High Frequency Data - Part I # 12th European Summer School in Financial Mathematics Roberto Renò September 4-6, 2019 #### Menu Frictions - EXcess Idle Time (EXIT) and zeros - An economic model of price formation featuring zeros - Rounding and excess staleness - Asset pricing applications Call $X_t = \log(P_t)$. • The (ubiquitous) Ito semimartingale: $$X_t = X_0 + \int_0^t \mu_s \, ds + \int_0^t \sigma_s \, dW_s + \sum_{j=1}^{N_t} \gamma_j.$$ • Market microstructure on a partition of *n* points $t_{0,n} = 0 < t_{1,n} < ... < t_{n,n} = 1$. $$\widetilde{X}_{t_{j,n}} = X_{t_{j,n}} + \varepsilon_{j,n}.$$ • If we really observe $\widetilde{X}_{t_{i,n}}$ then $$\sum_{j=1}^{n} \left(\widetilde{X}_{t_{j,n}} - \widetilde{X}_{t_{j-1,n}} \right)^{2} \stackrel{\mathsf{p}}{\longrightarrow} + \infty, \quad \sum_{j=1}^{n-1} \left| \widetilde{X}_{t_{j,n}} - \widetilde{X}_{t_{j-1,n}} \right| \left| \widetilde{X}_{t_{j+1,n}} - \widetilde{X}_{t_{j,n}} \right| \stackrel{\mathsf{p}}{\longrightarrow} + \infty.$$ ### What do data tell us? # Empirical evidences #### The dataset Our data consists of all trades of 249 NYSE-listed stocks, recorded from 9:30 a.m. to 4 p.m., for the years 2006-2014. We employ the 249 stocks with the largest average traded volume during the period. Given our focus on the NYSE-listed stocks with the largest traded volume, i.e., those whose prices are expected to be the least inactive, our findings can be viewed as being conservative. Consider a stochastic process $X_t = \ln(p_t)$ (the log-price) observed over [0, T]. Consider a partition: (you can assume, for simplicity, times being equally spaced) Idle Time $$IT = \sum_{i=1}^{n} (t_i - t_{i-1}) \mathbb{1}_{\{|X_{t_i} - X_{t_{i-1}}| \leq \xi_n\}}.$$ #### Features of Idle Time - We think of ξ_n as a vanishing sequence $(\xi_n \to 0)$. - $IT \in [0, 1]$ - Under a frictionless Itō semimartingale null, there is still a (vanishing, as $n \to \infty$) probability of sluggish behavior! #### **EXcess Idle Time** The quantity is named EXcess Idle Time (EXIT) and is designed to be centered around zero. Assume $\mu \equiv 0$ and $\sigma_s \equiv \sigma_0$. $$X_t = X_0 + \sigma_0 W_t$$ Consider an equispaced partition $\Delta_n = 1/n$ and a sequence $\xi_n \to 0$. Expand in ξ_n $$F(\xi_n) \doteq \mathbb{P}\left[|X_{\Delta_n} - X_0| \leqslant \xi_n\right] = \mathbb{P}\left[\sigma_0 \mid W_{\Delta_n}| \leqslant \xi_n\right] = \mathbb{P}\left[\frac{|W_{\Delta_n}|}{\sqrt{\Delta_n}} \leqslant \frac{\xi_n}{\sigma_0 \sqrt{\Delta_n}}\right]$$ $$= \mathbb{P}\left[|u| \leqslant \frac{\xi_n}{\sigma_0 \sqrt{\Delta_n}}\right] = 2 \int_0^{\frac{\xi_n}{\sigma_0 \sqrt{\Delta_n}}} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx.$$ $$G(\xi) = \int_{0}^{\frac{\xi}{\sigma_{0}\sqrt{\Delta_{n}}}} e^{-\frac{x^{2}}{2}} dx \Rightarrow \begin{cases} G(0) &= 0 \\ G'(\xi) &= \frac{1}{\sigma_{0}\sqrt{\Delta_{n}}} e^{-\frac{\xi^{2}}{2\sigma_{0}^{2}\Delta_{n}}} \Rightarrow G'(0) = \sigma_{0}^{-1} \Delta_{n}^{-1/2} \\ G''(\xi) &= -\frac{\xi}{\sigma_{0}^{3} \Delta^{3/2}} e^{-\frac{\xi^{2}}{2\sigma_{0}^{2}\Delta_{n}}} \xi \Rightarrow G''(0) = 0 \\ G'''(\xi) &= \frac{e^{-\frac{\xi^{2}}{2\sigma_{0}^{2}\Delta_{n}}} (\xi^{2} - \sigma_{0}^{2}\Delta_{n})}{\sigma_{0}^{5} \Delta_{n}^{5/2}} \Rightarrow G'''(0) = -\left(\sigma_{0}^{-1} \Delta_{n}^{-1/2}\right)^{3} \end{cases}$$ $G\left(\xi\right) = \frac{\xi}{\sigma_0 \Lambda_n^{1/2}} + O\left(\left(\frac{\xi}{\sigma_0 \Lambda_n^{1/2}}\right)^3\right) \Rightarrow F\left(\xi_n\right) = \sqrt{\frac{2}{\pi}} \frac{\Delta_n^{-1/2} \xi_n}{\sigma_0} + O\left(\left(\Delta_n^{-1/2} \xi_n\right)^3\right).