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Gilles PAGÈS (LPSM) Stochastic approximation I LPSM-Sorbonne Université 2 / 94
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Deterministic zero search and optimization

Zero search: One aims at finding a zero θ∗ of a function h : Rd → Rd .
In view of generic notations in stochastic approximation, we will
denote

h(θ), θ∈ Rd

rather than h(x).

(d = 1 is mandatory just for graphs).

Various methods:

Local recursive zero search (standard): θ0 be fixed and let γ > 0 be
small enough. Set

θn+1 = θn − γh(θn), n ≥ 0

Looks like the Euler scheme of an ODE . [Strongly suggests that h
should have at most linear growth not to explode].
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Various methods (the sequel):
Local recursive zero search if h C1 (Newton-Raphson “false position”
algoritm)

θn+1 = θn − [Jh(θn)]−1h(θn), n ≥ 0,

where Jh(θ) denotes the Jacobian of h at θ.

Idea: The tangent hyperplane is the best approximation of h (by an
hyperplane)

h(θ) ' h(θn) + Jh(θn)(θn − θ)

so θn+1 is solution to h(θn) + Jh(θn)(θn − θ) = 0.

Very fast but also very unstable, especially when Jh(θ∗) is “small”.

Yet another local recursive zero search if h C1 (Levenberg-Marquardt
algorithm): Let λn > 0, n ≥ 1,

θn+1 = θn −
[
Jh(θn) + λn+1Id

]−1
h(θn), n ≥ 0.

turns out to be more stable.
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Global recursive zero search:

– Idea: make the step decrease (not too fast) to “enlarge” in an
adaptive way the convergence area of the algorithm. . .

– Let γn, n ≥ 1 satisfy∑
n γn = +∞ and

∑
n γ

2
n < +∞.

– Set
θn+1 = θn − γn+1h(θn), n ≥ 0

Etc.

WARNING! All these methods require that

h to be computed at a reasonable cost.
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Minimizing a (potential function)

Gradient descent (GD):
Let V : Rd → R+, C1 with lim

|x |→+∞
V (x) = +∞ so that

argminV 6= ∅.

How to compute argmin & minRd V ???

If V is convex, then

argminV = {∇V = 0} (is a convex set)

– Solution: set h = ∇V ,

– If ∇V Lipschitz, then (exercise)

θn → θ∗∈ {∇V = 0} = argminV as n→ +∞.
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If V is not convex only

argminV  {∇V = 0}.

Still set h = ∇V (what else?)
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Pseudo-gradient (back to zero search!):

The function h is often given (model) and (hopefully) there exists a
Lyapunov function V s.t. (h|∇V ) ≥ 0 and

{h = 0} ' {(h|∇V ) = 0}.

If (d = 2), H(V )(x) =

(
−∂x2 V
∂x1 V

)
(Hamiltonian of ∇V (x)) and

h(x) = λ∇V (x) + µH(V )(x)

then, the above conditions are satisfied and |h|2 has V -linear growth so that
θn →C (0; 1) (if θ0 6= 0) but does not converge “pointwise”.

However, on this example, V (θn)→ argminV .

It may happen that {h = 0} 6= {(h|∇V ) = 0} 6= {∇V = 0} 6= argminV !!.
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Implicitation: Volatility

Black-Scholes model: traded asset Xt = x0e(r−σ
2

2
)t+σWt , x0, volatility

σ > 0, interest rate r , W standard Brownian motion.

Call payoff (X
T
− K )+ = max(X

T
− K , 0) with strike price K and

maturity T .

Mark-to-Market quoted price: CallM2Mkt ∈ (0, x0).

Black-Scholes price at time 0

CallBS(x0,K , r , σ) = e−rTE (X
T
− K )+

= x0Φ0(d1)− Ke−rtΦ0(d2)

d1 =
log( x0

K ) + (r + σ2

2 )T

σ
√

T
, d2 = d1 − σ

√
T .

Implicitation of the volatility: solve in σ the inverse problem

CallBS(. . . , σ, . . .)− CallM2Mkt = 0.
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Graphs of σ 7→ CallBS(σ), σ > 0: In-, At and Out- the money.

The function is even in σ and the equation has two opposite solutions.

Gilles PAGÈS (LPSM) Stochastic approximation I LPSM-Sorbonne Université 12 / 94



Algo1:

σn+1 = σn − γn+1

(
CallBS(σn)− CallM2Mkt

)︸ ︷︷ ︸
=:h(σn)

, σ0 > 0.

with γn = γ > 0 or decreasing assumption.

Algo2:

The Vega:

VegaBS(σ) = x0 sign(σ)
√

T
e−

d1(σ)2

2

√
2π

Implicit volatility search reads:

σn+1 = σn −
CallBS(x0,K , r , σn)− CallM2Mkt

VegaBS(σn)︸ ︷︷ ︸
=:h(σn)

, σ0 > 0.

[This is the actual algorithm with a “good choice” of σ0]
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Implicitation: Correlation I

2-dim (correlated) Black-Scholes model:

X i
t = x i

0e(r−σ
2
i

2
)t+σiW

i
t , x i

0, σi > 0, i = 1, 2

with 〈W 1,W 2〉t = ρt.

Best-of-Call Payoff: (
max(X 1

T
,X 1

T
)− K

)
+

Premium at time 0

Best-of-CallBS(. . . , ρ, . . . ) = e−rTE
(

max(X 1
T
,X 1

T
)− K

)
+
.

Organized markets on such options are market of the correlation ρ.

The volatilities σi , i = 1, 2, are known from vanilla option markets on
X 1 and X 2.

How to “extract” the correlation ρ?
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Deterministic algo(s):

ρn+1 = ρn − γn+1
Best-of-CallBS(ρn)− Best-of-CallM2Mkt

∂ρBest-of-CallBS(ρn) + λn︸ ︷︷ ︸
=:h(ρn)

.

Except that we have no (simple) closed form for the B-S price and its
ρ-derivative
The correlation ρ∈ [−1, 1]. Projections are possible but. . . .

