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Spot volatility estimation

Three techniques:

@ Localization of squared returns
7 1S ()
t hn = h" I
@ Localization of bipower variation
A2 ]' N n
o= Z |ATX] A7 X|
@ Localization of truncated square returns
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The model

Main model:
dXt = Mtdt—i—atth +th7 (01)

we need extra assumptions on the coefficients to work.

@ X is defined on a filtered probability space (Q, F, (Ft)t=0,P), Xo is
JFo-measurable,

@ 1 = (pt)r>0 is a locally bounded and predictable drift

@ 0 = (01)=>0 is an adapted, cadlag and strictly positive (almost surely)

volatility
® W = (W;)i>0 is a standard Brownian motion

@ J = (J)t=0 is a pure-jump process.



Kernel and bandwidth

The bandwidths h, is a sequence of positive real numbers, such that, as n — o0,

h, — 0, nh, — ©

The kernel K : R — R, is any function with the properties:

K0) K(x) =0 for x > 0 (left-sided kernel);

- x=1land Az = X < o0,
K2) §° K(x)dx =1 and K. x)d

K3
some B> 0and C > 0 (i.e., K has a fast vanishing tail);

(K4) (@) = K(x)|x|*dx < o0, for all a > —1;

(@) = §° K*(x)|x|*dx < o, for all a > —1.

(KO)
(K1) K is bounded and differentiable with bounded first derivative;
(K2)
(K3)

It holds that for every positive sequence g, — o0, S:fo" K(x)dx

< Cg, B for



The model: Jumps

The jump process J; is of the form:

t
. =J J 8(s, )55 11y (v(ds, dx) — (ds, dx))
0 JR
t (02)
+J f 35 X)l1s(s,)1>1yv (ds, dx),
0 JR

where v is a Poisson random measure on R, x R, #(ds,dx) = A(dx)ds a
compensator, and )\ is a o-finite measure on R, while § : R, xR —> R is
predictable and such that there exists a sequence (7,)n>1 of F;-stopping times
with 7, — o0 and, for each n, a deterministic and nonnegative I, with
min(|6(t,x)|,1) < Tn(x) and §; [%(x)A(dx) < oo for all (t,x) and n > 1.



The model: Stochastic continuity

Fix t € (0, T] and let B.(t) = [t — €, t] with € > 0 fixed. We assume there exists
a [ > 0 and a sequence of F;-stopping times 7,, — o0 and constants Ct(m) such
that for all m, (w,s) € Q x B.(t) N [0, 7m(w)[, and u € B(t),

Eyns [|/~Lu_/is‘2+|0'u_as‘2] < Ct(m)|u_s|r7 (03)

where E;[-] = E[|F].

The localization procedure (see, e.g., Jacod and Protter (2012), Section 4.4.1)
implies that we can and shall assume p;, o¢, and §(t, x) are bounded (as (w, t, x)
vary within Q x [0, T] x R) and that |§(t, x)| < I'(x), where T(x) is bounded and
such that {5 T(x)?A(dx) < 0.



The jump activity index

The jump activity index (denoted BG, sinces it coincides with the
Blumenthal-Getoor index for pure jump Lévy processes) is defined as

BG =infip=>0: M AXP <

s<t
Finite Infinite
jump jump
activity activity
Finite Infinite
variation (p = 1) variation (p = 1)

Infinite power
variations of

order p < B,

finite of orders p >

BG index
L : . . L3> of jump
/0\ 1/2 1 \ 2 activity
Compound Gamma
Poisson process B-stable
process process,
Variance Lévy model,  Cauchy CGMY (Y=p), Brownian
gamma inverse process, generalized motion
process Gaussian NIG process hyperbolic

process process



Spot volatility estimation

Theorem

Consider the simplest estimator:
n

~ 1 ti_1—t
niz n

) (ATX)?.

For every fixed t € (0, T|, as n — o and h, — 0 such that nh, — o0, it holds

A2 P
that 62 5 o2 _.

This result is somewhat surprising. Let's see why it holds.

The proof is the combination of Mancini, Mattiussi and Reno (2015) with
Theorem 9.3.2 in Jacod and Protter (2012).



The case without jumps (sketch of the proof)

Assume J =0 (and p = 0).

Write:

Then,

2
A~ 1 i—1 — t b b
62— 02 = s Z ( ) (Ll agdWs> - Ll o2ds |+ op(1)

and we invoke a LLN.

(The consistency result also holds with p 5 0.)



Now assume J # 0.

We compensate the large jump term and write

t t
X{ = J pids +J osdWs,
0 0
where ¥ = pie + {5 0(t, X)lgj5(¢.0)|>13A(dx) is bounded, and

X=X, — X] = JRé(s,x) (v(ds,dx) — (ds, dx)) .

We already know that:

1 ti_1—t 2

n iz

=

We need to show that:

n

RS — hiZ K (t"zn_ t) ((arx)? = (apx)*) Lo,

i=1



For k € (0,1), write A?X = ATX" + A"X{ (k) + APXJ (k), where

ATX]( J (8, X) (7 )<y (V(ds, dx) — D(ds, dx))

AMXY (k) = fR‘S(S’X)I{F(xpn} (v(ds,dx) — ©(ds,dx)).