$ #### Jacod's theorem Let $Y_{j,n} \in \mathcal{F}_{t_{j,n}}$. $\mathbb{E}\left[Y_{t_{j,n}}^2\right] < \infty$. Assume that the following conditions are satisfied $\forall t \in [0, T]$: - $\begin{array}{l} \mbox{\Large \Large \ \ } \sum_{t_j \leqslant t} \mathbb{E} \left[\left. Y_{t_{j,n}} \left(N_{t_{j,n}} N_{t_{j-1,n}} \right) \right. \right| \mathcal{F}_{t_{j-1,n}} \right] \stackrel{p}{\longrightarrow} 0, \mbox{ for all bounded } \mathcal{F}_t \mbox{-martingales with } \\ N_0 = 0 \mbox{ and } \left[\mathcal{W}, N \right]_s \equiv 0, \end{array}$ where v_s and w_s are predictable processes, W a brownian motion. Then $$\sum_{t_j \leqslant t} Y_{t_{j,n}} \xrightarrow{st} \int_0^t v_s dW_s + \int_0^t w_s dW_s',$$ where W' is a Brownian motion independent of W. $$X_{\Delta_n}-X_0=\int_0^{\Delta_n}\mu_s\,ds+\int_0^{\Delta_n}\sigma_s\,dW_s.$$ By using a Taylor expansion of the characteristic function of X_{Δ_n} we get $$\mathbb{E}_0\left[\mathbb{1}_{\left\{\left|X_{\Delta_n}-X_0\right|\leqslant \xi_n\right\}}\right] = \sqrt{\frac{2}{\pi}}\,\frac{\xi_n\,\Delta_n^{-1/2}}{\sigma_0} + O_p\left(\left(\xi_n\,\Delta_n^{-1/2}\right)^3\right),$$ whence (define $\Delta_j X = X_{t_{j,n}} - X_{t_{j-1,n}}$ and t = T = 1) $$\frac{1}{n} \sum_{j=1}^{n} \mathbb{E}_{j-1} \left[\mathbb{1}_{\left\{ \left| \Delta_{j} X \right| \leq \xi_{n} \right\}} \right] = \sum_{j=1}^{n} \Delta_{n} \left(\sqrt{\frac{2}{\pi}} \frac{\xi_{n} \Delta_{n}^{-1/2}}{\sigma_{j-1}} + O_{p} \left(\xi_{n}^{3} \Delta_{n}^{-3/2} \right) \right) \\ = \left(\xi_{n} \sqrt{n} \right) \sqrt{\frac{2}{\pi}} \int_{0}^{1} \frac{ds}{\sigma_{s}} + O_{p} \left(\xi_{n}^{3} n^{3/2} \right) \xrightarrow{p} 0.$$ So if $\xi_n n^{7/10} \rightarrow 0$ $$\frac{n^{1/4}}{\xi_n^{1/2}} \sum_{j=1}^n \left(\Delta_n \, \mathbb{1}_{\left\{ |\Delta_j X| \leqslant \xi_n \right\}} - \sqrt{\frac{2}{\pi}} \, \frac{\xi_n \, \Delta_n^{1/2}}{\sigma_{j-1}} \right) = O_p \left(\left(\xi_n \, n^{7/10} \right)^{5/2} \right) \stackrel{\mathsf{p}}{\longrightarrow} 0.$$ Define $Y_{j,n} = \frac{n^{1/4}}{\xi_n^{1/2}} \left(\Delta_n \, \mathbb{1}_{\left\{ |\Delta_j X| \leqslant \xi_n \right\}} - \sqrt{\frac{2}{\pi}} \, \frac{\xi_n \, \Delta_n^{1/2}}{\sigma_{j-1}} \right)$ and the first condition of Jacod theorem is met. Second condition is $$\sum_{j=1}^{n} \left(\mathbb{E}\left[\left. Y_{t_{j,n}}^{2} \; \right| \; \mathcal{F}_{t_{j-1,n}} \right] - \mathbb{E}\left[\left. Y_{t_{j,n}} \; \right| \; \mathcal{F}_{t_{j-1,n}} \right]^{2} \right) \overset{p}{\longrightarrow} \int_{0}^{T} \left(a_{s}^{2} + b_{s}^{2} \right) \; ds,$$ where the array $Y_{t_{i,n},n}$ is in our case $$Y_{t_{j,n},n} = \frac{n^{1/4}}{\xi_n^{1/2}} \left(\Delta_n \mathbb{1}_{\left\{ \left| \Delta_j X \right| \leqslant \xi_n \right\}} - \sqrt{\frac{2}{\pi}} \, \frac{\xi_n \, \Delta_n^{1/2}}{\sigma_{j-1}} \right).$$ Again, using the Taylor expansion $$\psi_{j,n} = \mathbb{E}_{j-1} \left[\mathbb{1}_{\left\{ \left| X_{j\Delta_n} - X_{(j-1)\Delta_n} \right| \leqslant \xi_n \right\}} \right] = \sqrt{\frac{2}{\pi}} \frac{\xi_n \Delta_n^{-1/2}}{\sigma_0} + O_p \left(\left(\xi_n \Delta^{-1/2} \right)^3 \right).