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Empirical evidences

Call Xt = |Og(Pt)

@ The (ubiquitous) Ito semimartingale:

t t N
Xt=Xo+J usds+f os dWs + > ;.
0 0

j=1
@ Market microstructure on a partition of n points to,, =0 < t1, < ... < th, = 1.
Xy,

Jsn

= th,n + Ej,n-

@ If we really observe )N(tj’n then
n
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P
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=

j=1

v o P
‘ijﬂ,n = Xy, = + 0.

What do data tell us?



Empirical evidences
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Empirical evidences

IBM, September, 16, 2008
118 ‘ ‘ ‘ ‘

1177

Prices

114

113 ‘ ‘ ‘ ‘
0.5 1 1.5 2
Time (seconds) % 10%



Empirical evidences

IBM, September, 16, 2008
118 ‘ ‘ ‘ ‘

1177

Prices

114

113 ‘ ‘ ‘ ‘
0.5 1 1.5 2
Time (seconds) % 10%



Empirical evidences

IBM, September, 16, 2008

195 196 197 198 1.99 2
Time (seconds) %« 10%



Empirical evidences

IBM, September, 16, 2008

195 196 197 198 1.99 2
Time (seconds) %« 10%



The dataset

@ Our data consists of all trades of 249 NYSE-listed stocks, recorded from 9:30 a.m.
to 4 p.m., for the years 2006-2014.

@ We employ the 249 stocks with the largest average traded volume during the
period.

@ Given our focus on the NYSE-listed stocks with the largest traded volume, i.e.,
those whose prices are expected to be the least inactive, our findings can be

viewed as being conservative.
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Stock: BAC Day: 27-Feb-2012 Staleness: 70.3% Idleness: 28.3% Excess Staleness: 35.3%
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Stock: C  Day: 03-Sep-2010 Staleness: 79.4% Idleness: 1.4% Excess Staleness: 15.6%
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Idle Time: definition

Consider a stochastic process X = In (p;) (the log-price) observed over [0, T].

Consider a partition:

Po P1

[l 1

P2  p3 Pn

to=0 1t
(you can assume, for simplicity,

Idle Time

IT =

(53 th =T time

times being equally spaced)

Z

ti — tic1)Lqx, —x,,_ I<€a}-
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Features of Idle Time

@ We think of &, as a vanishing sequence (£, — 0).
@ IT €]0,1]

@ Under a frictionless 1td semimartingale null, there is still a (vanishing, as n — o)
probability of sluggish behavior!

EXcess Idle Time
The quantity

IT —  bias(IT)
—

Under the
semimartingale null

is named EXcess Idle Time (EXIT) and is designed to be centered around zero.




A simple computation to understand orders

Assume p = 0 and o5 = 0.
Xt = X() + 0o Wt.

Consider an equispaced partition A, = 1/n and a sequence &, — 0. Expand in &,

Fle) = PIXe, — Xl <& = Ploo W, | <] - | W2l < & |

&n
= IP’[|U|< & ] :2J00 L e gy
0

oo VA, V2r
G (0) =0
__ ¢
_e_ G = teme TN =G (0) =0y A
G(£)=JUWE@‘XT dx = S
0 G"(€) =~ zame (ME=G"(0)=0
0
e
e 2050n 262 A, _ - 3
G" (5) _ % - G (0) _ (0_0 1 A 1/2)
0 2n

& I3 3 _\/?An_l/zfn “12.\3
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Jacod’s theorem

Let Yin€ Fy,. E [Ytin] < 00. Assume that the following conditions are satisfied
Vte [0, T]:

o thstE[ij,n ‘th—l,n] — 0,
03, (E[¥, | Fpin] - B[V, |

o thstE [ij‘n (ij,n - Wtj—l,n) { ffj—l,n] — Xé vs ds,
0x,.5|v,1,
jon

QX . E [Ye, (Ny, — Ne_,,) | Fy_y,] == 0, for all bounded Fi-martingales with
No =0 and [W,N], =0,

Fyaal)?) 5o 5 (2 4 w2) s,

o) ' ffj_w] 250 Ve>0,

where vs and ws are predictable processes, W a brownian motion. Then

t t
DY, 5| vdWs +J ws dW.,

f<t 0 0

where W’ is a Brownian motion independent of W.