The following inequality holds:
C
l(@a+b+c)*—a°| <ea” + —(b*+ %)
€
for a fixed constant C valid for all € €]0, 1].

Thus
|R?| < Z K (

) [(A7X) — (ArX')?|




We now split the probability space in two parts.

We define Q,(¢), k) € Q as the set of the events in which the Poisson process
v([0,t] x {x : T(x) > x}) has no jumps in the interval (t — h¥,t], for 0 < ¢ <1
and 0 <k < 1.

Note that ,(1), k) — €, as n — oo since h¥ — 0.

Conditioning on this (local) set where “large” jumps are absent, we just need to
take care of the large jumps in the kernel tail:

1 ¢ i—-1 C ”
Elhn SR () © e’ an,n)]
1 i—1 — C ny/"
- % wK<t - t) ZE[ (a3 ()7 ]
ti1<t—hp

1 ti_1—t\ C by
. > K( T )EA,,H <~ LO K(s)ds

fi71<t*hnw

N

N

€ pea—u)
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For the “small” jumps we have:

E| (APX] (k)" | < CA, [(x)PA(dx),
[ (arx ()" | < NG

for all p = 1. We use p = 2 here.

So that, using again the convergence of the no-jump part:

€

R C _
E|IRS| | Qu(1h, k)| < Ce+ = F(x)?A(dx) + hBA=9) ) |
(18211 Q0] < Ce+ (LWK”} (0PA(dx) + )



The conclusion is now classical. Write:
P (R > ) =P (IRZ] > ¢ | Q5w ) + P (IRZ] > ¢ | (¥, 1))
<P (@4, %) + E[IRS] | (1) |/
(by Markov's inequality).

We proved that, or all ¢,k € (0,1),

5 1 _
limsup P (|R,‘,’| > c) < (Ce =+ E (J. [(x)2A(dx) + hf(l—dﬂ)) )
n—0o0 {x F(x)<f§}

w/
Setting € = (S{X F)<x} T(x)?A(dx) + hf(l_w)> with 0 < ¢’ < 1 and noticing
that <S{X:F(x)<n} F(x)2A(dx) + pBa- )) — 0 as kK — 0 and n — o, we deduce
that P (|RS| > ¢) — 0. o



How to use spot volatility?

@ Can we thus think that, under certain conditions, volatility can be observed

and plugged in, e.g., a regression?

@ Not really.

@ We need indeed a uniformity result.

@ We will now provide such a result using the truncated estimator.



Model

We consider the price/variance system:

dlogp: = p(o?)dt + ordW, + dJL, (0.4)
df(07) = meo2)(07)dt + Ae(ozy (07) AW +dJ7, (0.5)

where {dW/,dW7} = {p(c?)dW} + /1 — p?(c2)dW2,d W}} with

-1 <p(.) <1, {W}, W2} are independent, standard Brownian motions, {Jf, J¢}
are Poisson jump processes independent of each other and independent of

{W{, W2} with intensities A"(.) and AF(@*) () respectively, f(.) is a monotonically
non-decreasing transformation of variance, and p(.), m¢(2)(.), Ar(o2)(.), and p(.)

are generic functions satisfying suitable smoothness conditions.



Preliminaries (with slight changes of notation, sorry about that)

We assume k + 1 intra-period price observations (on dashed lines of total length
¢ < A, 1) for each price observation sampled at iA, v with i = 1,...,n. In the
graph, we consider 3 periods (n = 3). Spot variance is estimated for every time
iAp 7 using k + 1 intra-period observations over ¢.

Localized (in time) threshold realized variance estimator (Mancini, 2009), namely

1 k
Ginn, = 5 Z i L2 <oy (0.6)



Theorem
(Bandi and Rend, Econometric Theory, 2018) Assume 63, A, IS given by Eq.

(0.6). If, as 9 — 0, we have & Iog ( ) — 0, and when the driving functions
and at are uniformly bounded, we have

~2 2
maX UiAn,T - UiAn,T

1<i<n

=Op< /Iognlognk ¢1/2 ﬁlogn+n¢>




We assume (among other things):

1. There exists a function F(-) satisfying the property

Blsup,or|*(0D)|] _ E[M(F*(02)]
Elsup,<[F(02)[] ~ BIM(F(o2)]
the generic variance transformation g(o2) and f*(0?) is a function of the

< 1, where M(g(02)) is the maximal process of

variance state o2

If the functions 1i(.), ms(,2)(.), ... and the process o7 are not uniformly bounded,

then the generic function f*(o2) will, of course, not be uniformly bounded. Thus,

the condition
(’+1)An,T
max f |7*(02)] ds £ Ay.r(— 0), (0.7)

1<i<gn iAn,T

which is a routine approximation in this literature, may not be valid as T — 0, in

i+1)A, .
general. However, max S,At JoT | (0%)] ds L E (M(f*(02))) Ay, 1 will be

valid with M(f*(02)) = sup |f*(o2)| defining the maximal process of f*(c2).
s<T

We write maxi<i<n Sf::lT)A"’T ’f* (0§)| ds L E (M(f* (crf))) A,

E (M(F(02))) An 1= Ak 1

T <

)



Example of maximal processes

@ Brownian motion: (Doob's inequality)

E (sup|Ws|) < V24/E (1),

ST

@ Bessel process of dimension § starting at zero:

o (o)) s (120) "5

ST

forall 0 < p<?2

@ The square-root process dX; = (a + bX;)dt + ¢/ X dW; with a,c > 0 and

b<0 ,
1 P 223 alb|
Er <<§25X5> > < 7p7|b| E <|ogp (1 + C27‘>) ,

N



The proof

Write the price process as log p = log p + J, where p is the continuous component
and J is the jump component. Recall ¢ < A, 7.