$$ we get $$\sum_{j=1}^{n} \left(\mathbb{E}\left[Y_{t_{j,n}}^{2} \mid \mathcal{F}_{t_{j-1,n}} \right] - \mathbb{E}\left[Y_{t_{j,n}} \mid \mathcal{F}_{t_{j-1,n}} \right]^{2} \right) \xrightarrow{p} \sqrt{\frac{2}{\pi}} \int_{0}^{1} \frac{1}{\sigma_{s}} ds.$$ The asymptotic variance is inversely proportional to the spot volatility. The third condition of the Jacod's theorem is $$\sum_{j=1}^n \mathbb{E}\left[Y_{t_{j,n}} \, \Delta_j W \mid \mathcal{F}_{t_{j-1,n}}\right] \stackrel{p}{\longrightarrow} \int_0^T a_s \, ds.$$ Notice that $\mathbb{E}\left[Y_{t_{j,n}}\Delta_{j}W\mid\mathcal{F}_{t_{j-1,n}}\right]=\frac{n^{1/4}}{\xi_{n}^{1/2}}\mathbb{E}\left[\Delta_{n}\mathbb{1}_{\left\{\left|X_{j\Delta_{n}}-X_{(j-1)\Delta_{n}}\right|\leqslant\xi_{n}\right\}}\Delta_{j}W\mid\mathcal{F}_{t_{j-1,n}}\right]$ and use Hölder's inequality to get $$\sum_{j=1}^{n} \mathbb{E}_{j-1} \left[Y_{t_{j,n}} \Delta_{j} W \right] \leqslant \left(\frac{\sqrt{n}}{\xi_{n}} \right)^{1/2} \sum_{j=1}^{n} \Delta_{n,j} \left(\psi_{j,n} \right)^{1/p} \left(\mathbb{E}_{j-1} \left[|\Delta_{j} W|^{\frac{p}{p-1}} \right] \right)^{\frac{p-1}{p}}.$$ Since $$\mathbb{E}_{j-1}\left[\left| \Delta_j W \right|^{\frac{p}{p-1}} \right] = \pi^{-1/2} \, 2^{p/(2 \, (p-1))} \left(\Delta_{n,j}^{1/2} \right)^{p/(p-1)} \Gamma\left(\frac{2 \, p - 1}{2 \, (p-1)} \right),$$ the red quantity becomes $$2^{1/2} \pi^{\frac{1-p}{2p}} \Gamma\left(\frac{2p-1}{2(p-1)}\right)^{\frac{p-1}{p}} \left(\frac{\sqrt{n}}{\xi_n}\right)^{1/2} \sum_{j=1}^n \Delta_{n,j} (\psi_{j,n})^{1/p} \Delta_{n,j}^{\frac{1}{2}}$$ $$= O_p(n^{1/4} \xi_n^{-1/2} n n^{-1} \xi_n^{1/p} n^{1/(2p)} n^{-1/2}) = O_p(n^{1/(2p)-1/4} \xi_n^{1/p-1/2}).$$ In summary $$\sum_{j=1}^{n} \mathbb{E}\left[Y_{t_{j,n}} \Delta_{j} W \mid \mathcal{F}_{t_{j-1,n}}\right] = O_{p}(n^{1/(2p)-1/4} \xi_{n}^{1/p-1/2}).$$ Take p = 3/2 (any p > 1 is ok for Hölder) to have $$\sum_{j=1}^{n} \mathbb{E}\left[Y_{t_{j,n}} \Delta_{j} W \mid \mathcal{F}_{t_{j-1,n}}\right] = O_{p}((\xi_{n} n^{1/2})^{1/6}).$$ Since, by hypothesis, $\xi_n n^{7/10} \rightarrow 0$ then $$\xi_n \, n^{1/2} = \frac{\xi_n \, n^{7/10}}{n^{1/5}} \to 0.$$ Hence the condition $$\sum_{j=1}^{n} \mathbb{E}\left[Y_{t_{j,n}} \Delta_{j} W \mid \mathcal{F}_{t_{j-1,n}}\right] \stackrel{p}{\longrightarrow} \int_{0}^{T} a_{s} ds$$ is satisfied with $a \equiv 0$. # The Lindeberg condition $$\sum_{j=1}^n \mathbb{E}\left[\left.Y_{t_{j,n}}^2\,\mathbb{1}_{\left\{\left|Y_{t_{j,n}}\right|>\varepsilon\right\}}\;\right|\,\mathcal{F}_{t_{j-1,n}}\right] \overset{p}{\longrightarrow} 0,$$ is verified by proving the stronger condition $$\sum_{j=1}^{n} \mathbb{E}\left[Y_{t_{j,n}}^{4} \mid \mathcal{F}_{t_{j-1,n}}\right] \stackrel{p}{\longrightarrow} 0$$ that is $$\frac{n}{\xi_n^2} \sum_{j=1}^n \mathbb{E}\left[\left(\Delta_n \mathbb{1}_{\left\{\left|\Delta_j X\right| \leqslant \xi_n\right\}} - \sqrt{\frac{2}{\pi}} \frac{\xi_n \Delta_n^{1/2}}{\sigma_{j-1}}\right)^4 \,\middle|\, \mathcal{F}_{t_{j-1,n}}\right] \stackrel{\mathsf{p}}{\longrightarrow} 0.$$ (tedious but easy) # The representation theorem ## **Theorem** **Itô-Clark representation**. Let X be a random variable and W be a Brownian motion defined on the filtered probability space $\left(\Omega,\mathcal{F},\left(\mathcal{F}_{t}\right)_{t\in[0,T]},\mathbb{P}\right)$. If X is \mathcal{F}_{T} -measurable, then there exists an almost unique process $\eta\in\mathbb{L}^{2}\left(\mathcal{F}_{t}\right)$ such that $$X = \mathbb{E}[X] + \int_0^T \eta_s dW_s.