t

0
σ8

s ds
)

Is this estimator efficient? The answer is: No! But it is rate optimal.
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A warning

In certain (unrealistic) situation there may exist estimators with a faster
rate of convergence than ∆−1/2

n ! Let us consider a stochastic differential
equation of the form

Xt = X0 +
∫ t

0
a(Xs)ds +

∫ t

0
σ(Xs)dWs

where σ : R→ R is a known function. In this setting we have that

[X ]t =
∫ t

0
σ2(Xs)ds

We can estimate [X ]t by the Riemann sum. Indeed, one can prove that

∆−1
n

bt/∆nc∑
i=1

σ2(Xi∆n )− [X ]t


converges stably in law to a mixed normal limit.
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A simple example

Consider a simple model

Xt = σWt , σ > 0

in which case (∆−1/2
n ∆n

i X )i∈N are i.i.d. N (0, σ2)-distributed. In this
setting we can compute the maximum likelihood estimator

σ̂2
MLE =

b1/∆nc∑
i=1

(∆n
i X )2

which is efficient for σ2. What about estimation of σ4? The
asymptotically efficient estimator of σ4 is given by (σ̂2

MLE)2. We obtain
via δ-method

∆−1/2
n

(
(σ̂2

MLE)2 − σ4) d→ N (0, 8σ8)
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Extension to continuous Itô semimartingales

Let us now consider a continuous Itô semimartingale of the form

Xt = X0 +
∫ t

0
asds +

∫ t

0
σsdWs

Assume that the object of interest is given by

Φ(φ)t =
∫ t

0
φ(σ2

s )ds

for a smooth function φ : R→ R. Following the ideas of the parametric
case, it is natural to propose the statistic

∆n

bt/∆nc∑
i=1

φ
(
σ̂2

(i−1)∆n

)
as an estimator of Φ(φ)t . Indeed, a bias corrected version of this statistic
has been investigated in Jacod & Rosenbaum (13).
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An optimality result for functionals Φ(φ)t

We now present an optimality result from Clement, Delattre & Gloter
(13). They consider a stochastic differential equation of the type

Xt = X0 +
∫ t

0
a(Xs)ds +

∫ t

0
σ(Xs , bs)dWs

where b is a continuous Itô semimartingale of the form

bt = b0 +
∫ t

0
a′sds +

∫ t

0
v ′sdVs

and V is a Brownian motion independent of W . In this setting we have
that

Φ(φ)t =
∫ t

0
φ(σ2(Xs , bs))ds

To present the main result we need to introduce the notion of local
asymptotic mixed normality (LAMN).
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Definition of the local asymptotic mixed normality

Definition (LAMN, 1-dimensional case)
Assume that the data is generated from the probability measure Pn

θ with
θ ∈ Θ ⊂ R. We say that the family {Pn

θ} satisfies the LAMN property
at θ0 if there exist measurable random variables Nn

θ0
and Inθ0

such that
the following decomposition holds:

log
Pn
θ0+h/

√
n

Pn
θ0

= hNn
θ0
− 1

2h
2Inθ0

+ oPn
θ0

(1)

Furthermore, it must hold that(
Inθ0
,Nn

θ0

) d→ (Iθ0 ,MN (0, Iθ0 )) wrt Pn
θ0

The definition of LAMN can be extended to the infinite dimensional
setting. This version is used in Clement, Delattre & Gloter (13).
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Main result

In the following we denote by

Pn
θ, θ ∈ C([0, t])

the law of the data (Xi∆n )0≤i≤bt/∆nc conditionally on b = θ.

Theorem (Clement, Delattre & Gloter (13))

Set Φ(φ)t =
∫ t

0 φ(σ2(Xs , bs))ds and let Φ(φ)n
t be an estimator of Φ(φ)t

such that
∆−1/2

n (Φ(φ)n
t − Φ(φ)t) d→ Z

Under certain regularity conditions on the model the LAMN property for
{Pn

θ} holds and Z has the form

Z =

√
2
∫ t

0
(φ′)2(σ2(Xs , bs))σ4(Xs , bs)ds × N + R

where N ∼ N (0, 1) and independent of R. In other words, the first
term in Z gives an optimal lower bound, which is achieved by the
estimator proposed in Jacod & Rosenbaum (13). 103



Optimality result for estimation of jumps

Let us now consider a stochastic differential equation of the type

dXt = a(Xt)dt + σ(Xt)dWt + dJt

where J is a jump process with finite number of jumps on compact
intervals.