Jacod's theorem applied to idle time

A A,
XAn — Xo :J usd5+f os dWs.
0 0

By using a Taylor expansion of the characteristic function of Xa, we get

Eo [IL{|XA,,—X0\<£,1}] = \/g% + Op ((fn A;1/2>3> )

whence (define A;X = X, — X;_, ,and t =T =1)
18 n 2 ¢, A2 s
E ;]EJ*I []1{|AjX|<§n}] = ; A, (\/;UJI + Op (fn An )
= \/7J‘7+O 3n3/2>_9)0.
1/4

/ n 1/2
n 2 &AL 710\*%\ e,
;(Anl{w«n} o )-OP((€~" ) o

Define Y; , = i Ayl _ )2 e and the first condition of Jacod
br =gl T A< ™ oja

theorem is met.

Soif & n"*® -0



Jacod’s theorem

Second condition is

> ([,

j=1

]:tjfl,n] —E [ij,n

Fyral’) = LT (22 +82) os,

where the array Yy ., is in our case

1/4

n 2 & AY?
Ytjwn,n = é“,l,ﬁ <An IL{|AJ-X|<§,,} — \/; P .

Again, using the Taylor expansion
26,0, _12\?
U = Bt Ly <6)] = \E S o ((ea7)).
— ds.

n
2 (&l
j=1 " T Jo Os

The asymptotic variance is inversely proportional to the spot volatility.

we get

}—fj—l,n] —-E [ij,n

2 (1
Fyra]’) 2o



Jacod’s theorem

The third condition of the Jacod's theorem is

;
Z]E D AW | Fy, ]—"»J as ds.
0

Notice that E [ Yy , AW | Fy_ ] = 22 B [Anlyp, 1, (cey AW | Fi |
and use Holder's inequality to get

zn: Ej1 [ij,n A; W] < <\£E>12 zn: A (wj,n)l'/p (Ej—l [‘AJW|%]> "TTI.
o1

j=1 "

Since

P _ _ p/(p—1) 2p—1
E._ [AW 71:| — 1/2 2P/<2 (p—1)) (Al/?) r ,
j—1 | J |P Q n,j 2 (p _ 1)

the red quantity becomes

=1 1/2 n
1-p 2p—1\ * (4/n 1
A2 ST (2(p_1)) (gn > Z i (Wjn) l/p Z,J

_ Oy Y2 gl Pt/ 20 12y Op(,,l/(zm 14gl/p=1/2)



Jacod’s theorem

In summary
Z E [Ytj,,. AW ‘ ffj—1,n] - Op(nl/(Zp)—1/4§$/p_1/2).
j=1

Take p = 3/2 (any p > 1 is ok for Hdlder) to have
ME[Yy, AW | Fy_, ] = O0p((6nn")Y°).
j=1

7/10

Since, by hypothesis, &£, n'/*" — 0 then

£pnt? = &nn"/®
" nl/5

Hence the condition

T
RSN ot

0

is satisfied with a = 0.



Jacod’s theorem

The Lindeberg condition

Z]E[Ytin]l ‘>6 "7:9 1n:| ‘p’07
j=1

is verified by proving the stronger condition

Zn: E [ng

Jj=1

4
n < 2 &, AY? b
— ZE[<A"1{|AJX|<§,,} —\/; e Fi 1, — 0.
n 1:1 —

(tedious but easy)

R

that is




The representation theorem

Theorem

I1t6-Clark representation. Let X be a random variable and W be a Brownian motion
defined on the filtered probability space (Q, F (F)eepo.r ,]P’). If X is Fr-measurable,
then there exists an almost unique process 1 € L% (F;) such that

;
X=E[X]+j ns dWs.
0




Jacod’s theorem

To prove 37 B 1 [V, A;N] = 0 for all N such that [W, N]; = 0 consider

2 ¢, AL
,11221[1‘,, 1[<A ﬂ{‘AX|<5n} \ﬁ& >AJN

| T Oj-1

n
a? ZE“KA”H{IW«A “Ej1 [T s e} ] +
n j:l

2 6417 ’
+Ej [An 1{|A/X|<§n}:| N7 o AjN| = ;qu (Ajn+ Bjn) AN |.

n1/4

G,n
. _ (n)
a7 (ArLgiaize) ~ Bt [ArLyjax<cy]) = | i aw =

Gi—1,n

Aj,n =

and 37 By

Ajn AJ-N] = 0. By Taylor expansion...

n n]_/4 n "Sn 1/2
ME 1| B AN | = an ME [A 1{‘AX|<€H}] = AN
Jj=1 noj=1

gj—-1

0.