$$ To prove $\sum_{i=1}^{n} \mathbb{E}_{j-1} \left[Y_{t_{i,n}} \Delta_{j} N \right] \stackrel{P}{\longrightarrow} 0$ for all N such that $[W, N]_{s} \equiv 0$ consider $$\begin{split} \frac{n^{1/4}}{\xi_n^{1/2}} & \sum_{j=1}^n \mathbb{E}_{j-1} \left[\left(\Delta_n \, \mathbb{1}_{\left\{ | \Delta_j X | \leqslant \xi_n \right\}} - \sqrt{\frac{2}{\pi}} \, \frac{\xi_n \, \Delta_n^{1/2}}{\sigma_{j-1}} \right) \Delta_j N \right] = \\ \frac{n^{1/4}}{\xi_n^{1/2}} & \sum_{j=1}^n \mathbb{E}_{j-1} \left[\left(\Delta_n \, \mathbb{1}_{\left\{ | \Delta_j X | \leqslant \xi_n \right\}} - \mathbb{E}_{j-1} \left[\Delta_n \, \mathbb{1}_{\left\{ | \Delta_j X | \leqslant \xi_n \right\}} \right] + \\ + \mathbb{E}_{j-1} \left[\Delta_n \, \mathbb{1}_{\left\{ | \Delta_j X | \leqslant \xi_n \right\}} \right] - \sqrt{\frac{2}{\pi}} \, \frac{\xi_n \, \Delta_n^{1/2}}{\sigma_{j-1}} \right) \Delta_j N \right] = \sum_{j=1}^n \mathbb{E}_{j-1} \left[\left(A_{j,n} + B_{j,n} \right) \, \Delta_j N \right]. \\ A_{j,n} &= \frac{n^{1/4}}{\xi_n^{1/2}} \left(\Delta_n \, \mathbb{1}_{\left\{ | \Delta_j X | \leqslant \xi_n \right\}} - \mathbb{E}_{j-1} \left[\Delta_n \, \mathbb{1}_{\left\{ | \Delta_j X | \leqslant \xi_n \right\}} \right] \right) = \int_{t_{j-1,n}}^{t_{j,n}} \eta_s^{(n)} \, dW_s \Rightarrow \\ \text{and } \sum_{j=1}^n \mathbb{E}_{j-1} \left[A_{j,n} \, \Delta_j N \right] = 0. \text{ By Taylor expansion...} \\ \sum_{j=1}^n \mathbb{E}_{j-1} \left[B_{j,n} \, \Delta_j N \right] = \frac{n^{1/4}}{\xi_n^{1/2}} \sum_{j=1}^n \mathbb{E}_{j-1} \left[\left(\mathbb{E} \left[\Delta_n \, \mathbb{1}_{\left\{ | \Delta_j X | \leqslant \xi_n \right\}} \right] - \sqrt{\frac{2}{\pi}} \, \frac{\xi_n \, \Delta_n^{1/2}}{\sigma_{j-1}} \right) \, \Delta_j N \right] \stackrel{\mathsf{p}}{\longrightarrow} 0. \end{split}$$ Assumption (the price process under the alternative). The observed log-price process $\{X_t; t \ge 0\}$ is such that $X_{t_0} = X_{t_0}^e$ and, for j = 2, ..., n, $$X_{t_{j,n}} = X_{t_{j,n}}^e (1 - B_{j,n}) + B_{j,n} X_{t_{j-1,n}},$$ where $X_{t_{j,n}}^{e}$ is an Ito semimartingale $$dX_t^e = \mu_t dt + \sigma_s dW_s,$$ and $B_{j,n}$ is a triangular array of (not necessarily independent) $\mathcal{F}_{jT/n}$ — measurable Bernoulli variates so that $$\frac{1}{T}\sum_{i=1}^{n}\Delta_{n}\,B_{j,n}\xrightarrow[n\to\infty]{p}p^{F},$$ where $p^F \in]0,1]$. Moreover, denoting by K_n the supremum of the number of consecutive flat trades, we have $$\frac{K_n}{n} \xrightarrow[n \to \infty]{p} 0.$$ 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 The alternative: price staleness or inhibition of the trading activity Under the alternative $$X_{t_{j,n}} - X_{t_{j-1,n}} = (X_{t_{i,n}}^e - X_{t_{j-1,n}})(1 - B_{j,n})$$ so that we can write $$\Pi T_{n} = \frac{1}{T} \sum_{j=1}^{n} \Delta_{n} \mathbb{1}_{\left\{|X_{j\Delta} - X_{(j-1)\Delta}| \leq \xi_{n}\right\}} = \frac{1}{T} \sum_{j=1}^{n} \Delta_{n} \mathbb{1}_{\left\{|(X_{j\Delta}^{e} - X_{(j-1)\Delta})(1 - B_{j,n})| \leq \xi_{n}\right\}}$$ $$= \underbrace{\sum_{j=1}^{n} \Delta_{n} B_{j,n}}_{A_{n}} + \underbrace{\frac{1}{T} \sum_{j=1}^{n} (1 - B_{j,n}) \Delta_{n} \mathbb{1}_{\left\{|X_{j\Delta}^{e} - X_{(j-1)\Delta}| \leq \xi_{n}\right\}}}_{B_{n}}.