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Mean-field approach to large population stochastic control

• Large number of N interacting dynamic agents

• Center of decision on top of the population

Social planner aims to optimize the global gain/cost of collectivity
→ Pareto efficiency ∕= Nash equilibrium

Influencer control the state of all players, e.g. through advertising
in models of herd behavior/connected people

◮ Our main focus:

Discrete time and space

When N → ∞: McKean-Vlasov Markov Decision Process
(MKV-MDP)
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A motivating targeted advertising example

• A (phone) company C (the influencer),

• A social network SN

N connected users of SN: state = client or not of C

Users data: cookies

◮ Targeted advertising: SN can display ads for C to some users
according to their cookies.
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What is the (best) targeted strategy?

• For each user i , cookies:

Initial information Γi

At any time t, additional information εit , e.g. time spent on a forum
discussing about phones

• A program is implemented on each laptop based on the cookies for
displaying ads. This program is the same on each laptop
→ Same policy: αi

t = πt(Γ
i , εi1, . . . , ε

i
t)

Remark: The program does not have access to the states of the
individuals, but to the cookies: → ”Open-loop” policy.

◮ Goal of the company: find the best ad-policy to be displayed by SN in
order to attract the largest possible clients given ads costs.
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From N-agents model to MKV-MDP
Studying V

Framework and notations

• A universal probability space (Ω,F ,P)

• State and control/action (compact Polish) spaces: X and A
P(X ), resp. P(A): set of probability measures on X , resp. A

• (Discrete time) transition dynamics

Idiosyncratic noises: (εit)t∈N, for agent i ∈ N∗, i.i.d. valued in W

Common noise: (ε0t )t∈N for all agents, i.i.d. valued in W 0

F : meas. function from X × A× P(X )× P(A)×W ×W 0 into X

• Reward on infinite horizon:

discount factor β ∈ [0, 1)

f : measurable function from X × A× P(X )× P(A) into R

Remark: F and f do not depend on i : indistinguishable agents
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From N-agents model to MKV-MDP
Studying V

Information and (randomized) open-loop policies/control

• Information:

Γi , i ∈ N∗, i.i.d. valued in I : initial information (agent i)

Initial state = ξ(Γi )

• Open-loop Policy: measurable sequence π ∈ Πr
OL of functions πt , t ∈

N, from I ×W t × (W 0)t into A ↔ Open-loop (nonanticipative) control
for agent i :

απ,i
t = πt(Γ

i , εi1, . . . , ε
i
t , ε

0
1, . . . , ε

0
t ),

Remark: each agent has only access to her own initial information,
idiosyncratic and common noise, but follows the same policy.
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From N-agents model to MKV-MDP
Studying V

Mean-field control problem in the N-population model

• Mean-field controlled dynamics:

Same initial state function ξ ∈ L(I ;X ), and same open-loop policy π

State process X i,N of agent i


X i,N
0 = ξ(Γi )

X i,N
t+1 = F


X i,N

t ,απ,i
t , 1

N

N
j=1 δXj,N

t

, 1
N

N
j=1 δαπ,j

t

, εit+1


.

• Gain functional identical for each agent i by indistinguishability:

V π
N (ξ) = E

 ∞

t=0

βt f

X i,N

t ,απ,i
t ,

1

N

N

j=1

δ
X
j,N
t

,
1

N

N

j=1

δ
α
π,j
t



◮ Optimal gain for the center of decision (social planner/influencer):

VN(ξ) = sup
π∈Πr

OL

V π
N (ξ).
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X i,N
0 = ξ(Γi )

X i,N
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• Gain functional identical for each agent i by indistinguishability:

V π
N (ξ) = E

 ∞

t=0

βt f

X i,N

t ,απ,i
t ,

1

N

N

j=1

δ
X
j,N
t
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N

N

j=1

δ
α
π,j
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◮ Optimal gain for the center of decision (social planner/influencer):

VN(ξ) = sup
π∈Πr

OL

V π
N (ξ).
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Limiting problem (N → ∞): MKV-MDP

• Mean-field controlled dynamics:

Initial state function ξ ∈ L(I ;X ), and open-loop policy π

State process X i of agent i in the infinite population
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From N-agents model to MKV-MDP
Studying V

Convergence of the N-agents model

• Propagation of chaos: convergence of the mean-field dynamics

Proposition

Under suitable continuity assumptions on F , given ξ and π, we have for all i ∈
N, t ∈ N,

X i,N
t

a.s.−→
N→∞

X i
t , dW


1

N

N

j=1

δ
X

j,N
t

,P0
X i
t


a.s.−→

N→∞
0.

• Convergence towards MKV-MDP

Theorem

Under Lipschitz condition on f , we have for all initial state function ξ:

sup
π∈ΠOL

|V π
N (ξ)− V π(ξ)| −→

N→∞
0.

Consequently, VN −→
N→∞

V and any ε-optimal strategy for the limit model is an

ε-optimal strategy for the N-individual model for N large enough
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Studying V

Proposition

F Lipschitz ⇒ V π uniformly continuous, uniformly on π ⇒ V unif. cont.

Hyp. A (randomization): Exists i.i.d. uniform (Ut(Γ))t∈N indep of
ξ(Γ).
(equivalent : only one)

Proposition (Law-invariance)

For any ξ, ξ ∈ L(I ;X ) satisfying A, s.t. Pξ = Pξ, we have

V (ξ) = V (ξ).
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Studying V

Theorem (Dynamic Programming Principle)

For any µ ∈ P(X ),

V (µ) = sup
a∈L(X×[0,1];A)

E

f

ξ, a(ξ,U), µ,Pa(ξ,U)


+ βV (P0

Xξ,a
1

)


Useful to study V :

Convexity?