The alternative: price staleness or inhibition of the trading activity

Assumption (the price process under the alternative). The observed log-price process
{Xe; t = 0} is such that X, = Xg and, for j =2,...,n,

Xy, = XS (1= Bya) + BinXey o s
where thf . is an lto semimartingale
dX{ = pe dt + o5 dWs,

and B , is a triangular array of (not necessarily independent) Fjr/,— measurable
Bernoulli variates so that
1g P F
7 280 B 2 P
j=1
where pf €]0,1]. Moreover, denoting by K, the supremum of the number of consecutive

flat trades, we have
Ko »
_—

n n—o0

0.



Eppur si muove!

= Unconditional
——Conditional on non-idle returns
‘ Conditional on 1 idle return
b —+ Conditional on 2 idle returns
——Conditional on 3 idle returns
10 ——Conditional on 4 idle returns

I ——Conditional on 5 idle returns

20 1}

Relative variance of returns conditional on idleness
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The alternative: price staleness or inhibition of the trading activity

Under the alternative

ij,n - Xf 1.n (th,n - Xl'j—l,n)(l - BJ',")
so that we can write
IT, ZA ]l{le Xj—1)al<én} ZA ]l ( x(j,l)A)ufBj,n)Kgn}
Z T Z {lxe —X(— 1)A|<§n}
j=
—_——
A, Bn

By hypothesis A, = Z}'Zl AB;j LN pr. Concerning B, define:
ij = min {k € {O, ce. ,J} ‘B',n =1, Bj_17,, =1,..., Bj7k+1,n =1, ijk,n = O} .

Kn = maxj—1,....n Kj,n, which, by assumption

Kn
——>O as n — o0,
n

(although this property is used only in the case with noise included in X¢).



The alternative: price staleness or inhibition of the trading activity
Hence, since tj,n — ti—1-k;_y,n = tj,n — ti—1,n = Ap, we get

E [1{\xe Xy ,,\<€n}] =E [1{‘X§7"_X§71—Kj,1,nKS"}]

= E E[lﬂxe XE i 1n\<sn}'Kj—1”

2 1 :
= E|y/= & = + O, ( 3 3/2>
L \/(tj,n - tj—l—Kj,l,n) bm1=Kj_y.n (tj,n - tj—1—Kj,1,n)

2 ¢ 1 & ) 21 1, "
< E — _ + O < = Cé&,n
| VT VA Ty (A3/2 } ™ G /G ¢

Hence
1 & 1/2
B, 21 (1-Bjn)An ]l{lxe ~Xg_nal<én) ST ZlA"]l{\XfA—Xu—1>A‘<5"} < Gl
j =
In summary -0
Lope ==y
d 26/By

EXIT, = ) (A Ay

j=1

P
— under ‘H
ia—Xg-nal<a} T\ 7 Ty, ) PF A

-250.



Asymptotic theory for Excess Idle Time

t t
HO:Xt=Xf=JMSds+JadeS, Ha: Xin = Xia(1—Bjn) + BjnXj-1)a
0 0

Theorem 1. (Consistency) As n — o, let £, — 0 in such a way that £,4/n — 0. Then,

n 0 under Ho
P
IT = Z Anl{Ier,,,—ijfl,nlég”} - {

-1 pF under Ha '

(Stable conv.) As n — o, let £, — 0 in such a way that n”/*°¢, — 0 and &,n*/?
Under Hy:

— 0.

nl/4 P VR < 2 Enn/Dn;
TR EXIT = Boliixg ,—xy_, l<ent =A/ — 7
a” Ei/2,21 EA T Oy,
= MN( \ 2 st>.
Under Ha:
n1/4
©EXIT % .
&

n



Micro-structural noise: asymptotic theory for Excess Idle Time

t t

Ho : Xe = X = f s ds +f osdWs + 1., Ha: Xja = jeA(]- = Bjn) + BjnX(-1)a
0 0

Theorem 2. (Consistency) As n — oo, let &, — 0. Then,

» | 0 under Hj
I<&n}

F

= Z Brlix ,—x, p" under H,4

b—1,n
j=1

(Stable conv.) As n — o, let £, — 0 in such a way that n°€¢, — 0 and £,n — 0.
Under Hy:

n1/2 2 €n An,j
an ——EXIT = 1/2 g Anliix, —xe_, 1<t} = T V2o,
stably
\/50_7]
Under Ha:
/2
~_EXIT 5 o0.
61/2

n



Illiquidity frictions.