$$ By hypothesis $A_n = \sum_{i=1}^n \Delta_n B_{j,n} \stackrel{p}{\longrightarrow} p_F$. Concerning B_n define: $$K_{j,n} = \min \{ k \in \{0,\ldots,j\} \mid B_{j,n} = 1, B_{j-1,n} = 1,\ldots, B_{j-k+1,n} = 1, B_{j-k,n} = 0 \}.$$ $K_n \doteq \max_{j=1,...,n} K_{j,n}$, which, by assumption $$\frac{K_n}{n} \stackrel{p}{\longrightarrow} 0$$, as $n \to \infty$, (although this property is used only in the case with noise included in X^e). The alternative: price staleness or inhibition of the trading activity Hence, since $t_{j,n} - t_{j-1-K_{i-1},n} \geqslant t_{j,n} - t_{j-1,n} = \Delta_n$, we get $$\begin{split} & \mathbb{E}\left[\mathbf{1}_{\{|X_{t_{j,n}}^{e}-X_{t_{j-1,n}}|\leqslant\xi_{n}\}}\right] = \mathbb{E}\left[\mathbf{1}_{\{|X_{t_{j,n}}^{e}-X_{t_{j-1-K_{j-1,n}}^{e}}|\leqslant\xi_{n}\}}\right] \\ & = & \mathbb{E}\left[\mathbb{E}\left[\mathbf{1}_{\{|X_{t_{j,n}}^{e}-X_{t_{j-1-K_{j-1,n}}^{e}}|\leqslant\xi_{n}\}} \,\middle|\, K_{j-1}\right]\right] \\ & = & \mathbb{E}\left[\sqrt{\frac{2}{\pi}}\frac{\xi_{n}}{\sqrt{(t_{j,n}-t_{j-1-K_{j-1,n}})}}\frac{1}{\sigma_{t_{j-1-K_{j-1,n}}}} + O_{p}\left(\frac{\xi_{n}^{3}}{(t_{j,n}-t_{j-1-K_{j-1,n}})^{3/2}}\right)\right] \\ & \leqslant & \mathbb{E}\left[\sqrt{\frac{2}{\pi}}\frac{\xi_{n}}{\sqrt{\Delta_{n}}}\frac{1}{\sigma_{t_{j-1-K_{j-1,n}}}} + O_{p}\left(\frac{\xi_{n}^{3}}{\Delta_{n}^{3/2}}\right)\right] \leqslant \sqrt{\frac{2}{\pi}}\frac{1}{C_{2}}\frac{1}{\sqrt{C_{4}}}\xi_{n}n^{1/2} = C\,\xi_{n}n^{1/2}. \end{split}$$ Hence $$B_n = \frac{1}{T} \sum_{i=1}^n (1 - B_{j,n}) \Delta_n \mathbb{1}_{\left\{|X_{j\Delta}^e - X_{(j-1)\Delta}| \leq \xi_n\right\}} \leqslant \frac{1}{T} \sum_{i=1}^n \Delta_n \mathbb{1}_{\left\{|X_{j\Delta}^e - X_{(j-1)\Delta}| \leq \xi_n\right\}} \leqslant C \, \xi_n n^{1/2} \stackrel{\mathsf{p}}{\longrightarrow} 0.$$ In summary $$\text{EXIT}_{n} = \sum_{j=1}^{n} \left(\overbrace{\Delta_{n} \mathbb{1}_{\left\{ \left| X_{j} \Delta - X_{(j-1)} \Delta \right| \leq \xi_{n} \right\}}}^{\underline{p} \cdot p_{F}} - \overbrace{\sqrt{\frac{2}{\pi}} \frac{\xi_{n} \sqrt{\Delta_{n}}}{\sigma_{t_{j-1}}}}^{\underline{p} \cdot 0} \right) \xrightarrow{\underline{p}} p_{F} \text{ under } \mathcal{H}_{A}$$ # Asymptotic theory for Excess Idle Time $$\mathcal{H}_{0}: X_{t} = X_{t}^{e} = \int_{0}^{t} \mu_{s} \, ds + \int_{0}^{t} \sigma_{s} \, dW_{s}, \quad \mathcal{H}_{A}: X_{j \, \Delta} = X_{j \, \Delta}^{e} (1 - B_{j,n}) + B_{j,n} X_{(j-1) \, \Delta}$$ **Theorem 1.** (Consistency) As $n \to \infty$, let $\xi_n \to 0$ in such a way that $\xi_n \sqrt{n} \to 0$. Then, $$\mathrm{IT} = \sum_{j=1}^n \Delta_n \mathbf{1}_{\{|X_{t_{j,n}} - X_{t_{j-1,n}}| \leqslant \xi_n\}} \overset{p}{\to} \left\{ \begin{array}{cc} 0 & \text{under } \mathcal{H}_0 \\ p^F & \text{under } \mathcal{H}_A \end{array} \right..$$ (Stable conv.) As $n \to \infty$, let $\xi_n \to 0$ in such a way that $n^{7/10}\xi_n \to 0$ and $\xi_n n^{3/2} \to \infty$. Under \mathcal{H}_0 : $$\begin{split} \frac{n^{1/4}}{\xi_n^{1/2}} \mathrm{EXIT} & = & \frac{n^{1/4}}{\xi_n^{1/2}} \sum_{j=1}^n \left(\Delta_n \mathbf{1}_{\{|X_{t_{j,n}} - X_{t_{j-1,n}}| \leqslant \xi_n\}} - \sqrt{\frac{2}{\pi}} \frac{\xi_n \sqrt{\Delta_{n,j}}}{\sigma_{t_{j-1,n}}} \right) \\ \stackrel{\text{stably}}{\Longrightarrow} & MN \left(0, \sqrt{\frac{2}{\pi}} \int_0^1 \frac{1}{\sigma_s} ds \right). \end{split}$$ Under \mathcal{H}_A : $$\frac{n^{1/4}}{\xi_n^{1/2}} \text{EXIT} \stackrel{p}{\to} \infty.