Lipschitz?

max reached measurably in µ ⇒ stationary feedback policy.
Issues:

sup on an ∞-dimensional space + iterations.

Hard to store policies.

Hard to compute X .
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Studying V

Proposition

X , A finite ⇒ equivalent to MDP on state/action spaces [0, 1]n.

Xt → (P(Xt = x))x∈X

αt → (P(αt = a | Xt = x))a∈A,x∈X

Dynamic inherits Lipschitz property from F → MDP algo applies.

(PX a
t
)t = simple vectors in [0, 1]|X |−1.

Easy to compute perfectly

X , A not finite → discretization → finite spaces.
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Application

Analytical resolution

Back to targeted advertising example: spaces and noise

• State space X = {0, 1}:
x = 1 (resp. 0): customer (not customer) of the company C

• Action space A = {0, 1}:
a = 1 (resp. 0): SN send (or not) an ad

• For each player i :

εit : uniform r.v. representing e.g. time spent at day t on a forum
about phones

• For simplicity, no common noise
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Analytical resolution

Targeted advertising example: dynamics and reward

• State transition function:

F (x , µ, a, e) =


1e>µ({0})−ηa if x = 0

1e<µ({1})+ηa if x = 1.

Large e: eager to change of phone

µ({0}): proportion of SN users that are not customers of C

η > 0: impact of ad for incentive to become or remain a customer
of C

• Reward function: for x ∈ X = {0, 1}, a ∈ A = {0, 1},

f (x , a) = x − ca,

c > 0: ad cost
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Analytical resolution

Reformulation as MDP on [0, 1]

• P(X ) ↔ Bernoulli parameter p ∈ [0, 1]

• P(A) ↔ Bernoulli parameter q ∈ [0, 1]

• Policy π → pπt : Bernoulli parameter of PXt , i.e. p
π
t = E[Xt ]:

pπt+1 = Φ(pπt , q
π
t ) := pπt + qπt min(η, 1− pπt ), t ∈ N,

where

qπt = E[απ
t ]: probability of displaying an ad ≡ sending an ad to qπt

proportion of the SN users

◮ Value function on [0, 1]:

V (p) = sup
qπ
t ∈[0,1]

∞

t=0

βt(pπt − cqπt ), p ∈ [0, 1],

satisfying the DP:

V (p) = sup
q∈[0,1]


p − cq + βV


p +min(η, 1− p)
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Analytical resolution

Variational graph

✲

✻

1

η

F (p, 1) − p

1 − η0 p

❅❅

Maximal variations F (p, 1)− p) (in blue).
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Analytical resolution

Disjunction

✲
β

1−β
β0

c
η

Bang-Bang.

Always q = 1

except at the end

Ad very cheap.

Do nothing (q = 0).

Ad toot expansive.

Interesting case.

Disjunction according to the position of c
η relative to β and β

1−β .
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Analytical resolution

Optimal variation

✲

✻

1

η

p1 (p0) − p0
max(p1(p0) − p0)

1 − η 1 − c
1−β
β

1 − η

−η(1 − β)

· · · p0

❅
❅
❅
❅
❅
❅
❅
❅

❅
❅
❅
❅
❅❅

Case c
η < β. Variational optimal policy (in red).

p0

❅
❅
❅
❅

❅
❅
❅
❅ p1

❅
❅
❅

❅
❅
❅

❅
❅ p2
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Sketch of the proof

Let (pt)t∈N = state process from optimal control.
Group rewards by increments

⇒ V (p0) =
p0

1− β
+


t∈N
βt(pt+1 − pt)


β

1− β
− c

min(η, 1− pt)



If β
1−β − c

η  0, V (p0)  p0
1−β = V 0(p0) ⇒ no ad.

If β
1−β − c

η > 0:

If pt  1− c 1−β
β , then β

1−β − c
min(η,1−pt)

 0 ⇒ no ad after pt .

If pt ∈ [1− η, 1− c 1−β
β [, then


s  t β

s(ps+1 − ps)


β
1−β − c

min(η,1−ps )



 βt(1− pt)


β
1−β − c

min(η,1−pt)



⇒ qt = 1 and qs = 0 for s > t.
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Analytical resolution

Sketch of the proof

Still in the case β
1−β − c

η > 0:
If pt  1− η:
assuming pt+1  1− η,
gain between pt and pt+2:

pt − c
pt+1 − pt

η
+ β


pt+1 − c

pt+2 − pt+1

η



Derivative in pt+1: − c
η + β(1 + c

η ) = (1− β)( β
1−β − c

η ) > 0.

⇒ pt+1 can’t be moved to the right (would contradict optimality).
Implies

if pt  1− 2η, pt+1 = pt + η.

if 1− 2η < pt  1− η, pt+1  1− η
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Analytical resolution

Sketch of the proof

Only thing left:
If 1− 2η < pt  1− η, where is pt+1 in [1− η, pt + η]?
Notice: pt+1 known ⇒ rest of the trajectory known ⇒ V (pt+1) known.
DPP ⇒ Maximize pt − c pt+1−pt

η + βV (pt+1) over

pt+1 ∈ [1− η, pt + η] ⇒ Simple.
⇒ Disjunction between c

η > β and c
η  β.
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Variant: fast targeted advertising

Issue with previous application: Control happens too late
Nowadays: ad displayed between forum reading and choice

⇒ αt should depend on εt+1

Problem: not adapted!
Solution: αt valued in A[0,1]

⇒ Explicit solution: ”Bang-Bang” control.

c < β
1−β → send ad to all ”hesitating” individual.

c  β
1−β → send no ad.
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Thank you for your attention!
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