@ Transaction costs: assets are not easily exchanged => prices staler than in a
frictionless world.

@ Informed traders: if transaction costs increase = less trading opportunity = prices

even more stale!
@ Staleness should be correlated with execution costs and asymmetric information.

@ Measure illiquidity as the excess (w.r.t. a frictionless world) of “small” log-price

returns.



Illiquidity frictions.
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A model of price formation with pg > 0

@ Efficient unobserved log-price process dp; = o dW.

@ Mid-quote is common knowledge: m; = m:_1 + §(pf — m—1). PAIT aef Probability

of arrival of informed traders.

@ Noise traders (arrive with probability 1 — PAIT) and toss a coin
pt = my+s, s = half bid-ask spread.
@ Informed traders know pf and face total execution costs
c=s+f, f = "funding liquidity”.
Informed traders trade iff they face a profit net of execution costs ¢, hence
Pe=met (Pt = me) e j<ch + 5 e mesc) =5 Hppme<—c)

@ pr = function (PAIT, s, f, o).



o =0.5%

Figure: EXIT is computed on 5-minute intervals (with { = 550) and plotted as a
function of the execution cost ¢ (standardized by the bid-ask spread s) and PAIT,
the probability of arrival of informed traders. The parameters § and s are mean

(daily) estimates from data: § = 0.0118 and s = 1.8654 - 10~*.



Empirical application: indirect inference.

Assume to have {pi, ..., p:} observed intra-day (e.g. 5-minutes) transaction prices.

Indirect inference & la Gourieroux, Monfort, Renault (1993)

Estimate parameters of micro-structural model by matching observed moments with
model-implied ones.

The variance of one-minute returns, Mj.

The first-order auto-covariance of one-minute returns, M.

The variance of five-minute returns, Ms.

@ EXIT computed with one-minute returns, M.

EXIT computed with two-minute returns, Ms.



Empirical application: indirect inference.

Correlation: 99.69 %
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Empirical application: indirect inference.

Correlation: 55.83 %

07
- Bid-Ask spread

- Effective spread (estimated)
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Trades may occur within the spread = it is unsurprising to find estimated effective
spreads which are, on average and for virtually each day, smaller than the corresponding

half quoted spreads.



Empirical application: indirect inference.
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Dealing with rounding

@ Express the latent price P; as the discretized analogue (over an interval of length
A) of the local martingale
t
P, = J osPsdW.
0

@ Assume the traded price P; can be only observed as a multiple of a fixed quantity
d (e.g., for NYSE-listed stocks d is one cent) and P; is obtained by rounding P; to
the nearest value in the set {0,d,2d,...,kd,...}.



Rounding: an illustration
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Probability of zero due to rounding

For the time being, we de-activate the Bernoulli variates and set them equal to zero.

The probability that ﬁ(,-H)An — Pia, = kd, conditional on spot volatility o;a,, the

rounded price Pja, and the displacement value xja,, where Pja, = Pia,

—d/2 < Xip, < d/2, is

— Xja, with

Tiny, PiAn,XiA,,]

_ — d
P [PiAn + kd — = < Pitya, < Pin, + kd + 3

Njla N

TiAys PiAm XiA,,]

= P [PIA" +kd — 5 — xia, < P(it1)a, < Pia, + kd + g — Xin,

Jkd+ % —XiAp, e

kd— 9 —xia, \/271'0 A + xia, )2 An

2 2.2
2Cin,

Z
S L —
202, (Pin, +%in,)?Bn kd+ 8 —xin, o g2
dz = —az,

/ d
2 Xidn 27-4
CIA,,

where Cia, = d/(oia, Pia,v/An) is a “rounding impact ratio” defined as the magnitude
of price discreteness (i.e., d) relative to the volatility of the return process over A, (i.e.,

oin, Pin, vV An).