Notation: write p; = p;,, where

tj = ([k+lj+1)AnT—¢+( —Lfk—J (1+ ))¢ with j=1,... n(k+1),
where |.| is the “floor” function.

\
N

Notation: rhe symbol 1; ; signifies 1{

i}

|

1
Simplification: use f(0?) = 0.

Rewrite:
n(k+1)—1
52 1

~ ~\2
it T g Z 1, (log pj+1 — log pj)°~,



Decomposition, using Ito's Lemma:

~2 2 ~2 2 ~2 ~2
max . — o7 < < — o¢ < — 0%
n(k+1)—1 tio1 [ s
2 2
<max 120 Y L [ [ ntotiav ) utotias
= j=1 & g
Vi, Tk
5 (kD1 tio1 [ s
r 2
+1rl1ia<xn$ > 1,-,jf favdwv w(o?)ds
= j=1 & g
Van, T ko
2 n(k+1)—1 ti1 s
+ max P Z ll'yj‘[‘ JUVdWJ osdW/
= j=1 £ g
V3,0, T,k
2 n(k+1)—1 ti1 s
2
+ max P Z 1,-,1-‘[ fp(av)dv osdW/
= j=1 & &
Va,n, Tk, ¢
1 [AnT
2 2 ~2 ~2
+ max |— otds — of + max |07 — 0 .
1<i<n|¢ Jin, 1—¢ B, 7| T 1gien | B0 T iBn,T

BnT.s In, Tk,



We start with the bias term B, 7 4. Write

iA iA
n, T 2d 5 1 n, T > 5 d
1r2ga<x ¢ osds — oip, | = 1rEa<>< a 05 — Oin, ;) ds
<i<n f Isn Dy T—

< max sup
Isisnip, T<s<ilp T

+ sup
iDp T—¢SS<iD, T

iAn,T
f A(o2)dWS | +
iN, T—¢

2 2
Os = 0in, r
iDp T
’ 2
< max sup j m(oy,)du
ISisn \in, r—o<s<it, 7 |Js

in, T
| [ evmtauaeny
s 3
AV iBp T
< max (J m(o3)du| + f Jﬁavg(du, d.fa))
Isisn A\ [Jia, r—¢ in, - Je

S S
+ max < sup J m(o2)dul| + sup f Ao2ydwg
1<i<n \ ; i . .
= iD= iD=

D T—¢<S<iD, T iD, T—p<S<iD, T

+ sup J f& Vo (du, d€7)
Dy T—¢<s<iB, 7 |Jin, 7—¢

We only consider the last three terms since the first three are dominated asymptotically.

iDp, T
| Aatang

+ sup

iDp, T—¢<s<ibp T




First term.

S
max sup J m(o2)du| < sup |m(a§)‘ 0.
1

ISisnip, r—¢<s<it, 1 |Jin, r—¢ s<T

For the second term, we use a "classical” trick and and (after Boole's inequality)
exponential inequality.
Write:
Pr(A) = Pr(An B) + Pr(An B) < Pr(An B) + P(B),
so that

Pr ( max sup

ISISniA, T—¢<s<iB, T

'S
[ Awhawg
iDp T—¢

> Cn,w)

< Pr ( max sup

ISISnin, r—¢<s<il, T

S
[ Aehawg
iN, T—¢

"An,T
+ Pr{ max f AN2(a2)du > B4 | -

isisnlin, r—o

iNp T
> Co, 7,9, max J N*(og)du < 5T,¢>

IsisnJin, r-¢



For the first term, using Boole and a suitable exponential inequality (van Zanten, 2015):

'S
[ Awhawg
iDp 7=

Pr{ max sup
ISiSnin, r—¢<s<id, r
Pr sup
1 iDy T—¢SS<iDp T
Pr sup
i=1 iDy T—¢SS<iDp T
C2
n, T
< 2nexp __mhé s
2871,

while for the second term, by Markov's inequality, we also have

A 2. o
= Cp 7,6, Max N (oy)du < Bt 0
1<isnlin, r—¢

<

s

S
[ Awhawg
iDp T—¢

i

i'Ap T 0 o
= C,,’T,¢, max J A (o‘u)du < ﬁT,qﬁ
1<i'<nlJip, 1—o¢

<

I

S
[ Acawg
iNp T—¢

iA

> C ot A(c?)du < B

= Ln, T,p» ‘A é 0y)dU X PT.¢
iN, T—

iDp, T
) E |: max J /\Z(Jg)du]
iDp T 1<i<n in, T—¢ o)
Pr ( max f A(o2)du > 57—74)) < : S E[MA?)] .
1sisnin, r—o BT T