Theorem (Clement, Delattre & Gloter (14))
Let us denote by (Tk) the jump times of J and assume that an
estimator Φn

t satisfies the convergence

∆−1/2
n

(
Φn

t − (∆JTm )m:Tm≤t

)
d→ Z

Under certain regularity conditions on a, σ and the jump process J it
necessarily holds that

Z =
(√
κmσ(XTm−)U−m +

√
1− κm σ(XTm )U+

m
)

m:Tm≤t + R

where R is independent of (U−m ,U+
m )m∈N.
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Chapter 6: New optimality results for supremum, local times
and occupation time measure
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Introduction

� The results of Clement, Delattre & Gloter (13) only cover estimation
problems for volatility functionals. In this chapter we will rather
focus on the following random objects:

X t := sup
s∈[0,t]

Xs

lt(x) := lim
ε↓0

1
2ε

∫ t

0
1(−ε,ε)(Xs − x)ds

Lt(x) :=
∫ t

0
1(x ,∞)(Xs)ds

which is the supremum, local time and occupation time measure of
the process X , respectively.

� We are interested in optimal estimation of these objects given high
frequency data (Xi∆n )0≤i≤bt/∆nc.
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A remark on optimality

We will see that many naive estimators are rate optimal, but not
efficient! In fact, efficient estimators are easy to introduce.

Let Q = Φ((Xs)s∈[0,t]) be a random variable of interest. An optimal
estimator of Q is given as

(i) in L2-sense: E[Q| (Xi∆n )0≤i≤bt/∆nc]

(ii) in L1-sense: median[Q| (Xi∆n )0≤i≤bt/∆nc]

We will investigate the asymptotic theory for these type of estimates in
the setting of supremum, local time and occupation time measure of the
process X , where X is a Brownian motion, stable Lévy process or a
continuous diffusion process.
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Chapter 6.1: The case of supremum
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Naive estimator

� It is rather simple to propose the following estimate for the
supremum

Mn := max
i=1,...,b1/∆nc

Xi∆n
P→ X 1

where the consistency holds for all Lévy processes L.

� The asymptotic theory for the maximum has been studied in several
papers including Asmussen, Glynn & Pitman (95) (Brownian
motion) and Ivanovs (18) (general Lévy processes).

� Since Mn < X 1, the estimator Mn is downward biased and there were
several attempts to correct the bias.
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A result on zooming-in at supremum

The following result from the theory of Lévy processes will be extremely
useful for our asymptotic theory.

Theorem (Ivanovs (18))
Let X be an α-stable Lévy process with α ∈ (0, 2]. Denote by τ the
time of the supremum of X on the interval [0, 1]. Then we obtain the
functional stable convergence

(Z n
t )t∈R :=

(
∆−1/α

n (Xτ+t∆n − Xτ )
)

t∈R

dst→
(
X̂t

)
t∈R

where X̂ is the so called Lévy process conditioned to stay negative,
which is independent of F . When X is a Brownian motion, we deduce
the identity

X̂t = −‖Bt‖

where B is a 3-dimensional Brownian motion.
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Application to estimation of the supremum

The previous result has the following consequence.

Theorem (Ivanovs (18))
Let X be an α-stable Lévy process with α ∈ (0, 2]. Then it holds that

∆−1/α
n

(
Mn − X 1

) d→ max
j∈Z

(X̂j+U)

where U ∼ U(0, 1) is independent of X̂ and F .

Proof: Note that

∆−1/α
n (Xi∆n − Xτ ) = Z n

i−τ/∆n
= Z n

i−bτ/∆nc−{τ/∆n}

Recall that {τ/∆n}
dst→ U ∼ U(0, 1). Since Z n dst→ X̂ and the functional

maxj∈Z(·) is shift invariant, we conclude that

∆−1/α
n

(
Mn − X 1

) d→ max
j∈Z

(X̂j+U)

2
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Computation of the optimal estimator: The Brownian case

The basis of our approach is the computation of the conditional
probability

Hn(x) := P
(
X 1 ≤ x | (Xi∆n )0≤i≤b1/∆nc

)
x > 0.