@ Assume that x = P — P is uniformly distributed over [—d/2,d/2].
@ We set (in, = Ca,-

@ Integrating x out, we evaluate the probability pA (CAn) of observing a k-tick

movement over an interval A, by virtue of

par(Ca,) = (k—1)erf (w) _ ok erf (kCAn)

V2 V2
(k+1)¢a )
+(1+ k)erf [ ———2=2
@+ et (423
+\/§ <e La+k3, <1+ezk<gn _267%(1+2k)g§n)> 1
T CAn7
where k = 0, £1,... and the symbol erf(x) defines the Gaussian error function.

@ Re-activating staleness through independent Bernoulli variates, the probability of a

k-tick movement becomes

AT (Cans Pa) = Pall (ko) + Z (1= pa)’ph- Py, (CAn/\/J + 1) ~ (0.1)

j=0



Simulations
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The "liquid” case

Counts

STOCK: AACC
T

100

90 -

30 -

20 -

Estimated d = 0.01
Estimated NO = 97.85
Estimated N1 = 131

Estimated p, =0.076515

Estimated ¢ = 0.50464
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Price differences
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The "illiquid” case

STOCK: AACC
250 T T
Estimated d = 0.010177
200 - Estimated NO = 216.3529 b
Estimated N1 = 118.3529
150 |- Estimated p_ = 0.46164 B
i)
= .
g Estimated ¢ = 0.62516
O
100 - =
50 bl
0 i | J 1 1 1
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Price differences
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Average excess staleness vs average idleness
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Relation with trading volume
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Relation with bid-ask spread
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Trading volume as the intermediating variable

@ Excess staleness satisfies the following cross-sectional regression:

pn = 0. 807 - O 085 < log DV > +0.012 < bid-ask > — 0.065 < log RV > +£,
(7.00) - (11.53) (—10.90)

where we regress (across stocks) averages of daily estimates of 30-second excess
staleness, P, on averages of daily logarithmic dollar volume, < log DV >, averages
of logarithmic bid-ask spreads, < bid-ask > in basis points, and averages of daily

logarithmic 5-minute realized variances, < log RV >.
@ This is slightly puzzling.
@ But if we take into account volume clustering:
:()’12333? — (02(%90% < logDV > +O 003 < bid-ask > — 0 002 < logRV >

+0.276 < log CV > +&.
(10.63)

where we insert the logarithmic coefficient of variation < log CV > of volume.



Asset

pricing with staleness: pricing stocks

We construct an excess staleness factor in a traditional way. At time t, we sort
stocks into deciles using the excess staleness observed over the previous month.
We then construct equally-weighted decile portfolios. The excess staleness factor is
the difference between the return on the top-decile portfolio and the return on the
bottom-decile portfolio, which we label as Res, ;.

We use monthly rebalancing (22 days) and regress the monthly returns of this
long-short strategy on a state-of-the-art, 5-factor, Fama-French model in which
risk is captured by the market (Ru,: — RF,¢, with R denoting the risk-free rate),
size (SMBy), value (HML,), profitability (RMW,) and investment (CMA;).

The output of the regression is

Res.. — Rr.e = 0.0108 — 0.0770 (Ru.c — Rr.:) + 0.8056 SMB; + 0.2466 HML,
(3.15) (—0.81) (3.51) (1.16)

—0.6817 RMW, + 0.8286 CMA; + é;.
(=1.66) (1.83)

The positive and significant value of the intercept suggests that excess staleness

leads to yet another anomaly hardly explained by well-accepted risk factors.



In light of the dependence between excess staleness and volume (levels and variability),
we now relate the returns on the long-short excess staleness portfolio to the returns on a
long-short volume portfolio (i.e., a portfolio long stocks in the high volume decile and
short stocks in the low volume decile) and the returns on a long-short volume-CV
portfolio (i.e., a portfolio long stocks in the high volume-CV decile and short stocks in
the low volume-CV decile):

Res,: — Rr,e = 0.0019 — 0.5423 Rpy,: 4 0.2833 Rcy,¢ + &
(0.62) (—7.74) (5.42)

The premium disappears, showing that staleness carries information about the dynamics

of trading volume also from a pricing perspective.



Asset pricing with staleness: pricing options




Asset pricing with staleness: pricing options
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