Now, setting
Br.s = cE[M(N*)] ¢

and
12
ot = ¢ (E[M(N?)]) " Vologn = cCrr
we obtain
1 ° 1
Pr|{ —— max sup J No)dW | = c | <2n'=2 4+ -
Cotp 1SS0 in, r—g<s<it, 7 | Jin, 1o ¢
S
which gives max sup J NoD)dW)| = 0, (Crry) =
1SISnip, 1—¢<s<iBy 1 |Jin, 1—¢ o

O, (M*l/z(/\z)\/wog n), which is the order of the second term of the bias.



Now we deal with the jump term of the bias (the third term).

S o o
maxi<; su ; Ve (du, d
1<i<n jAn,T7¢gegiAan ’An,T*‘ﬁ Sf g U( ) f )
Pr : =c
né
sup S,'SA,,_T_¢ SS &7V (du,dE?)

U i, T—$p<s<iA, T
Z Pr =c

ng

iBp T o o
n A Vo du,d
< Pr (SIA,..,T—4> S{ |£ | ( 5 ) > C)

1 ne

i

A

< Zn] E [S"An,T—¢
i=1

§e 1€7] vo (du, dé”)] _ Bl

cng c

.2
where X7 is the upper bound on the intensity of the variance jumps, i.e.,

A°%(.). This proves that
max sup J ¢f fUVa du, dfg)
n T—

1<’<”1A T—P<s<ilp T

p(”¢)-




For the variance term, we expect the dominating order to come from V3, 1 k.

We have
n(k+1)—1 tp1AT S
V3.0, 7.6 < max sup - Z li,jl{t_<T}J‘ f o dW, | o.dW/|.
ISisnin, r—g<r<ib,r |¢ 4 ! t ¢
’ ’ = J J
Viii,n,T,k(T)
As before, write
Pr(Vanrk = Cori) < Pr( max sup VBI,n,T,k(T)‘ > Co, 7k

ISISPip, 1—¢<T<iB, T

<Pr | max sup
Isisnin, r—¢<r<it, 1

Vsi,n,T,k(T)‘ > Co7 ok, max [V3 0,74 (iBn,7)] < Bn T koo
n

SIS

+ Pr (max [V:’f,n,T,k("An,T)] > ﬂn,T,k,¢)

1<i<n

n
<D Pr sup Vin,T,k(T)’ = Co, 7y [Van, 7k (iBn,7)] < Bn,7 k0
i=1

iDp, T—OSTSIA, T

+ Pr (max [V’s'i,n,T,k(iAn,T)] > /Bn,T,k,qb) ,

1<i<n



To the first term, we apply, once more, the exponential inequality:

C2
i i . Tk
Pr sup )Vé,n,Tyk(T)‘ = Cn,T,k7 [Vé,n,T,k(’An,T)] < Bn,T,k,d) < 2expl — <
Dy T—h<T<ID, T 2Bn,T k¢

For the second term, we note that each quantity V;,n,T,k(iA"xT) is a martingale whose

quadratic variation satisfies

i . 4 nlk =1 1 (s r ’ 2
o Vi s B0r) =Z5 m 3 1y v ) ot
j=1 1 1
_ 2
4 n(k+1)—1 ti1 s
ég/\/l(cﬂ) max. Z 1;; J sup f o dW/| | ds
SIs =1 t; ti<s<tj+o¢/k |Jt;
4 o n(k+1)—1 s 2
<—M(0?)= max 1 sup J ovdW,)
@? k 1<i<n ; " ti<s<tj+¢/k |Jt; e
2
4 N ° r
SSM(o%) k max | max - sup ovdW,
¢ k 1<i<n lflsj/(k+l)<1tjg5<tj+¢/k 4
4 s 2
=—M(5?) “max su J ovdW/| | ,
¢ ISj<(k+1)n g <s<tj+o/k |y




so that

Pr < max [V4 , (B, 7)] > ﬁ,,,m,d,>

1<i<n

S
f o dW]

7

4
< Pr fM(crz max sup
] Ij<(k+1)n ¢ <s<tj+ ¢ /k

2
) > Bn, T,k

s 4 —1/2
=Pr max su f o, dW/!| > 61/2 <7M o2 )
<1<j<(k+1)n tj<5stﬁr¢/k . v v n,T,k,¢ é (e%)

J

s 4 —1/2
<Pr max sup f o, dW/!| > 61/2 <7/\/l o? ) , M(c?) < My
<1<j<(k+1)n t<s<tj+a/k [J v v n,T,k,¢ P (o) (%)

+ Pr (M(o?) > M7)

s 4 —1/2 E[M 2
<Pr max sup f o dW)| > Brl,/-z,— Koo (*MT) + M,
Ijs(k+1)n g <s<tj+¢/k |y BN Mt

J




and using again the exponential inequality:
Pr <1rg.a<>< (V30,7 k(i80,7)] > 6n,r,k,¢> < 2n(k +1)exp {—M}
<i<n L