What to do?
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Minimization: Value-at-risk/Conditional Value-at-risk/I

Let X = ϕ(Z ), Z : (Ω,A,P)→ Rq be an integrable random variable
representative of a loss and let α∈ (0, 1), α ' 1.

Value-at-Riskα(X ) = α-quantile = inf
{
ξ : P(X ≤ ξ) ≥ α

}
.

For simplicity, assume X has a density f
X
> 0 on R. Then

ξα = VaRα(X ) is the unique solution to

P
(
X ≤ ξα

)
= α⇐⇒ P

(
X > ξα

)
= 1− α.

The conditional Value-at-Risk is defined by

CVaRα(X ) = E
(
X |X ≥ VaRα(X )

)
.

Rockafellar-Uryasev Potential (1):

V (ξ) = ξ +
1

1− α
E (X − ξ)+, ξ∈ R.

1
R.T. Rockafellar, S. Uryasev (2000). Optimization of Conditional Value-At-Risk, The Journal of Risk, 2(3):21–41.

www.ise.ufl.edu/uryasev.
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The function V is convex and lim
|ξ|→+∞

V (ξ) = +∞ since

V (ξ) ≥ ξ so that lim
ξ→+∞

V (ξ) = +∞

and

V (ξ) ≥ ξ +
1

1− α
(
EX − ξ

)
+

= ξ +
1

1− α
(EX − ξ) for ξ low enough

= − α

1− α
ξ +

1

1− α
EX → +∞ as ξ → −∞.

By differentiation under the E, we get

V ′(ξ) = 1− 1

1− α
P(X > ξ).
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V ′(ξ) = 0 iff P(X > ξ) = 1− α iff ξ = ξα

Moreover

V (ξα) =
ξα + E (X − ξα)+

P(X > ξα)
=
EX1{X>ξα}
P(X ≥ ξα)

= E
(
X |X ≥ VaRα(X )

)
= CVaRα(X ).

(GD) pour la VaRα(X ): h(ξ) = V ′(ξ). Let ξ0∈ R,

ξn+1 = ξn − γn+1

(
1− 1

1− α
(1− F

X
(ξn))

)
= ξn −

γn+1

1− α
(
F

X
(ξn)− α

)
, n ≥ 0

Newton/Levenberg-Marquardt algo: ξ0∈ R,

ξn+1 = ξn −
F

X
(ξn)− α

(1− α)f
X

(ξn)
, n ≥ 0.

Why not ! But X = ϕ(Z ) (the whole portfolio of a CIB Bank!) ⇒ q
large and no closed form for the c.d.f. F

X
(ξ) = P(X ≤ ξ) of X .
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Gilles PAGÈS (LPSM) Stochastic approximation I LPSM-Sorbonne Université 21 / 94



Abstract Learning

Huge dataset (zk)k=1:N with of possibly high dimension d : N ' 106,
even 109, and d ' 103.
[Image, profile, text, . . . ]

Set of parameters θ∈ Θ ⊂ RK , K large (see later on).

There exists a smooth local loss function/local predictor

v(θ, z).

Global loss function: V (θ) =
1

N

N∑
k=1

v(θ, zk)

with gradient ∇V (θ) =
1

N

N∑
k=1

∇θv(θ, zk).
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Solving the minimization problem

min
θ∈Θ

V (θ).

Suggests a (GD) i.e. h = ∇V [or others. . . if ∇2
θv(θ, z) exists]:

θn+1 = θn − γn+1∇V (θn)

= θn −
γn+1

N

N∑
k=1

∇θv(θ, zk), n ≥ 0,

with the step sequence satisfying the (DS) assumption.
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Supervised learning

Input xk , output yk . Data zk = (xk , yk) ∈ Rdx +dy , k = 1 : n.

Transfer function f : Θ× Rdx → Rdy

Prediction/loss function (local) v(θ, z) = 1
2

∣∣f (θ, xk)− yk

∣∣2, k = 1 : n
so that

∇θv(θ, z) = ∇θf (θ, x)>
(
f (θ, x)− y

)
.

Resulting loss function gradient

V (θ) =
1

N

N∑
k=1

∇θf (θ, xk)>
(
f (θ, xk)− yk

)
.
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Unsupervised learning (clustering)

Only input zk = xk ∈ Rd , k = 1 : N.

Prototype parameter set: (θ1, . . . , θr )∈ Θ = (Rd)r , r ∈ N.

Local loss function: x ∈ Rd , θ∈ Θ.

v(θ, x) = 1
2 min

i=1:r
|θi − x |2 = 1

2dist
(
x , {θ1, . . . , θr}

)2

(minimal distance to prototypes).

v(θ, x) is not convex in θ!

Global loss function (Distortion):

V (θ) = 1
2

N∑
k=1

min
i=1:r
|θi − xk |2 (mean minimal distance to prototypes).
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Batch k-means/Forgy’s algorithm

Gradient at θ s.t. θi 6= θj : ∇V (θ) = 1
2

N∑
k=1

∇θv(θ, xk).

with, for i = 1 : r ,

∂θi v(θ, xk) =
(
θi − xk

)
1{|xk−θi |<minj 6=i |xk−θj |}.

1{|xk−θi |<minj 6=i |xk−θj |} = nearest neighbour search.

Compute ∇V (θ) = 1
N

∑N
k=1∇θv(θ, xk)

=⇒ N·nearest neighbour searches among r ptotypes of dim d!

Forgy’s algorithm
θn+1 = θn − γn+1∇V (θn)
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Pros and cons: toward stochastic algorithm I

Numerical Probability (for Finance): we do not know how to compute
h(θ).

h always has a probabilistic presentation in our examples:

h(θ) = EH(θ,Z ) =

∫
Rq

H(θ, z)P
Z

(dz) =

∫
Rq

H(θ, z)f
Z

(z)dz

where H : Rd × Rq → Rd is Borel, q often large. . .

Cons: . . . which requires the computation of (often) high dimensional
integrals on Rq at a reasonable cost: impossible.

Pros: The random vector Z can be simulated.