Due to Markov and self-similarity property of X , we easily see that

Hn(x) =
n∏

i=1
F
(

∆−1/2
n (x − X i−1

n
),∆−1/2

n ∆n
i X
)

where F (x , y) = P
(
X 1 ≤ x | X1 = y

)
= 1− exp(−2x(x − y)). After

rescaling we deduce the stable convergence

Hn

(
∆1/2

n x + Mn

)
=
∏
i∈Z

F
(
x + ∆−1/2

n (Mn − X(i−1)∆n ),∆−1/2
n ∆n

i X
)

dst→ G(x) :=
∏
i∈Z

F
(
x + max

j∈Z
X̂j+U − X̂i+U , X̂i+1+U − X̂i+U

)
.
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Asymptotic theory for the optimal estimators: Brownian case

Theorem (Ivanovs & P. (19))
Define the estimates

T (1)
n := median

[
X 1| (Xi∆n )i

]
, T (2)

n := E
[
X 1| (Xi∆n )i

]
.

(i) It holds that

∆−1/2
n

(
T (1)

n − X 1

)
d→ max

j∈Z
(X̂j+U) + G−1(1/2).

(ii) Furthermore,

∆−1/2
n

(
T (2)

n − X 1

)
d→ max

j∈Z
(X̂j+U) +

∫ ∞
0

(1− G(y))dy .

In particular, we have that

MSE(Mn)
MSE(T (2)

n )
≈ 6.25 !
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Simulation of asymptotic distributions
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Asymptotic theory: The α-stable case

Theorem (Ivanovs & P. (19))
Let X be an α-stable Lévy motion with α ∈ (0, 2).

(i) Define T (1)
n = median[X 1| (Xi∆n )i ]. Then we obtain

∆−1/α
n

(
T (1)

n − X 1

)
d→ max

j∈Z
(X̂j+U) + G−1(1/2).

and the estimator is L1-optimal for α ∈ (1, 2).

(ii) Define T (2)
n = E[X 1| (Xi∆n )i ] for α ∈ (1, 2). Then it holds that

∆−1/α
n

(
T (2)

n − X 1

)
d→ max

j∈Z
(X̂j+U) +

∫ ∞
0

(1− G(y))dy .
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Chapter 6.2: The case of local times
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Naive estimators

� In this chapter we assume that X is a Brownian motion. Recall the
definition of local time:

lt(x) = lim
ε↓0

1
2ε

∫ t

0
1(−ε,ε)(Xs − x)ds

where x ∈ R.

� A straightforward estimator of lt(x) is given as

lnt (x) := an∆n

bt/∆nc∑
i=1

g (an(Xi∆n − x)) P→ lt(x)

where g is a kernel satisfying
∫
R g(x)dx = 1, and an →∞ with

an∆n → 0.

� We will focus on a more general class of statistics:

V (h, x)n
t := an∆n

bt/∆nc∑
i=1

g
(
an(Xi∆n − x),∆−1/2

n ∆n
i X
)
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Asymptotic theory for V (h, x)n

Theorem (Borodin (86), Jacod (98))

Assume that an = ∆−1/2
n and h satisfies the condition

|h(y , z)| ≤ h1(y) exp(λ|z |) for some λ > 0 and
∫
R |y |

ph1(y)dy <∞ for
some p > 3. Then it holds that

V (h, x)n
t

u.c.p.→ chlt(x)

where ch =
∫
R
(∫

R h(y , z)ϕ(z)dz
)
dy and ϕ denotes the density of the

standard normal distribution. Furthermore, we obtain the stable
convergence

∆−1/4
n (V (h, x)n

t − chlt(x)) dst→MN (0, vhlt(x))

for a certain constant vh > 0.

An interesting example is the number of crossings at level 0 which
corresponds to x = 0 and h(y , z) = 1(−∞,0)(y(y + z)).
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L2-optimal estimator of the local time

As we mentioned earlier, the L2-optimal estimator of the local time is
given by

l̂nt (x) = E
[
lt(x)| (Xi∆n )1≤i≤bt/∆nc

]
The following distributional identity connects the law of local times to
the law of the supremum:

(lt(0), |Xt |)t∈R =
(
X t ,X t − Xt

)
t∈R

Applying the Markov and self-similarity property of the Brownian motion
we deduce that

l̂nt (x) = V (h0, x)n
t with an = ∆−1/2

n

and
h0(y , z) = 2|y |ez2/2

∫ 1

0
s−3/2e−y2/(2s)Φ

(
|y + z |√
1− s

)
ds

Here Φ denotes the tail distribution of the standard normal law.
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Asymptotic theory for V (h, x)n