AMTYT &,
tit1 E[M(Uz)]
P 2ds > A
+ r<1<j21(ak)-(%—1)n£j ocds vr,k,qa) =

n E[M(c?)]2  E[M(o?
gzn(kJrl)exp{i Bn, T k¢ }+ [M(a?)]7 . [M(o )]’
AMTYT ko VT kb Mr

for y7 k¢ > 0.

| k
Now, set M7 = \/eM*(02), 47 kg = VEM*(062) L, Bo T k6 = VT ko M7 E7UFD and

Co Tk = CM*(U2)\/@ to achieve
2

Pr(Vam k> Cor) <2072 4 2An(k+ 1) + =,

which proves that V3 , 7, = Op <M*(a2)\/@> =0, (M*(J2)\/@>-



Example: time-varying leverage effect

Leverage

—e— estimate
015 | SEREER : —— corrected estimate

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Volatility, percent (daily)



Spot drift estimation

@ Natural estimator:

~ 1< ti_1—t
- V'K
Kt h Z < h,

mi=1

) ATX

@ However we have the following problem:

Vo (3 = =) 5 N (0, Koo} ),



Why local drift cannot be estimated?

@ Assume the usual model:

dXt = ,Lttdt + Utd Wt + th

@ Then, around any point 7:

T+A -
f _ pslds = 0, (A) and
T—A

@ So, no chances for the drift?

JT-FA
R

oudW; = 0, (VA).
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Menkveld and Yueshen: The Flash Crash
Management Science, Articles in Advance, pp. 1-19, ©2018 INFORMS

Figure 1. (Color online) Timeline of Main Events
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Notes. This figure illustrates the sequence of events on the afternoon of May 6, 2010. The graph combines different sources: media (“US Shares
Plunge Amid Fears Over Debt,” Financial Times, May 7, 2010), regulators’ reports (CFTC and SEC 2010a, b), and academic studies (Kirilenko
et al. 2017, Easley et al. 2012). Earlier in the day, the market experienced “unsettling political and economic news,” such as “European debt
crisis” and “broad negative market sentiment” (CFTC and SEC 2010a). Easley et al. (2012) show that order flow had grown steadily more toxic
(rising VPIN) in the course of the day.

36/76



Drift burst

@ The drift can prevail in an alternative model where, in the neighborhood of

Tdb, it is allowed to diverge in such a way that:

fdbw |us|ds = O, (F“) : (0.8)

Tab—A

with 0 <7, < 1/2.

@ A simple example of an exploding drift leading to a drift burst is:

db a (Tdb — t)ia t < Tdb
b _ B . (0.9)
a (t — Tab) t> Tap

with 1/2 < a < 1 and a1, a; constants.



Figure 2: Illustration of a log-price with a drift burst.
Panel A: drift coefficient. Panel B: simulated log-return.

Sign(t 1
o

arift
log-return

0 burst
* +volatiity burst (p = 0.20)

+drit burst (« = 0.65)
+diift burst (o = 0.75)
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time time
Note. In Panel A, the drift coefficient is shown against time, while Panel B shows the evolution of a simulated log-price with a burst in: (i) nothing, (ii) volatility,
and (iii) drift and volatility. The latter are based on Eq. (5) and (8) with—a, =a, =3, b =0.15,=0.650r 0.75 and f# = 0.2.



The drift burst test statistics

@ Set:

n 1/2
" (hlg ( )(A,."X)2> , forte(0,T], (0.10)

@ Define the following t-statistic:

h, iif
TP =4 2L, 0.11
t K2 6_{, ( )
T/ has an intuitive interpretation with the indicator kernel. In that case, it
is the ratio of the drift part to the volatility part of the log-return over the
interval [t — hy,, t]. As hp, b, — 0, this is valid with any kernel satisfying the

stated assumptions.



A simple economic intuition: Grossman and Miller (1988)

@ In the model, an outside customer with a trading imbalance / cannot match
his need with other customers immediately, so that he uses market makers.

Market makers ask a compensation for it, and this causes the reversal.
@ Two assets: a risk-free asset with zero interest rate and a risky asset with
price P;.

@ Three times:
- Time 1: the outside customer trades with market makers
- Time 2: market makers trade with a new customer (and the outside
customer)

- Time 3: terminal condition.

@ Each agent maximizes the expected utility of her terminal wealth:

u(W) = —e W



@ The problem of the seller:

max E[u(W3)]

x1,x2,B1,B2

where x;, B; are asset and cash holdings at time t, subject to:
Wz = By + x3P;3
Poxo + By = Poxy + By
Pix1 + By = Pii + W,
@ We solve the problem by backward induction. At time t = 2:
Wi = Wo — Pai + (P3 — Po)ys + Psi
where y; = x; — i

@ The solution in t = 2 for the outside customer, assuming normally

distributed prices, is:
c_ E[P]-P
Yo = —o— 51 !
7Var2[P3]



@ Now assume there are M market makers with zero inventory. They solve the
same problem but with / = 0. Their aggregate order in t = 2 is thus:

E>[Ps] — P,
Myp™ = m=—222 2
V2 ’yVarg[Pg,]

@ At time t = 2 there is also a new customer. By construction, her imbalance
is —i. Thus her demand is:
v  EfPs]—P2 .
Yoo =— 157 T!
nyarz[P3]
@ Market clearing requires:

v+ Myy™ + yf =0

which implies:
P> = E>[Ps]

and
X2C =0.