Pros: The function H is computable at a reasonable computational
cost.

Pros: Regularizing effect of E : h smoother than the functions H(., z).
(Think to FX (ξ) = E1{X≤ξ}.)
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Pros and Cons: toward stochastic algorithm I

Data Science (usually V is given and h = ∇V ): but we cannot
compute h(θ).

h still has probabilistic representation using the empirical measure.

h(θ) =
1

N

N∑
k=1

∇θv(θ, zk) =

∫
Rq

∇θv(θ, zk)µ
N

(dz) with µ
N

=
1

N

N∑
k=1

δzk

Cons: But N huge =⇒ h(θ) cannot be computed at a reasonable cost.

Pros:
h(θ) = E∇θv(θ,Z )

where Z can be simulated by picking up a datum (uniformly) at
random since

Z ∼ zI , I ∼ U
(
{1, . . . ,N}

)
.

v(θ, z) and ∇θv(θ, z) both computable hence V and h = ∇V too.

Cons: No regularizing effect of E : smoothness of [h = ∇V ]=
smoothness of H(., z).

Cons: Transfer of convexity in θ from v(·, z) to V .
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Toward stochastic algorithm II

Zero search of h(θ) = EH(θ,Z ) as above.

Idea 1: Use Monte Carlo simulation

θn+1 = θn − γn+1ĥ
Mn+1

(θn)

ĥ
Mn+1

(θn) =
1

Mn

Mn∑
k=1

H(θn,Z
(n+1)
k ),

(
Z

(n+1)
k

)
k,n

i .i .d . ∼ Z

Idea 2: Robbins-Monro, 1951 (2)

Set ∀ n ≥ 1, Mn = 1 !!

Idea 1.5: Mini-batch i.e. Mn = M > 2. Successful among
practitioners.

2
H. Robbins, S. Monro (1951). A stochastic approximation method, Ann. Math. Stat., 22:400–407.
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Gilles PAGÈS (LPSM) Stochastic approximation I LPSM-Sorbonne Université 33 / 94



Robbins-Monro framework (1951)

B Pactitioner’s corner: Replace h(θn) by a H(θn,Zn+1).

Let (θn)n≥0 be a sequence of Rd -valued random vectors recursively
defined on (Ω,A,P) by

θn+1 = θn − γn+1H(θn,Zn+1), θ0∈ L2(P,A)

with

(i) (Zn)n≥1 is i.i.d. ∼ Z , independent of θ0

(ii)
∥∥H(θ,Z )

∥∥
2
≤ C (1 + |θ|) (⇒ h linear growth)

(iii) (γn)n≥1 is a (0,+∞)-valued deterministic step sequence

so that (θn)n≥0 is (Fn)-adapted with Fn = σ(θ0,Z1, . . . ,Zn). Then

θn+1 = θn − γn+1h(θn) + γn+1∆Mn+1, n ≥ 0.

The key is simply: ∆Mn+1 = H(θn,Zn+1)− h(θn) since

E
(
H(θn,Zn+1) | Fn

)
=︸︷︷︸

Zn+1⊥⊥Fn

[
EH(θ,Zn+1)

]
|θ=θn

= h(θn), n ≥ 0.
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Interpretations

Idea 1 (Robbins-Monro 1951, Robbins-Siegmund 1971):

Perturbed zero search procedure with decreasing step for h.

The perturbation is a martingale increment.

Idea 2 (Ljung, 1977): Perturbed Euler scheme with decreasing step of
the ODE

θ̇ = −h(θ).

(not exploited here)
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Idea 1: Robbins-Siegmund Lemma, 1971

Theorem (Robbins-Siegmund Lemma, 1971)

Lyapunov function: V : Rd → R+, C1, lim
∞

V = +∞ , ∇V Lipschitz,

|∇V |2 ≤ c(1 + V ) and (mean-reversion)

(∇V |h) ≥ 0 and ‖H(θ,Z )‖2 ≤ C
√

1 + V (θ).

Decreasing Step assumption (DS):
∑

n γn = +∞ and
∑

n γ
2
n < +∞.

V (θ0)∈ L1.

Then

(i) V (θn)
a.s.→ V∞ ∈ L1 [⇒ (θn)n≥0 pathwise bounded] and L1-bounded.

(ii)
∑

n γn(∇V |h)(θn−1)∈ L1 a.s. , hence < +∞ a.s.

(iii)
∑

n |∆θn|2 < +∞a.s. (so that θn − θn−1 → 0 a.s.).

(iv)
∑

n γn∆Mn converges a.s. and in L2.

Note that V is sub-quadratic i.e. V (θ) ≤ κ(1 + |θ|2) and h is sunlinear.
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Proof

Set Fn := σ(θ0,Z1, . . . ,Zn), n ≥ 1 and ∆θn := θn − θn−1, n ≥ 1.

There exists ξn+1∈ (θn, θn+1) s.t.

V (θn+1) = V (θn) + (∇V (ξn+1)|∆θn+1)

≤ V (θn) + (∇V (θn)|∆θn+1) + [∇V ]Lip|∆θn+1|2

= V (θn)− γn+1(∇V (θn)|H(θn,Zn+1))

+ [∇V ]Lipγ
2
n+1|H(θn,Zn+1)|2

= V (θn)− γn+1(∇V (θn)|h(θn))− γn+1(∇V (θn)|∆Mn+1)

(?) + [∇V ]Lipγ
2
n+1|H(θn,Zn+1)|2,

where
∆Mn+1 = H(θn,Zn+1)− h(θn).
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Show by induction that V (θn)∈ L1(P), given that V (θ0)∈ L1(P).

Key:

E
∣∣(∇V (θn)|H(θn,Zn+1)

)∣∣ ≤ 1

2

(
E |∇V (θn)|2 + E |H(θn,Zn+1)|2

)
.