$$ # Micro-structural noise: asymptotic theory for Excess Idle Time $$\mathcal{H}_0': X_t = \widetilde{X}_t^e = \int_0^t \mu_s \, ds + \int_0^t \sigma_s \, dW_s + \eta_t, \quad \mathcal{H}_A': X_{j\,\Delta} = \widetilde{X}_{j\,\Delta}^e (1 - B_{j,n}) + B_{j,n} X_{(j-1)\,\Delta}$$ **Theorem 2.** (Consistency) As $n \to \infty$, let $\xi_n \to 0$. Then, $$\mathrm{IT} = \sum_{j=1}^{n} \Delta_{n} \mathbf{1}_{\{|X_{t_{j,n}} - X_{t_{j-1,n}}| \leqslant \xi_{n}\}} \overset{p}{\rightarrow} \left\{ \begin{array}{cc} 0 & \textit{under \mathcal{H}'_{0}} \\ p^{\textit{F}} & \textit{under \mathcal{H}'_{A}} \end{array} \right.$$ (Stable conv.) As $n \to \infty$, let $\xi_n \to 0$ in such a way that $n^5 \xi_n \to 0$ and $\xi_n n \to \infty$. Under \mathcal{H}_0 : $$\frac{n^{1/2}}{\xi_n^{1/2}} \text{EXIT} \qquad = \qquad \frac{n^{1/2}}{\xi_n^{1/2}} \sum_{j=1}^n \left(\Delta_n \mathbf{1}_{\{|X_{t_{j,n}} - X_{t_{j-1,n}}| \leqslant \xi_n\}} - \sqrt{\frac{2}{\pi}} \frac{\xi_n \sqrt{\Delta_{n,j}}}{\sqrt{2} \sigma_\eta} \right)$$ $$\stackrel{\text{stably}}{\Rightarrow} \quad \mathcal{N} \left(0, \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{2} \sigma_\eta} \right).$$ Under \mathcal{H}_A : $$\frac{n^{1/2}}{\xi_n^{1/2}} \text{EXIT} \stackrel{p}{\to} \infty.$$ # Illiquidity frictions. frictionless world. Transaction costs: assets are not easily exchanged ⇒ prices staler than in a - Informed traders: if transaction costs increase ⇒ less trading opportunity ⇒ prices even more stale! - Staleness should be correlated with execution costs and asymmetric information. - Measure illiquidity as the excess (w.r.t. a frictionless world) of "small" log-price returns. - Efficient unobserved log-price process $dp_t^e = \sigma dW_t$. - Mid-quote is common knowledge: $m_t = m_{t-1} + \delta(p_t^e m_{t-1})$. PAIT $\stackrel{def}{=}$ Probability of arrival of informed traders. - ullet Noise traders (arrive with probability $1-\mathsf{PAIT}$) and toss a coin $$p_t = m_t \pm s$$, $s = \text{half bid-ask spread}$. ullet Informed traders know p_t^e and face total execution costs $$c = s + f$$, $f =$ "funding liquidity". Informed traders trade iff they face a profit net of execution costs c, hence $$p_t = m_t + (p_{t-1} - m_t) \, \mathbf{1}_{\left\{ \left| p_t^e - m_t \right| \leqslant c \right\}} + s \, \mathbf{1}_{\left\{ p_t^e - m_t > c \right\}} - s \, \mathbf{1}_{\left\{ p_t^e - m_t < -c \right\}}$$ • $p_F = \text{function } (\text{PAIT}, s, f, \sigma).$ Figure: EXIT is computed on 5-minute intervals (with $\xi=\frac{1}{20}\sigma$) and plotted as a function of the execution cost c (standardized by the bid-ask spread s) and PAIT, the probability of arrival of informed traders. The parameters δ and s are mean (daily) estimates from data: $\delta=0.0118$ and $s=1.8654\cdot 10^{-4}$. Empirical application: indirect inference. Assume to have $\{p_1,...,p_t\}$ observed intra-day (e.g. 5-minutes) transaction prices. Indirect inference á la Gourieroux, Monfort, Renault (1993) Estimate parameters of micro-structural model by matching observed moments with model-implied ones. - The variance of one-minute returns, \mathcal{M}_1 . - ullet The first-order auto-covariance of one-minute returns, \mathcal{M}_2 . - The variance