@ Now at time t = 1. Similar reasoning leads to:

c Ei[Ps] — Py

= —
N = Van[6[Ps]]

wv _ Ei[P3]—P1

T SVan[E[Ps]]

@ Market clearing now requires:

v+ My"™ =0

@ Solving for Py:

iy
1+M

frictional term

P1 = E1[P3] Varl[Eg[P3]]
——

efficient term



Theorem (The t-statistic under the null)

Assume that X is a semimartingale as defined above, and given assumptions, as
n — oo, it holds that:
77 % N0, 1). (0.12)




We decompose T into:

S LV N L
tTNVK, T 67 Ky 67
[

—_———
T T,

where pf = pe + § 0(t,x) lgj5(¢,x)|>13 A(dx) is the compensated drift.

This, together with the boundedness of u¥, o, and 4(t, x), yields the following:

Tl < Y _ 0, (\//T)

~n
Ot



Lemma 1

For every fixed t € (0, T] as n — oo and h, — 0, it holds that:

1< tiig—t\ (" ™1 —t 1
A, = — K — —K ds=0,— ],
h"i=Zl < hn >J;i—1 pads L hn < hn )MS * p(nhn)
1 & 1 —t ti 2T s—t 1
- - | = ds =0, [ —
o Anhn,_ZlK( e )(f“d5> fo hnK< e )“5 : "(nhn)

(This also applies if u; is replaced by o%.)




Lemma 2

For every fixed t € (0, T] as n — oo and h, — 0, it holds that:

;
1 —t
Bn=f K( )usds—ut_=op(hg/2+hf).
0

hy hy
(This also applies if u; is replaced by o;.)

Write
0 —t/hn 0
T (j KGoax + [ K(x)dx) :
— —0 —t/hp

SO we can write:

ol = | (5

where (K3) is applied. Then, by Jensen’s inequality and the Lipschitz condition on coefficients:

—t/hp T 1 s—t B
8 s = semdas e [ KO0 < [T (D) s = s+ cn
—0 0 hp hn

r/2
Esnt[lpws — pe—]] < Cls —t| 2.

Together with (K4) and a change of variable, this implies that:

T 1 —t T 1 —t 0
E U 2k (5 ) s — ut,\ds] < f Iy (S ) Is — ¢|/2ds = J K |x|72 dx < cal/2.
0 hn hp 0 hn hp —t/hp

This concludes the proof.



Now, using the Lemmas we can write:

1 & tiq—t ti_ i 1
o2 (e () [ e ().
Hence,
. 1 < tiq—t r

A/ h ") = — K dW,

n(:ut Mt—) m; ( hn ) t,-_las s

Gn

1 < tiig—t\ ("
b K( i )J f 5(s,x) (v(ds, dx) — i (ds, dx))

\/E; h ti—1 JR

Gl

n

+ 0, <\/? + RTAYZ hnB“/Z) :

nnp



To deal with the term G, write:

ti
J J 3(s,x) (v(ds,dx) — #(ds,dx)) = APX{ (k) + ATXS (k)
ti_1 JR
with, as before,

AX! (k) = J]Ré(s,x) I o< (v(ds,dx) — P(ds,dx))

A'XY (k) = J}Ré(s,x)l{r(xbﬁ} (v(ds,dx) — ©(ds,dx)).

and define Q,(1), k) < Q as the set of the events in which the Poisson process
v([0,t] x {x : T(x) > x}) has no jumps in the interval (t — h¥,t], for 0 < ¢ <1
and 0 <k < L.



Conditioning on this (local) set where “large” jumps are absent, we just need to

take care of the large jumps outside the set, which are in the kernel tail:
(1612l [ 2] < | == 311 (51 |arxg )] | 20(0)
n,2 n\ v, x \//'Tn o hn i7N2 n\%»

- X k(=) el
1

n
iy <t—hy

K (t"—l - t) CA;, T(x)A(dx) < Cy/hyhBA=),
hﬂ X:F(X)>I€}

Now, since P (|G, ,| > ¢) < P (2 (x, 1)) + E[\G,’,,z\ | Q,,(/@w)]/c, it again
follows that .
limsup P (|G, 5| > ¢) < EQ /hnhEA=0),

n—o0

so that G, , £ 0asn— .



For the small jumps:

eficial] < o= Sk () e[lan]

i=

1
2 (5) 2 e
<—=) K Ajn F(x)A(dx).
\/FH ’:Zl hn {XZF(X)SN}
The bound converges to CKQS () <r) T (x)A(dx), which can be made

arbitrarily small (with jumps of f|n|te variation) by letting kK — 0. We conclude
that G, ; 2.0 and, therefore, G/, = 0,(1).