So that (∆Mn)n≥1 is a sequence of L2 (Fn)-martingale increments
satisfying

E (|∆Mn+1|2 | Fn) ≤ E (|H(θn,Zn+1)|2 | Fn) ≤ C (1 + V (θn)).
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Coming back to

V (θn+1) ≤ V (θn)− γn+1(∇V (θn)|h(θn))− γn+1(∇V (θn)|∆Mn+1)

+ [∇V ]Lipγ
2
n+1|H(θn,Zn+1)|2,

conditioning given Fn yields

E
[
(∇V (θn)|∆Mn+1) | Fn

]
= 0

and, other terms in the RHS being Fn-measurable,

E
(
V (θn+1) | Fn) + γn+1(∇V |h)(θn) ≤ V (θn) + C

V
γ2

n+1

(
1 + V (θn)

)
= V (θn)(1 + C

V
γ2

n+1) + C
V
γ2

n+1

with CV = C 2[∇V ]Lip > 0.

Add

the positive term
∑n

k=1 γk(∇V |h)(θk−1) + C
V

∑
k≥n+2 γ

2
k on the

left-hand side of the above inequality,

(1 + C
V
γ2

n+1) times this term on the right-hand side .
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Divide the resulting inequality by
∏n+1

k=1(1 + C
V
γ2

k) shows that (the
Fn-adapted sequence)

Sn =
V (θn) +

∑n−1
k=0 γk+1(∇V |h)(θk) + C

V

∑
k≥n+1 γ

2
k∏n

k=1(1 + C
V
γ2

k)
, n ≥ 1,

is a (non-negative) super-martingale with S0 = V (θ0)∈ L1(P).

The fact that the added term is positive follows from the
mean-reverting inequality (∇V |h) ≥ 0.

Hence
Sn

a.s.−→ S∞ ∈ L1
R+

(P).
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Consequently, using that
∑

k≥n+1 γ
2
k → 0, one gets

V (θn) +
n−1∑
k=0

γk+1(∇V |h)(θk)
a.s.−→ S̃∞ = S∞

∏
n≥1

(1 + C
V
γ2

n)∈ L1(P).

(i)a The super-martingale

(Sn)n≥0 is L1(P)-bounded by ES0 = EV (θ0) < +∞,

hence (V (θn))n≥0 is L1-bounded since

V (θn) ≤

(
n∏

k=1

(1 + C
V
γ2

k)

)
Sn, n ≥ 0,

and
∏
k≥1

(1 + C
V
γ2

k) < +∞ by the (DS) assumption on (γn)n≥1.
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(ii) Now, for the same reason, the series with non-negative terms∑
0≤k≤n−1 γk+1(∇V |h)(θk) satisfies for every n ≥ 1,

E

(
n−1∑
k=0

γk+1(∇V |h)(θk)

)
≤

n∏
k=1

(1 + C
V
γ2

k)ES0

so that, by the Beppo Levi monotone convergence Theorem for series
with non-negative terms,

E

∑
n≥0

γn+1(∇V |h)(θn)

 < +∞

so that, in particular,∑
n≥0

γn+1(∇V |h)(θn) < +∞ P-a.s.

and the series converges in L1 to its a.s. limit.

Gilles PAGÈS (LPSM) Stochastic approximation I LPSM-Sorbonne Université 42 / 94



(i)b It follows that V (θn) −→ V∞ a.s. as n→ +∞. V∞∈ L1 by
Fatou’s Lemma since

(
V (θn)

)
n≥0

is L1-bounded.

(iii) Again by Beppo Levi’s monotone convergence Theorem for series
with non-negative terms,

E

∑
n≥1

|∆θn|2
 =

∑
n≥1

E |∆θn|2 ≤
∑
n≥1

γ2
n E |H(θn−1,Zn)|2

≤ C
∑
n≥1

γ2
n(1 + EV (θn−1)) < +∞

so that ∑
n≥1

|∆θn|2∈ L1(P) (hence as. finite)

which in turns yields

∆θn = θn − θn−1 → 0 a.s. and in L2(P)

Gilles PAGÈS (LPSM) Stochastic approximation I LPSM-Sorbonne Université 43 / 94



(iv) We have Mγ
n =

∑n
k=1 γk∆Mk so that Mγ is clearly an (Fn)-martingale.

Moreover,

〈Mγ〉n =
n∑

k=1

γ2
k E
(
|∆Mk |2 |Fk−1

)
≤

n∑
k=1

γ2
k E
(
|H(θk−1,Zk)|2 |Fk−1

)
≤ C

n∑
k=1

γ2
k

(
1 + EV (θk−1)

)
Consequently, owing to (i)a,

E 〈Mγ〉∞ < +∞,

Hence Mγ
n converges a.s. and in L2. �
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Robbins-Monro (pathwise reasoning)

Theorem (Robbins-Monto algorithm)

Assume the mean function h is continuous and satisfies

∀ θ∈ Rd , θ 6= θ∗,
(
θ − θ∗|h(θ)

)
> 0.

Suppose furthermore that θ0∈ L2 and that H satisfies

∀ θ∈ Rd ,
∥∥H(θ,Z )

∥∥
2
≤ C (1 + |θ|).

Finally, assume (γn)n≥1 satisfies (DS). Then

{h = 0} = {θ∗} and θn
a.s.−→ θ∗.

The convergence also holds in every Lp, p∈ (0, 2) (and
(
|θn − θ∗|

)
n≥0

is

L2-bounded).

If H(θ, z) = h(θ), back to a deterministic zero search procedure!!!
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Proof

The function V (θ) = 1
2 |θ − θ∗|

2 is a Lyapunov function.

The quadratic linear growth assumption on H is satisfied too.

Robbins-Siegmund’s Lemma implies

|θn − θ∗|2 −→ V∞∈ L1,∑
n≥1

γn

(
h(θn−1)|θn−1 − θ∗

)
< +∞ P-a.s.

(|θn − θ∗|2)n≥0 is L1-bounded.

We keep on reasoning pathwise: let ω be generic.
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On has
lim
n

(
θn−1(ω)− θ∗|h(θn−1(ω))

)
= 0.

If lim
n

(
θn−1(ω)− θ∗|h(θn−1(ω))

)
> 0, the above convergence induces

a contradiction with
∑
n≥1

γn = +∞.