Theorem (Ivanovs & P. (19))
We obtain the stable convergence

∆−1/4
n (V (h0, x)n

t − ch0 lt(x)) dst→MN (0, vh0 lt(x))

We conjecture that this result can be extended to continuous stochastic
differential equations.
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Chapter 6.3: The case of the occupation time measure
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Construction of the estimator

� In this chapter we consider a Brownian motion X . The object of
interest is the occupation time measure

Lt(x) =
∫ t

0
1(x ,∞)(Xs)ds

which turns out to be easier to treat than the previous two cases.

� We will again compute the conditional mean estimator

Ln
t (x) := E

[
Lt(x)| (Xi∆n )1≤i≤bt/∆nc

]
Define Li

i−1(x) =
∫ i∆n

(i−1)∆n
1(x ,∞)(Xs)ds and observe the identity

E
[
Li

i−1(x)|X(i−1)∆n ,∆−1/2
n ∆n

i X
]

= ∆n

∫ 1

0
Φt(1−t)

(
∆−1/2

n (x − X(i−1)∆n − t∆n
i X )

)
dt

where Φt is the tail of N (0, t).
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Computation of Ln
t (x)

Using again the Markov property of the Brownian motion we obtain the
formula

Ln
t (x) =

bt/∆nc∑
i=1

E
[
Li

i−1(x)| (Xi∆n )1≤i≤bt/∆nc
]

= ∆n

bt/∆nc∑
i=1

f
(

∆−1/2
n (x − X(i−1)∆n ),∆−1/2

n ∆n
i X
)

with
f (y , z) =

∫ 1

0
Φt(1−t) (y − tz) dt

We remark that the function f does not satisfy the assumptions of the
previous chapter! In particular, Ln

t (x) does not convergence to the local
time.
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Asymptotic theory for Ln
t (x)

Theorem (Ivanovs & P. (19))
We obtain the stable convergence

∆−3/4
n

(
Ln

t (x)−
∫ t

0
1(x ,∞)(Xs)ds

)
dst→MN (0, vf lt(x))

where vf > 0 is a certain constant. We conjecture that a similar result
holds for symmetric α-stable Lévy processes with α ∈ (1, 2):

∆−1/2−1/α
n (Ln

t (x)− Lt(x)) dst→MN (0, vαlt(x))

The rate optimality of the rate ∆−3/4
n has been shown in Ngo & Ogawa

(11) in the setting of continuous diffusion models.
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Ideas of the proof in the Brownian case

Sketch of proof: We apply once again Jacod’s stable limit theorem.
Observe that

∆−3/4
n

(
Ln

t (x)−
∫ t

0
1(x ,∞)(Xs)ds

)
=
bt/∆nc∑

i=1
Zin

with

Zin := ∆−3/4
n

(
∆nf

(
∆−1/2

n (x − X(i−1)∆n ),∆−1/2
n ∆n

i X
)
− Li

i−1(x)
)

By construction we have that E[Zin|F(i−1)∆n ] = 0. Furthermore, it holds
that

E[Z 2
in|F(i−1)∆n ] = ∆1/2

n f1(∆−1/2
n (x − X(i−1)∆n ))

E[Zin∆n
i X |F(i−1)∆n ] = ∆3/4

n f2(∆−1/2
n (x − X(i−1)∆n ))

where f1, f2 ∈ L1(R).
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Cont.

From the asymptotic theory for local times we thus conclude that
bt/∆nc∑

i=1
E[Z 2

in|F(i−1)∆n ] = ∆1/2
n

bt/∆nc∑
i=1

f1(∆−1/2
n (x−X(i−1)∆n )) P→ ‖f1‖L1(R)lt(x)

and
bt/∆nc∑

i=1
E[Zin∆n

i X |F(i−1)∆n ] = ∆3/4
n

bt/∆nc∑
i=1

f2(∆−1/2
n (x − X(i−1)∆n )) P→ 0

The other conditions of Jacod’s theorem are straightforward to prove.
Hence, we obtain the stable convergence

∆−3/4
n

(
Ln

t (x)−
∫ t

0
1(x ,∞)(Xs)ds

)
dst→MN

(
0, ‖f1‖L1(R)lt(x)

)
2
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End of the course
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Thank you very much for your attention!
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