The main term is thus G,, which we write as G, = 27=1 Alu with

1 tii1—t r
Alu= K dWs.
' ! \% hn < h,, > ti—1 7 °
The aim is to prove that G, — and hence v/ h, (,&? — ¥

) — converges stably in
law to N (0, Kzaf_). We exploit again Jacod's theorem, which lists four sufficient

conditions for this to hold :

zn: E. :A,’-’u] 20, (0.13)
i=1
Zn: Etr‘—1 :(A’nu)Z] 5 KQO'Efv (014)
i=1
L[] 2o, (0.15)
i=1
zn] E. :Af’uAf’Z] 20, (0.16)
i=1

where either Z, = W; or Z; = W/ with W/ being orthogonal to W;. The
condition in Eq. (0.13) is immediate.



From Ito's Lemma, we deduce that:

t; 2 t; t; S
J odW, | = J o2ds + 2J s f
ti—1 ti—1 ti—1 tj

i—1

o,d Wu> dW,

so that

The first term converges to Kyo2_.



The second term is negligible by continuity:

n 1 . — t;
;Hm (t 2 t) Ef“t 1 (gg_ag_l)dsl

i—

71 ti1—t
< Z h—nKz (;n) AiaAL, =0, (A)).

To deal with the third condition we use the Burkholder-Davis-Gundy inequality:

t; 4 £ 2
E. . (J osd Ws> < CE,_, ( f agds> < C(Ain)?,
ti—1 ti—1

which leads to




To deal with the fourth condition, we first set Z; = W;. Then, using the
Cauchy-Schwartz inequality:

2
ti tj
E. lA}’WJ o.d WS] <A/E; . [(A;’ W)Z] E, (J o.d Ws>
ti—1 ti—1

and therefore

ZEt, J[Aruarw

2 2 (5,

If Z, = W/, the process W} S(t) osdWs is a martingale by orthogonality, so that:

) A, — 0.

Eti—l

i—

ti
A}’W’f o.d Wsl — 0.
ti—1



Theorem (The t-statistic under the alternative)

Assume that X is of the form:

o Ci,t Gt
dX; = dX, : dt ’ dW,
t t + (Tdb — t)a + (Tdb — t)ﬁ ty

where T4, > 0, dX; is the model (with bounded coefficients) in Eq. (35) for which
the conditions of Theorem 3 hold, ¢y, ¢+ are adapted stochastic processes
which satisfy the same conditions of u;, ¢, and «, 8 are constants such that
0<B<1/2and0<a<1. Then, as n — o, we have:

a.s.

— @ ifa—p>1/2
T2 3 b kN0, 1) + dkpae, if v f=1/2
9 ek sN(0,1) ifa—B<1/2
where
1
K2 284 2 K2 —B= 1/2d
Ck.p = Je ) wx and dk g.¢;.c, = Cl’l Je ™ )i/Q.
Ko §p K(x)|x| =28 dx (K2 §o KOOIX| 2,6dx>




The proof under the alternative

Without loss of generality, we set 7y, = 1. We write X, = X; + D; + Vi, where
De = {5 c1s(1—s)"ds and Vi = §f co.s(1 — 5)PdW.

Look at the term fi]. In Theorem 3, we already showed that
XK (552) arx = 0, (4 ) Now,

1< ti_1 — 1) Jti _
A, =— E K| — c1s(l—5s)"%ds
hn i=1 < hn ti—1 b ( )

1< ti_1—1 o
=% zi K <hn> Aincre, o (1—=E& 16)" "

iz
where tj_1 <&, < tj.The last term is, following a change of variable and

Riemann summation, asymptotically equivalent to ¢; 1h, *mk(—a), where

mk(—a) is a constant.



For the second term B, = hin MK (t,;ﬁn—l) Zﬁl c2.s(1— s)7PdW, we easily
show that:
hy/>+2 By 5 N0, mi(~28)c3 1),

where the above convergence is stable in law.

Thus, 47 is dominated by A, when o — 8 > 1/2, by B, when a — 8 < 1/2,

whereas both terms are needed when oo — 8 = 1/2.



We turn to the denominator and set
(677 = & X1y K (“52) [(A7D) + (AV)?] + R, where

= - MK (“2‘1) ((A7X + ATD + ATV)? — (ATD)? — (ATV)?),
n i=1 n

which is negligible since, using the fact that for all e > 0 and a, b and c real:
(a+b+c)?—a%— b? <e(a® + b?) + 152, can be bounded as

IR < ZK(
u ti_1—1
—ehnZlK( hn

1) (ctc@ror + apvy) + 15 arx?)

1+e¢€

) (arDy + (Aarv) + 1 0,),

so setting € = h?, we can make R/, ~ h;? (which will be negligible).