Let
(
φ(n, ω)

)
n≥1

be a subsequence such that(
θφ(n,ω)(ω)− θ∗|h(θφ(n,ω)(ω))

)
−→ 0 as n→ +∞.

Now, (θn(ω))n≥0 being bounded, one may assume, up to one further
extraction,

θφ(n,ω)(ω)→ θ∞ = θ∞(ω).

By continuity of h,
(
θ∞ − θ∗|h(θ∞)

)
= 0 which implies θ∞ = θ∗.

Now, since we know that V (θn(ω)) = 1
2 |θn(ω)− θ∗|2 converges,

lim
n

∣∣θn(ω)− θ∗
∣∣2 = lim

n

∣∣θφ(n,ω)(ω)− θ∗
∣∣2 = 0.

Convergence in Lp, p∈ (0, 2) follows by uniform integrability. �
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Theorem (Stochastic Gradient Descent)

J Let V : Rd → R+ be a differentiable function lim
∞

V (θ) = +∞, ∇V

Lipschitz, |∇V |2 ≤ C (1 + V ) and {∇V = 0} = {θ∗}.
J Let h(θ) = EH(θ,Z ) = ∇V with H s.t. ‖H(θ,Z )‖2 ≤ C

√
1 + V (θ)

and that V (θ0)∈ L1(P). Assume (γn)n≥1 satisfies (DS).

Then
V (θ∗) = min

Rd
V and θn

a.s.−→ θ∗ as n→ +∞.

Moreover, ∇V (θn) converges to 0 in every Lp, p∈ (0, 2) (and
(
V (θn)

)
n≥0

is L1-bounded so that
(
∇V (θn)

)
n≥0

is L2-bounded).

Proof. Use (almost) the same arguments as above but with
(∇V | h) = |∇V |2 instead of (θ − θ∗ | h(θ)). �

If H(θ, z) = h(θ) = ∇V (θ): Convergence thm for Gradient descent!!
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Multi-target stochastic algorithms

Theorem (Multitarget Stochastic Gradient Descent)

(a) If the former assumption {∇V = 0} = {θ∗}, one has mutatis mutandis: a.s.
there exists v∞∈ R+ and a connected component χ∞ of

{
∇V = 0

}
∩ {V = v∞}

such that
dist(θn, χ∞) −→ 0 a.s.

(b) In particular if {∇V = 0} ∩ {V = v} is locally finite for every v ≥ 0 is finite,
then there exists a r.v. θ∞ such that

∇V (θ∞) = 0 and θn −→ θ∞.

(c) Moreover, ∇V (θn) converges to 0 in every Lp, p∈ (0, 2) (and
(
V (θn)

)
n≥0

is

L1-bounded so that
(
∇V (θn)

)
n≥0

is L2-bounded).
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By the R.-S. Lemma, one has for free that, a.s., (θn)n≥0 is pathwise
bounded and θn− θn−1 → 0 pathwise. Hence its limiting values makes
up a connected compact set Θ∞, clearly included in some {V = v∞}.

But this is not enough. . . Θ∞ is also invariant under the flow of

ODE ≡ θ̇ = −h(θ)

which converges toward {∇V = 0}.

Still not enough : needs to make a transfer from ODE to algorithm.

Needs further insights based on topology and the ODE method (3).

3
G. Pagès (2018). Introduction to Numerical Probability with application to Finance, Springer-Verlag, Berlin, 576p.
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Avoiding traps

Theorem (Traps (Pemantle 1984, Lazarev 1989, Brandière-Duflo
1996, Fort-P. 1997, Benäım 1998s))

Let θ∗∈ {∇V = 0}. If there exists (λ, u) such that D2Vu = λu such that

λ < 0 and E
(
H(θ∗,Z )|u

)2
> 0

then
P
(
θn → θ∗

)
= 0.

This allows to eliminate noisy local maxima, saddle points, monkey
saddle points, etc.
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Numerical probability: Implicit volatility II

Let (4) h(σ) = CallBS(σ)− CallM2Mkt = EH(σ,Z ) with

H(θ, z) =

(
x0 e−

σ+
2

2
T+σ+

√
Tz − e−rT K

)
+

− CallM2Mkt

(σ+ to ensure that h is increasing).

Then the recursive stochastic zero search reads

σn+1 = σn − γn+1H(σn,Zn+1), σ0 > 0.

with (Zn)n≥1 i.i.d.,∼ N (0, 1) and
∑

n γn = +∞,
∑

n≥1 γ
2
n < +∞

Try with γn = a
b+n so that γ1 × H(σ0,Z+1) ' few units.

4
G. Pagès (2018). Introduction to Numerical Probability with application to Finance, Springer-Verlag, Berlin, 576p.
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Numerical probability: correlation search II

Let h(ρ) = Best-ofCallBS(. . . , ρ, . . . )− Best-of-CallM2Mkt

= EH(ρ,Z ), Z = (Z 1,Z 2) ∼ N (0, I2)

with H(ρ, Z) =

0@max
“
x1

0 e
−

σ2
1T

2
+σ1
√

Tz1
, x2

0 e
−

σ2
2T

2
+
√

Tσ2(ρz1+

q
1−ρ2z2”

− e−rT K

1A
+

−Best-of-CallM2Mkt .

The naive algorithm (with (γn)n≥1 satisfying the (DS) assumption)

ρn+1 = ρn − γn+1H(ρn,Zn+1)

does not live inside [−1, 1] !! . . .

What to do ? Project on [−1, 1] (theorems do exist) or change of
variable (5)

ρ = 2
π arctan(θ) =: ϕ(θ)

so that
θn+1 = θn − γn+1H

(
ϕ(θn),Zn+1

)
, θ0∈ R.

There exists a C 1
Lip-Lyapunov function V : R→ R+ such that

V ′(θ)h
(
ϕ(θ))

)
≥ 0 and = 0 iff h(ϕ(θ)) = 0 i.e. ϕ(θ) = ρ∗.