of five-minute returns, \mathcal{M}_3 . - EXIT computed with one-minute returns, \mathcal{M}_4 . - EXIT computed with two-minute returns, \mathcal{M}_5 . Trades may occur within the spread \Rightarrow it is unsurprising to find estimated effective spreads which are, on average and for virtually each day, smaller than the corresponding half quoted spreads. ## Dealing with rounding • Express the latent price P_t as the discretized analogue (over an interval of length Δ) of the local martingale $$P_t = \int_0^t \sigma_s P_s dW_s.$$ • Assume the traded price \overline{P}_t can be only observed as a multiple of a fixed quantity d (e.g., for NYSE-listed stocks d is one cent) and \overline{P}_t is obtained by rounding P_t to the nearest value in the set $\{0,d,2d,\ldots,kd,\ldots\}$. For the time being, we de-activate the Bernoulli variates and set them equal to zero. The probability that $\overline{P}_{(i+1)\Delta_n} - \overline{P}_{i\Delta_n} = kd$, conditional on spot volatility $\sigma_{i\Delta_n}$, the rounded price $\overline{P}_{i\Delta_n}$ and the displacement value $x_{i\Delta_n}$, where $\overline{P}_{i\Delta_n} = P_{i\Delta_n} - x_{i\Delta_n}$ with $-d/2 < x_{i\Delta_n} < d/2$, is $$\begin{split} & \mathbb{P}\left[\overline{P}_{i\Delta_{n}} + kd - \frac{d}{2} < P_{(i+1)\Delta_{n}} < \overline{P}_{i\Delta_{n}} + kd + \frac{d}{2} \mid \sigma_{i\Delta_{n}}, \overline{P}_{i\Delta_{n}}, x_{i\Delta_{n}}\right] \\ & = & \mathbb{P}\left[P_{i\Delta_{n}} + kd - \frac{d}{2} - x_{i\Delta_{n}} < P_{(i+1)\Delta_{n}} < P_{i\Delta_{n}} + kd + \frac{d}{2} - x_{i\Delta_{n}} \mid \sigma_{i\Delta_{n}}, \overline{P}_{i\Delta_{n}}, x_{i\Delta_{n}}\right] \\ & \approx & \int_{kd - \frac{d}{2} - x_{i\Delta_{n}}}^{kd + \frac{d}{2} - x_{i\Delta_{n}}} \frac{e^{-\frac{z^{2}}{2\sigma_{i\Delta_{n}}^{2}}(\overline{P}_{i\Delta_{n}} + x_{i\Delta_{n}})^{2}\Delta_{n}}}{\sqrt{2\pi\sigma_{i\Delta_{n}}^{2}(\overline{P}_{i\Delta_{n}} + x_{i\Delta_{n}})^{2}\Delta_{n}}} dz = \int_{kd - \frac{d}{2} - x_{i\Delta_{n}}}^{kd + \frac{d}{2} - x_{i\Delta_{n}}} \frac{e^{-\frac{z^{2}}{2\sigma_{i\Delta_{n}}^{2}}}}{\sqrt{2\pi\frac{d^{2}}{\zeta_{i\Delta_{n}}^{2}}}} dz, \end{split}$$ where $\zeta_{i\Delta_n} = d/(\sigma_{i\Delta_n}P_{i\Delta_n}\sqrt{\Delta_n})$ is a "rounding impact ratio" defined as the magnitude of price discreteness (i.e., d) relative to the volatility of the return process over Δ_n (i.e., $\sigma_{i\Delta_n}P_{i\Delta_n}\sqrt{\Delta_n}$). - Assume that $x = P \overline{P}$ is uniformly distributed over [-d/2, d/2]. - We set $\zeta_{i\Delta_n} = \zeta_{\Delta_n}$. - Integrating x out, we evaluate the probability $p_{\Delta_n}^{k,R}(\zeta_{\Delta_n})$ of observing a k-tick movement over an interval Δ_n by virtue of $$\begin{split} p_{\Delta_n}^{k,R}(\zeta_{\Delta_n}) = & \qquad (k-1)\mathrm{erf}\left(\frac{(k-1)\zeta_{\Delta_n}}{\sqrt{2}}\right) - 2k\cdot\mathrm{erf}\left(\frac{k\zeta_{\Delta_n}}{\sqrt{2}}\right) \\ & \qquad + (1+k)\mathrm{erf}\left(\frac{(k+1)\zeta_{\Delta_n}}{\sqrt{2}}\right) \\ & \qquad + \sqrt{\frac{2}{\pi}}\left(e^{-\frac{1}{2}(1+k)^2\zeta_{\Delta_n}^2}\left(1+e^{2k\zeta_{\Delta_n}^2} - 2e^{-\frac{1}{2}(1+2k)\zeta_{\Delta_n}^2}\right)\right)\frac{1}{\zeta_{\Delta_n}}, \end{split}$$ where $k = 0, \pm 1, \ldots$ and the symbol $\operatorname{erf}(x)$ defines the Gaussian error function. Re-activating