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Introduction

The multiple curve paradigm
Pre-crisis environment

The interest rate market:

I A variety of reference rates: OIS, Ibor, Eonia...
New ones forthcoming by 2021 (On Ibor transition, see
Mercurio (2018));

I Pre-crisis environment: textbook situation, one single curve,
the reference rates are linked by simple no-arbitrage relations.
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The multiple curve paradigm
Post-crisis environment

The post-crisis interest rate market:

I Strong increase of liquidity and credit risk in interbank
transactions:

Ibor rates get riskier;
No more no-arbitrage relations between reference rates.

I Emergence of spreads between Ibor and OIS rates.

⇓
Multiple yield curves

such that each curve represents a specific tenor (length of the loan)
of the market (see Grbac & Runggaldier (2015))
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(EUR)Ibor - OIS spreads from 01/2007 to 09/2013
Source: European Central Bank
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Empirical analysis of the Ibor-OIS spreads
Typical market scenario for the spreads of the market

I Generally positive;
I Increasing with respect to the tenor;
I Volatility clustering;
I Common upward jumps along with strong dependence between

the spreads of different tenors.
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In this talk
The modeling approach

Continuous-state branching processes with immigration (CBI) for
our main modeling quantities:

I Spot multiplicative spreads between Ibor and OIS rates;
I The OIS short rate.

Straight upsides:
I Satisfies the empirical features of spreads;
I Fits the initially observed term structure;
I Allows for efficient pricing of fixed income derivatives.
⇒ Calibration of the present model to market data.
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The multi-curve setting

Ibor and OIS rates
Consider the set of tenors of the market: {δ1, . . . , δm} with
δi ≤ δi+1

I Ibor rate at t for [t, t + δi ]: L(t, t + δi ) with δi being any tenor
of the above set.

I OIS rate defined as the fair market swap rate of an Overnight
Indexed Swap (OIS), providing the following:

The term structure of OIS zero-coupon bonds T 7→ Bt(T );
The spot simply compounded OIS rate at t for [t, t + δ]:

LOIS(t, t + δi ) =
1
δi

(
1

Bt(t + δi )
− 1
)

; (1)

The OIS short rate denoted by (rt)t≥0.

In the post-crisis market: L(t, t + δi ) 6= LOIS(t, t + δi ).
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The multi-curve setting

Multiplicative spreads

Spot multiplicative spread at t for the tenor δi :

Sδi (t) =
1 + δiL(t, t + δi )

1 + δiLOIS(t, t + δi )
. (2)

I Directly inferred from market quotes;
I Time-t market expectation of the interbank risk over [t, t + δi ];
I Typical market behavior:

Sδi (t) ≥ 1;
δi ≤ δj =⇒ Sδi (t) ≤ Sδj (t).

Such an approach is initially due to Henrard (2014), further studied
in Cuchiero et al. (2016, 2018), Eberlein et al. (2018) and others.
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The modeling framework

The flow of CBI processes
Definition

Let (Ω,F,Q) be a usual filtered probability space supporting:
I a white noise W on (0,+∞)2 of intensity dsdu;
I a Poisson time-space random measure N on (0,+∞)3 of

intensity dsπ(dz)du,
where π is a tempered alpha-stable measure:

π(dz) = − 1
Γ(α) cos(πα/2)

e−θz

z1+α1z>0dz (3)

with α ∈ (1, 2) and θ > η.
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The modeling framework

The flow of CBI processes
Definition

For each tenor δi , let (Y δi
t )t≥0 be the unique solution of the

following:

Y δi
t = Y δi

0 +

∫ t

0
(a(δi )− bY δi

s )ds + σ

∫ t

0

∫ Y
δi
s

0
W (ds, du)

+η

∫ t

0

∫ +∞

0

∫ Y
δi
s−

0
zÑ(ds, dz , du), (4)

where b, σ, η ≥ 0 and a : {δ1, . . . , δm} → R+ with a(δi ) ≤ a(δi+1).
{Y δi , 1 ≤ i ≤ m} is a flow of CBI processes (see Dawson & Li
(2012)).
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The modeling framework

CBI-driven multi-curve model
Definition

Martingale modeling approach under Q in the spirit of the affine
short rate multi-curve model (see Cuchiero et al. (2018)).
Given a flow of CBI processes Yt = {Y δi

t , 1 ≤ i ≤ m}:

I The OIS short rate:

rt = l(t) + µTYt , (5)

I The spot multiplicative spread for each δi :

log Sδi (t) = ci (t) + Y δi
t . (6)
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The modeling framework

CBI-driven multi-curve model
Propreties

I The functions l and ci allow for an exact fit to the initially
observed term structure;

I Spreads satisfy the typical market behavior by construction;
I The processes {Y δi , 1 ≤ i ≤ m} are generated by the same

sources of randomness W and N:

⇒ Common upward jumps and strong dependence between
spreads;

I Mutually exciting behavior between spreads:
The higher Sδi (t) is, the greater the probability of upward
jumps for all spreads with tenor δj ≥ δi will be.
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The modeling framework

The spot multiplicative spreads and the OIS short rate
Sample paths
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The modeling framework

The affine feature of the CBI process
Mathematical meaning

CBI processes are affine processes (see Duffie et al. (2003)):
For each δi , ∀t, p ≥ 0:

EQ
[
exp
(
−pY δi

t

)]
= exp

(
−y δi0 v(t, p)− a(δi )

∫ t

0
v(s, p)ds

)
,

(7)
where v is the unique solution of the following ODE:

∂v

∂t
(t, p) = −ψ(v(t, p)), v(0, p) = p, (8)

where ψ is the branching mechanism of the flow:

ψ(x) = bx +
1
2
σ2x2 +

θα + xηθα−1α− (xη + θ)α

cos (πα/2)
. (9)
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The modeling framework

The affine feature of the CBI process
Consequences

I Existence of exponential moments of Y δi (see Keller-Ressel &
Mayerhofer (2015)):

b ≥ σ2 θ

2η
+
η(1− α)θα−1

cos(πα/2)
and θ > η ⇒ EQ

[
eY

δi
t

]
< +∞

(10)
I 0 is inaccessible boundary if 2a(δi ) ≥ σ2;

Compare the above consequences with Jiao et al.(2017).
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The modeling framework

CBI-driven Multi-curve pricing
Non-linear products

Exponentially affine forms for the following:
I OIS zero-coupon bonds:

Bt(T ) = exp
(
A0(t,T ) + B0(t,T )TYt

)
, (11)

I Forward multiplicative spreads:

Sδit (T ) = exp
(
Ai (t,T ) + Bi (t,T )TYt

)
, (12)

where Sδit (T ) = 1+δiLt(T ,T+δi )

1+δiLOIS
t (T ,T+δi )

.

⇒ Efficient pricing of linear fixed income products: Forward rate
agreements, Interest rate swaps...
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The modeling framework

CBI-driven Multi-curve pricing
Caplet pricing

Knowledge of the characteristic function of the flow of CBI
processes:

⇒ Efficient pricing of non-linear fixed income
derivatives via Fourier techniques.
Time-0 price of a caplet with strike K delivered at time T + δi :

PCplt(T , δi ,K ) = B0(T + δi )EQT+δi
[(
exp(X i

T )− exp(ki )
)+]

,

(13)
where X i

T = log
(

Sδi (T )
BT (T+δi )

)
and ki = log(1 + δiK ),

such that the modified characteristic function of X i
T is known in

closed form: Πi
T (z) = B0(T + δi )EQT+δi

[
e izX

i
T

]
.
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The modeling framework

CBI-driven Multi-curve pricing
Caplet pricing

The Fourier inversion technique (see Lee (2004)) then provides:

PCplt(T , δi ,K ) = R i
T (ki )+

1
π

∫ +∞−iε

0−iε
<
(
exp(−izki )

Πi
T (z − i)

−z(z − i)

)
dz ,

(14)
where R i

T (ki ) is a residue term depending on ε.

⇒ The above integral can be efficiently computed through the
FFT (see Carr & Madan (1999)), thus providing fast pricing for
calibration.
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Numerical experiment

Calibration of the CBI-driven multi-curve model
Market data

Market data from 25 June 2018, set of tenor {3M, 6M}:
I Initial term structures of OIS bonds T 7→ Bt(T ) and Ibor rates

T 7→ L0(T ,T + δ), δ ∈ {3M, 6M} bootstrapped from linear
products (FRAs, swaps);

I Concerning non-linear products, caplet volatility surface for
K ∈ [−0.13%, 2%] and T ∈ [6M, 6Y ]:

Given in terms of normal (Bachelier) implied volatilities;
Caplets with maturity larger than two years are indexed to the
6-month forward rate, the others to the 3-month curve.
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Numerical experiment

Calibration of the CBI-driven multi-curve model
Market data
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Numerical experiment

Calibration of the CBI-driven multi-curve model
Implementation details

The aim of the calibration procedure was to solve:

min
p∈P

∑
j

∑
i

(
σimp
mkt(Ki ,Tj)− σimp

model(Ki ,Tj , p)
)2
, (15)

I σimp
model(Ki ,Tj , p) computed via FFT with 32768 points and

0.05 integration mesh size;
I Multi-threaded Levenberg-Marquardt optimizer with 8 threads.
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Numerical experiment

Calibration of the CBI-driven multi-curve model
Calibration results

b 0.05353549346164644 α 1.3175352727830814
σ 0.005827989181896429 y0 (0.004953850642168643, 0.005076590407389615)>

η 0.04070169217539017 β (9.999999554946787E − 4, 0.0034047019048037384)>

θ 0.050701692175390174 µ (1.4999999999998428, 1.0000000348864304)>

Table: Calibrated parameters.

Constraints satisfied: β(1) ≤ β(2), η > 0, θ > η, α ∈ (1, 2),
y1
0 , y

2
0 ∈ R+.
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Numerical experiment

Calibration of the CBI-driven multi-curve model
Calibration results

0
6

1

2

5

3

20

4

P
ri
c
e

10 -3

4

5

15

Price Surfaces Comparison

6

Maturity

3

7

10

Strike

10 -3

8

2 5
1 0

0 -5

0

-0.005

2

6  

4

5.50

Price Squared Errors

10 -7

P
ri
c
e
 E

rr
o
r

5  

6

4.50.005

8

4  

MaturityStrike

3.50.01
3  

2.50.015
2  

1.50.02
1  

0.50.025

Model prices against market prices: Market prices are represented
by blue circles while model prices by red stars.



Multiple curve modeling with CBI processes

Conclusions

Conclusions

A multiple yield curve model based on CBI processes:

I Reproduces easily the typical scenarios of the spreads on the
post-crisis interest rate market by means of the self-exciting
feature along with the concept of flow of CBI processes;

I Allows for an exact fit to the initially observed term structures
as well as immediate pricing of all linear fixed income products
thanks to the affine property;

I Prices efficiently of non-linear interest rate derivatives via
Fourier techniques and provides tractable calibration to market
data with satisfactory results.

Work in progress: Caplet pricing and calibration of the model via
quantization techniques (CF of the model known in closed form).
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Thank you for your attention!
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