5
G. Pagès (2018). Introduction to Numerical Probability with application to Finance, Springer-Verlag, Berlin, 576p.
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Higher dimensions

In higher dimension a correlation matrix R whose Cholesky
decomposition

R = TT> with T lower triangular and
i∑

j=1

t2
ij = 1.

(Hyper-)spherical parametrization

t11 = 1

t21 = cos(θ2), t22 = sin(θ2)

t31 = cos(θ3) sin(φ3); L32 = cos(θ3) cos(φ3)

t41 = cos(θ4) cos(φ4) cos(ψ4), t42 = cos(θ4) cos(φ4) sin(ψ4)

t43 = cos(θ4) sin(φ4), t44 = cos(θ4).

etc.

Then θ = (θ2, , θ3, φ3, θ4, φ4, ψ4).

More involved problem: periodicity introduces multiple solutions.
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Numerical probability: VaRα-CVaRα II

Set H(ξ, x) = ∂ξv(ξ, x) = 1− 1
1−α1{x≥ξ} = 1

1−α
(
1{x≤ξ−α}

)
so that

V ′(ξ) = EH(ξ,X )

Set γn = 1
n and let Xn i.i.d., ∼ X , then

ξn+1 = ξn −
γn+1

1− α
(
1{Xn+1≤ξn} − α

)
−→ ξα = VaRα(X ).

What about CVaRα(X ) ? Various solutions. . .

Ξn =
v(ξ0,X1) + · · ·+ v(ξn−1,Xn)

n
−→ E v(ξα,X ) = CVaRα(X ).

Recursive form Ξn = Ξn−1 − 1
n

(
Ξn−1 − v(ξn−1,Xn)

)
, Ξ0 = 0.

Warning ! Rare events phenomenon tends to freeze the algorithm ⇒
adaptive Importance Sampling (6) !

. . . and try to slowly increase α = αn from α0 = 1
2 to the target level.

6
O. Bardou, N. Frikha, G. Pagès (2009). Computing VaR and CVaR using Stochastic Approximation and Adaptive

Unconstrained Importance Sampling, Monte Carlo and Applications Journal, 15(3):173–210.
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First conclusions

Low dimensional examples selected on purpose for expository.

Not as automatic as (linear) Monte Carlo simulation: tuning of the
step is mandatory.

Many other examples : adaptive variance reduction (see Lemaire-P.
2007, AAP).

Central-Limit Theorem, Averaging principle (Ruppert-Polyak).

More details and results in (7) if interested and the references therein.

7
G. Pagès (2018). Introduction to Numerical Probability with application to Finance, Springer-Verlag, Berlin, 576p.
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Table of Contents

1 Optimization (deterministic, the origins)

2 Examples from Finance
Implicitation
Minimization

3 Learning procedures
Abstract Learning
Supervised Learning
Unsupervised Learning (clustering)

4 Stochastic algorithms/Approximation
From Robbins-Monro to Robbins-Siegmund
Stochastic Gradient Descent (SGD) and pseudo-SGD

5 Examples revisited by SFD
Numerical probability
Learning (supervised and unsupervised)

6 Application to Neural Networks and deep learning
Linear neural network
One hidden layer feedforward perceptron
Toward deep learning
Multilayer feedforward perceptron and Backpropagation

Gilles PAGÈS (LPSM) Stochastic approximation I LPSM-Sorbonne Université 60 / 94



Learning

Database (zk)k=1:N , parameters θ∈ Θ ⊂ RK and (local) loss
function/predictor v(θ, z).

Let (Ik)k≥1 be an i.i.d. sequence U
(
{1, . . . ,N}

)
-distributed.

The stochastic gradient descent reads

θn+1 = θn − γn+1∇θv
(
θn, zIn+1

)
where zIn+1 means that a datum has been picked up at random in the
database uniformly in {1, . . . ,N}.
Check that

E∇θv
(
θn, zI

)
=

1

N

N∑
k=1

∇θv
(
θn, zk

)
=

∫
∇θv

(
θn, z

)
µ

N
(dz) = ∇V (θn)
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CLVQ/k-means (unsupervised learning)

Aim:

min
(θj )j=1:r

[
V (θ) = 1

2

N∑
k=1

min
i=1:r
|θi − xk |2

]
(mean minimal distance to prototypes).

Competitive Learning Vector Quantization:

θi
n+1 =

{
θi
n − γn+1

(
θi
n − xn+1

)
if |xn+1 − θi

n| < minj 6=i |xn+1 − θj
n|

= 0 otherwise

In other words: → n + 1 reads

Nearest neighbour searchto the datum among r prototypes of
dimension d .
Moving the winner by a dilatation centered at the datum with ratio
1− γn+1 > 0.
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CLVQ

Figure: The CLVQ algorthm
Gilles PAGÈS (LPSM) Stochastic approximation I LPSM-Sorbonne Université 63 / 94
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Linear artificial neuron

Mc Cullogh & Pitts in 1943 : linear “neuron”: linear partitioner of
two classes of date (if any. . . ).

Learning by Hebb’s rule also known as reinforcement rule.

The first perceptron: 1957 by Rosenblatt (8) as a binary classifier.

Only able to classify linearly separable classes of data.

Figure: The Rosenblatt neural network performances.

8
Rosenblatt, Frank (1957), The Perceptron: a perceiving and recognizing automaton. Report 85-460-1, Cornell

Aeronautical Laboratory.
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No hidden layer: ADALINE (Adaptive Linear Neuron (B.
Widrow & T. Hoff, 1960))

Input data x1, . . . , xN
of the form xk = (1, x1

k , . . . , x
d
N

)∈ Rd+1.

Output (true) data are real numbers y1, . . . , yN
.

Data set: zk = (xk , yk), k = 1 : N (supervised learning).

Let Θ = Rd+1 the parameter set..

The answer of the ADALINE neuron/network for θ∈ Θ “fed” with an
imput datum x = (1, x1, . . . , xd) is

θ> x =
d∑

i=0

θix i = θ0 +
d∑

i=1

θix i

where θ> denote the transpose of θ.