staleness through independent Bernoulli variates, the probability of a k-tick movement becomes $$\tilde{p}_{\Delta_n}^{k,R}(\zeta_{\Delta_n}, p_n) = p_n \mathbb{1}_{\{k=0\}} + \sum_{i=0}^{\infty} (1 - p_n)^2 p_n^j \cdot p_{\Delta_n}^{k,R} \left(\zeta_{\Delta_n} / \sqrt{j+1} \right). \tag{0.1}$$ ## Simulations ## The "illiquid" case # Average excess staleness vs average idleness #### Relation with trading volume #### Relation with bid-ask spread • Excess staleness satisfies the following cross-sectional regression: $$\hat{\rho}_n = \underset{(7.00)}{0.807} - \underset{(-18.10)}{0.085} < \log DV > +0.012 < \text{bid-ask} > -\underset{(-10.90)}{0.065} < \log RV > +\hat{\varepsilon},$$ where we regress (across stocks) averages of daily estimates of 30-second excess staleness, \hat{p}_n , on averages of daily logarithmic dollar volume, $< \log DV >$, averages of logarithmic bid-ask spreads, $< \operatorname{bid-ask} >$ in basis points, and averages of daily logarithmic 5-minute realized variances, $< \log RV >$. - This is slightly puzzling. - But if we take into account volume clustering: $$\begin{split} \hat{\rho}_n = & 3.389 - \underset{(12.98)}{0.091} < \log DV > +0.003 < \text{bid-ask} > -0.002 < \log RV > \\ & +0.276 < \log CV > +\hat{\varepsilon}. \end{split}$$ where we insert the logarithmic coefficient of variation $< \log CV >$ of volume. - We construct an excess staleness factor in a traditional way. At time t, we sort stocks into deciles using the excess staleness observed over the previous month. We then construct equally-weighted decile portfolios. The excess staleness factor is the difference between the return on the top-decile portfolio and the return on the bottom-decile portfolio, which we label as R_{ES,t}. - We use monthly rebalancing (22 days) and regress the monthly returns of this long-short strategy on a state-of-the-art, 5-factor, Fama-French model in which risk is captured by the market $(R_{M,t}-R_{F,t})$, with $R_{F,t}$ denoting the risk-free rate), size (SMB_t) , value (HML_t) , profitability (RMW_t) and investment (CMA_t) . - The output of the regression is $$\begin{split} R_{ES,t} - R_{F,t} &= 0.0108 - 0.0770_{(-0.81)} \left(R_{M,t} - R_{F,t} \right) + 0.8056_{(3.51)} \text{ SMB}_t + 0.2466_{(1.16)} \text{ HML}_t \\ &- 0.6817_{(-1.66)} \text{ RMW}_t + 0.8286_{(1.83)} \text{ CMA}_t + \hat{\varepsilon}_t. \end{split}$$ The positive and significant value of the intercept suggests that excess staleness leads to yet another anomaly hardly explained by well-accepted risk factors. In light of the dependence between excess staleness and volume (levels and variability), we now relate the returns on the long-short excess staleness portfolio to the returns on a long-short volume portfolio (i.e., a portfolio long stocks in the high volume decile and short stocks in the low volume decile) and the returns on a long-short volume-CV portfolio (i.e., a portfolio long stocks in the high volume-CV decile and short stocks in the low volume-CV decile): $$R_{ES,t} - R_{F,t} = \underset{(0.62)}{0.0019} - \underset{(-7.74)}{0.5423} R_{DV,t} + \underset{(5.42)}{0.2833} R_{CV,t} + \hat{\varepsilon}_t.$$ The premium disappears, showing that staleness carries information about the dynamics of trading volume also from a pricing perspective. # Asset pricing with staleness: pricing options