Write:

Let's simplify this a little bit: K is the indicator function, ¢; = 1, equally spaced
observations. We have:

1 [hn/An]
A/ ﬂ I-f2a
n 2-2
n*==hy i=1

Thus, when a > 1/2, we have A/, £ rﬂ%“hn



Next, setting ©, = hin YK (%) (A?V)? and using 1t3's Lemma:

t; 2 t;
f .s(1—5)"PdW;s :2f
ti1 ti—1

tj
+ J cis(l —5)"%8ds,
ti—1

S
J cu(l— u)—ﬁdwu> .s(1—s)"PdWs

ti1

and we split ©, = ©1 , + O, , accordingly. ©, , is asymptotically equivalent to
3 1hy P mi(—25).We write ©1, = X7 ., [Auj], where

, 1 ti_1—1 ti -8 s -8
Au’. = [—TK T 2 C275(1 — S) C27u(1 — U) dw, dWs,
n n ti—1 ti—1

so ©1,, is a sum of martingale differences. Now, using a Taylor expansion on ¢, s,

:i By [(A“'{f] - hiz ;"1 K2 (tl%,il) (Cg,t,-71 +0p(1))Ee;_, [(2 f:’;l(l —57F (f 1- U)fﬂqu> dWs>2

i=1 i—1

4 N -1 _ s _ 2
- Nk ( (e | +op 1))J — 5 %PE, [(I a-u f*dm) :|ds

hi=1 ti—1

4 2 ti_g—1 s

-y K ( i1 ) G op(l))f (1—s5) 28 (J a- u)*”’du) ds

hi i1 ti1

2§ g2tz an (@ A2 1ol

=5 X (G, +oW) (A —t1)"*a7 , + 087 ),

n =1



Thus, ©1 , is at most of order ﬁ and is always dominated by O .
Comparing ©, , ~ h;zﬁ and A/, ~ ﬁ both can dominate.
However, when oo — 8 > 1/2, if ©, , dominates,

12, _q
T ~ ha "hy ~ h;(a*ﬁflﬂ) - o

h?

If Al, dominates,

h,l,/zh;"
~ T

T ~ (nhn)l_a — 0

1/2
pnl—o hn/

and the T-statistics explodes anyway.



Flash Crashes over time and day
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We identify 148 flash crash events in our sample. Average duration of a flash crash is 9.5 minutes, an average price drop during
a flash crash is —1.35%. Systematic flash crashes: April 17 (14 stocks involved) and September 3 (13 stocks involved)



The average Flash Crash
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Liquidity Measures (i) Non-Systematic Events
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Liquidity Measures (ii) Non-Systematic Events

Panel D: Executed order age.

Panel C: Market depth.
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Liquidity Measures (iii) Non-Systematic Events

Panel A: buyer-initiated volume Panel B: seller-initiated volume
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Aggregate signed inventory: non-systematic events

NON-Systematic events

2000 e

o o
oS o
o o
T T
//

a

o

o
T

-500 - N

/

Cumulative money invested (thousands of Euro)

-1000 [{— IB-HFT Market Makers
IB-HFT (Clients + Owners)
-------- NON-HFT (Clients + Owners),
— Average price‘ path

-1500
0 10 20 30 40 50

Average elapsed time (minutes)



Aggregate signed inventory: systematic events
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Cumulative net trading imbalances per minute of IB-HFT MM

Column A: NON-systematic flash crashes Column B: Systematic flash crashes.
=k = = = = e
=l =




Order cancellations - Non Systematic events
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Average price evolution of orders (through cancellations and new orders) for the most active

trader categories (non-systematic).
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Net monetary profit (€) during flash crashes.

Systematic  Non-Systematic

PURE-HFT CLIENT 24.36 11.07
(25.94) (124.21)

PURE-HFT MM —377.78 —164.09
(541.03) (444.22)

PURE-HFT OWN —60.17 —27.52
(108.69) (312.32)

IB-HFT CLIENT —1024.37 241.62
(889.47) (774.40)

IB-HFT MM —75.61 —2799.72%%*
(959.95) (706.58)

IB-HFT OWN 5396.13** 2239.13*
(2713.46) (1204.43)

IB-HFT PARENT —208.34 —423.07*
(484.79) (238.88)

Non-HFT CLIENT —3164.53 —438.11
(2250.18) (996.79)

Non-HFT OWN —765.22 1375.07**

(1457.17) (690.90)




Summary of the statistical analisis

@ Cross-sectional analysis of trade imbalances (net and based on aggressive

and passive trades separately) of different trading categories

The analysis of quoting activity of different trading categories

Testing whether HFTs change their trading behaviour during flash crashes in
a model for inventory changes of different trader groups (as in Kirilenko,
Kyle, Samadi, and Tuzun, 2017).

o In contrast to the results of Kirilenko et al. (2017) we show that HFTs
change their trading behaviour during flash crashes.
@ Comparison with Extreme Price Movements (Broogard et al, 2018)

o EPM methods allows to detect from 18.92% to 26.35% of flash crashes

in our sample.



Interpretation and conclusions

@ HFT, in particular IB-HFT, do play a significant role in causing flash crashes
via both trading and quote revision

@ IB-HFT Owners start the crash with informed selling; IB-HFT Clients follow
to profit opportunistically; IB-HFT Market Makers also start selling to

back-run (or to predate on the price)

The crash
The joint behaviour of IB-HFT and HFT Market Makers in a market that became

already illiquid creates a transitory crash.

@ Market Makers (i): main liquidity providers at the beginning of the crash,
only when they happen in single stocks, but they do not help with the
recovery

@ Market Makers (ii): When crashes affect several stocks, they sell along all

phases of crash
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