(Convex) local prediction/loss function: v
(
θ, (x , y)

)
= 1

2 (y − θ>x)2
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Figure: The ADALINE neural network (with T. Montes)
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V (θ) = 1
2

∫
(θ>x − y)2µ

N

(
d(x , y)

)
= E (θ>xI − yI )

2 (convex!)

i.e. Global prediction/loss function = Ordinary Least squares !

∇V (θ) =

∫ (
θ>x − y)x µ

N

(
d(x , y)

))
.

The target is

∇V (θ) = 0⇐⇒
∫ (

θ>x)x︸ ︷︷ ︸
=(xx>)θ

µ
N

(
d(x , y)

))
=

∫
y x µ

N

(
d(x , y)

))

⇐⇒ θ>opt =

(∫
x x>µ

N

(
d(x , y)

))−1(∫
y x µ

N

(
d(x , y)

))
.

It is linear regression (as expected).
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Resulting (SGD):

θn+1 = θn − γn+1

(
θ>n x

In+1
− y

In+1

)
x

In+1

All assumptions are satisfied =⇒ θn → θ∗ a.s.

Conclusion : the ADALINE network performs linear regression
without matrix inversion.

Extension to q-dimensional (true) output data yk with Θ = M(d , q)
and

v
(
θ, (x , y)

)
= 1

2 |θ
>x − y |2.
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“Non-linear” ADALINE

Assume the output data yk are e.g. (0, 1)-valued.

Let Ψ∈ C
(
R, (0, 1)

)
, Ψ increasing homeomorphism from R onto

(0, 1).

V (θ) = 1
2E
(
Ψ(θ>xI )− yI

)2
.

∇V (θ) =
∫ ((

Ψ(θ>x)− y
)
Ψ′(θ>x)x

)
µ

N

(
d(x , y)

)
.

Loss of convexity since

∇2V (θ) =

∫ Ψ′(θ>x)2 +
(
Ψ(θ>x)− y

)
Ψ′′(θ>x)︸ ︷︷ ︸
6≥0

xx>

µN

(
d(x , y)

)
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Figure: The non-linear ADALINE neural network (with T. Montes).

Historical Rosenblatt’s “linear perceptron’” (1957): Ψ(u) = 1u≥0 is a
linear classifier.
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Figure: Historical Rosenblatt’s perceptron: the hardware (without T. Montes !).
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One hidden layer: universal approximation property

Figure: One hidden layer MLP (below: convention αij = wij ).

d = dx -dimensional inputs. Switch to x  

(
1
x

)
.

L units i = 1 : L on the hidden layer, with an activation function

Ψ∈ C (R,R).

Unit i of the hidden layer receives x = (x j)j=1:d and emits

Ψ
(
(wi·|x)

)
= Ψ

(
wi0 +

∑
1≤j≤d

wij x j
)
.

The output layer receives
[
Ψ
(
(wi·|x)

)]
i=1:L

and emits∑
1≤i≤L

λ`Ψ
(
(wi·|x)

)
.
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Universal approximation property

Theorem (Cybenko, 1989)

(a) If the activation function Ψ satisfies
(CLΨ) ≡ Ψ∈ Cb(R,R), lim

ξ→−∞
Ψ(ξ) = 0, lim

ξ→+∞
Ψ(ξ) = 1,

then F =
{

x 7−→
L∑
`=1

λ`Ψ
(
(wi·|x)

)
, L∈ N∗, λ∈ RL, w ∈ RL×(d+1)

}
is ‖ · ‖sup-dense in C ([0, 1]d ,R).

a
G. Cybenko, Approximation by Superpositions of a Sigmoidal Function. Mathematics of Control, Signals, and Systems,

2:303-314, 1989.

(CLΨ) can be slightly relaxed into Hornik’s condition (9, 1989)

(CSΨ) ≡ Ψ∈ Cb(R,R), ∃ x1, x2∈ Rd such that Ψ(x1) 6= Ψ(x2).

Extension to vector-valued outputs is straightforward.

9
Hornik K., Stinchcombe M. & White H., Multilayer feedforward networks are universal approximators. Neural Networks, 2,

359–366
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Proof I

Assume d = 1 (for simplicity).

I Step 1. If F
‖·‖sup ( C ([0, 1],R), linear form Λ∈ C ([0, 1],R)∗ s.t.

Λ 6≡ 0 and Λ|F ≡ 0 (by Hahn-Banach’s Theorem).

By Riesz’s representation Theorem, there exists a signed measure µ s.t.

Λg =

∫
R

g dµ.

Hence, with for every weight w = (α, β),

∀w = (α, β)∈ R2,

∫
R

Ψ(αx + β)µ(dx) = 0.

I Step 2. Let µ = µ+ − µ−, denote the/a decomposition of µ.

Let β → +∞. By Lebesgue’s Dominated Convergence (LDC)∫
1µ(dx) = 0 so that µ+(R) = µ−(R).
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Proof II

Now setting β = −αu yields

∀α, u∈ R,
∫

Ψ(α(x − u))µ(dx) = 0.

Letting α→ +∞ implies, still by LDC theorem

∀ u∈ R, µ
(
{x : x > u}

)
+ Ψ(0)µ({u}) = 0.

The set D =
{

u : µ+({u}) > 0 or µ−({u}) > 0
}

is at most countable
and, for every u∈ Dc ,

∀ u∈ Dc , µ
(
{x : x > u}

)
= 0.

I Step 3. Combined with µ+(R) = µ−(R), one has

∀ u∈ R, µ+
(
{x : x > u}

)
= µ−

(
{x : x > u}

)
.

Hence µ+ = µ− since Dc is everywhere dense in R i.e. µ ≡ 0.

I Step 4. Contradiction! Since Λ 6≡ 0. �
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Higher dimensional outputs I

Instant result by concatenating networks
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Higher dimensional outputs II

Although this is better in practice
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Constructive proof/smoothness

Both proofs are not constructive (Hornik’s relies on a distribution based
argument).

Constructive approach are possible including rates for higher order
derivatives like. . .

Theorem (Attali-Pagès, 1997)

(a) Assume the activation function Ψ∈ C r
b(R,R) and satisfies

ψ is non-polynomial on any open interval and ∃ ξ0 s.t. ψ(s)(ξ0) 6= 0, s = 0, . . . , r .

Let f ∈ C∞(Rd ,R). For every L∈ N, there exists weights (w
(L)
ij )i=1:d,j=1:L, λ

(L)
i=1:L

such that (with ‖g‖[0,1]d = supξ∈[0,1]d |g(ξ)|)

max
s=0:r

∥∥∥∥∥∂s
( L∑

i=1

λ
(L)
i ψ

(
(w

(L)
i |x)

))
− ∂s f

∥∥∥∥∥
[0,1]d

≤ Cf · L−1/d

a
J.-G. Attali, G. Pagès, Approximations of Functions by a Multilayer a New Approach, Neural Networks,

10(6):1069-10811,1997.
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The proof heavily relies on multi-variable Bernstein polynomials and
Vandermonde determinants.

Our 1997 paper does not avoid the curse of dimensionality and came
too late: Vapnik’s SVM were coming at the front owing to a nice
mathematical framework.

Y. Le Cun et al. stroke back in the early 2000’s with outstanding
performances classification results at a yearly challenge using deep
learning. . .

New networks with more layers, not fully connected and new type of
units (convolutive units, recurrent units).

and even more recently Generative Adversarial Networks (2014) seem
to get rid of curse of dimensionality,

but, so far, no theoretical evidence.
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From learning to deep learning

Feedforward multilayer perceptron.

1998 (Y. Le Cun): MNIST database of handwritten figures.
Input: Image = 28× 28 pixels× 256 grey levels dx ' 2× 105.
Output : probability yi for each figure 10 figures : [0, 1]10 i.e. dy ' 9.
Predictor : Multilayer perceptron (MLP) with
2 hidden layers with 200 units =⇒ K = 200× 10 = 22× 103

parameters
Size of the database: N = 50 000 for learning, 10 000 for testing.

2010: Same database
Predictor: MLP with convolutional units on GPU with 7 hidden layers

K = 2 500× 2 000× 1 500× 1 000× 500× 10 ' 122× 106 parameters

2013 (Google) : ImageNet database of N = 162× 106 images of
100× 100 pixels and 256 grey levels: dx ' 2.562× 106.

dy = 21 (classifier across 21 classes).
Predictor: Convolutional MLP network =⇒ K ' 1.72×109 parameters.
Error rate < 1/1 000.
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Figure: A three-hidden layer feedforward perceptron.
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Multilayer : toward Back propagation

Figure: A K − 1 hidden layer feedforward perceptron. Warning! New notation w
(k)
ji instead of wij .
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Multilayer and backpropagtion in one slide

Input data (layer 0): x0 = x i.e. x0
j = xj , j = 1 : d0 = d + 1,

K − 1 hidden layers (k = 1 : K − 1) and K + 1 layers (0 and K )

Output of unit i of layer k − 1: xk−1,i .

Input of unit j of layer k :∑
1≤i≤dk−1

w
(k)
ji xk−1,i = (w

(k)
j · | x

k−1,·)

so that, after passing through the activation function

xk,j = Ψk

(
(w

(k)
j · | x

k−1,·)
)
.

Typical activation functions

Ψk(ξ) = c · eξ

eξ + 1
, Ψk(ξ) = c · arctan(ξ), Ψk(ξ) = c · ξ+
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In fact two slides

Parameter to be calibrated to perform the learning of the network:

w = (w (0),w (1), . . . ,w (K))

with w (0) = Id , w (k)∈Mdk ,dk+1
(R).

Dimension of w = D = d0 · d1 = · · ·+ dK−1 · dK .

Local Predictor:

v
(
w, (x0, y)

)
= 1

2 |y − xK (w)|2

Global Predictor V (w) = E v
(
w , (x0

I , yI )
)
, I ∼ Unif ({1, . . . ,N}).

Learning phase = Calibration

min
w∈RD

V

(SGD) ? Needs to differentiate V in w i.e. v
(
w, (x0, y)

)
!!
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In fact three slides

Big Question: How to differentiate (and compute!) v
(
w, (x0, y)

)
?

Easy part: from v
(
w, (x0, y)

)
= 1

2 |y − xK (w)|2

(> for transpose) ⇓ (J for Jacobian matrix)

Jwv
(
w, (x0, y)

)
=
(
JwxK (w)

)>
(xK (w)− y),

Use xk as auxiliary variables and the induction

xk = ϕk(w (k), xk−1), k = 1 : K .

Recursive formula: note that Jwxk(w)> = Jw(1:k)xk(w(1:k))> and

Jwxk(w)> = Jw (k)ϕK
(w (k), xk−1)> + Jwxk−1(w)> Jxϕk

(w (k), xk−1)>

= Jw (k)ϕK
(w (k), xk−1)>

+ Jw(1:k−1)xk−1(w(1:k−1))> Jxϕk
(w (k), xk−1)>.
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Finally . . . in four slides

Lemma

In a ring (A,+, ·) with regular multiplication, if

ak = bk + ak−1ck , k = 1 : K

then: aK = bK +bK−1cK +bK−2cK−1cK +· · ·+b1c2 · · · ck +a0c1 · · · ck

which can be computed in a backward way.

The backpropagation algorithm (10) is two-fold.

A forward step: compute the values xk
j at each unit j of each layer k .

A backward step: Apply the lemma to the recursion
Compute

Jw (k)ϕk
(w (k), xk−1)> and Jw(1:k−1) xk−1(w(1:k−1))>

And that’s it!!
10

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. Nature,
323, 533–536. But, goes back to Paul Werbos en the 1970’s for AD.
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The truth. . . about Backpropagation of gradient

Backpropagation of gradient is similar to the reverse mode of
automatic differentiation developed independently!!

True formulas
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Ads. . .
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Grazie per l’attenzione !

Merci de votre attention !
Thank you for your attention !
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