Kiefer-Wolfowitz algorithm with discontinuities in the parameters

Kinga Tikosi¹ Miklós Rásonyi²

¹Central European University, Budapest

²Alfréd Rényi Institute of Mathematics, Budapest

12th European Summer School in Financial Mathematics, Padova, September 2 - 6, 2019

- Goal: maximize the function $U: \mathbb{R}^d \to \mathbb{R}$
- Suppose we cannot see the fuctuion U(θ), only take 'noisy measurements', i.e. observe J(θ, X), where E[J(θ, X)] = U(θ).
- Idea: take two measurements to estimate the gradient

Algorithm by J. Kiefer and J. Wolfowitz (1952):

$$\theta_{k+1} = \theta_k + a_k \frac{J(\theta_k + c_k, X) - J(\theta_k - c_k, X)}{2c_k}$$

Kiefer-Wolfowitz Algorithm

Algorithm:

$$\theta_{k+1} = \theta_k + a_k \frac{J(\theta_k + c_k, X) - J(\theta_k - c_k, X)}{2c_k},$$

where (a_k) and (c_k) are positive real sequences such that

$$c_k
ightarrow 0$$

 $\sum_{k=0}^{\infty} a_k c_k < \infty$
 $\sum_{k=0}^{\infty} a_k = \infty$
 $\sum_{k=0}^{\infty} a_k^2 c_k^{-2} < \infty,$

e.g. $a_k = k^{-1}$ and $c_k = k^{-\gamma}$ with $\gamma \in (0, \frac{1}{2})$.

• For the Robbins-Monroe algorithm the convergence rate in mean is $n^{-1/2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Kiefer-Wolfowitz (1952) convergence in probability
- Convergence in expectation: $n^{-1/3}$ for twice continuously differentiable *J*, Burkholder (1956)
- a.s. convergence for discontinuous J by S. Laruelle (2011)

Result

Theorem

Under the following assumptions, θ_k converges to the global maximizer θ^* and the best convergence rate is $E|\theta_n - \theta^*| = O(n^{-1/5})$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Result

Theorem

Under the following assumptions, θ_k converges to the global maximizer θ^* and the best convergence rate is $E|\theta_n - \theta^*| = O(n^{-1/5})$.

- U is continuously differentiable and its gradient is Lipschitz-continuous; U has a unique maximizer θ*, where ∇U(θ*) = 0;
- The ODE $\dot{y_t} = \frac{a}{t} \nabla U(y_t)$ fulfills $\left\| \frac{\partial y(t,s,\xi)}{\partial \xi} \right\| \le C^* \left(\frac{s}{t}\right)^{\alpha}$ for every $\xi, 0 < s < t$, and for some positive reals C^* and α , and the solution trajectories converge to θ^* .
- The process $J(\theta, X_k)$ is uniformly conditionally L-mixing;
- J(θ, X_k) is conditionally locally Lipschitz with polynomially growing Lipschitz-constant,

Assumptions

L-mixing

Let $Y_n(\theta), n \in$ be an L^r -bounded random field for some $r \ge 1$. For all $n \in \mathbb{N}$ define

$$\begin{split} M_r^n(Y) &= \mathop{\mathrm{ess\,sup\,sup\,}}_{\substack{k \in \mathbb{N} \\ \theta}} \mathbb{E}^{1/r} [|Y_{n+k}(\theta)|^r |\mathcal{F}_n], \\ \gamma_r^n(\tau, Y) &= \mathop{\mathrm{ess\,sup\,sup\,}}_{\substack{k \geq \tau}} \mathbb{E}^{1/r} \left[|Y_{n+k}(\theta) - \mathbb{E}[Y_{n+k}(\theta)|\mathcal{F}_{n+k-\tau}^+ \vee \mathcal{F}_n] \right|^r |\mathcal{F}_n], \\ \Gamma_r^n(Y) &= \sum_{\tau=0}^{\infty} \gamma_r^n(\tau, Y). \end{split}$$

 $Y_n(\theta), n \in$ is called uniformly conditionally L-mixing of order (r, s) (short: UCLM-(r, s)) for some $r, s \ge 1$ if the following hold: $Y_n(\theta)$ is L^r -bounded; $Y_n(\theta)$ is adapted to the filtration \mathcal{F}_n for all θ and the sequences $M_r^n(Y)$ and $\Gamma_r^n(Y)$ are L^s -bounded.

Examples

The following specific J fulfills the conditional LLCP condition:

$$J(heta, x) = \sum_{i=1}^{m_{\mathrm{s}}} \left(\prod_{j=1}^{m_{\mathrm{p}}} \mathbb{1}_{\{g_i^j(x) > heta\}} \right) \, l_i(x, heta),$$

where l_i is LLCP for all i and g_i^j has the form $g_i(x_1, \ldots, x_d) = p_1^i x_1 + \ldots + p_d^i x_d$ for all i and j. Furthermore the conditional density functions $\varphi_n(x, \omega)$ of X_{n+1} w.r.t \mathcal{F}_n is bounded and have exponentially vanishing tails, i.e. $\varphi(x_1, \ldots, x_d) \leq \mathbb{c}_1 e^{\mathbb{c}_2(-|x_1| - \cdots - |x_d|)}$ for all $|x_1|, \ldots, |x_d|$.

Examples

The following specific J fulfills the conditional LLCP condition:

$$J(heta, x) = \sum_{i=1}^{m_s} \left(\prod_{j=1}^{m_p} \mathbb{1}_{\{g_i^j(x) > \theta\}} \right) I_i(x, heta),$$

where l_i is LLCP for all i and g_i^j has the form $g_i(x_1, \ldots, x_d) = p_1^i x_1 + \ldots + p_d^i x_d$ for all i and j. Furthermore the conditional density functions $\varphi_n(x, \omega)$ of X_{n+1} w.r.t \mathcal{F}_n is bounded and have exponentially vanishing tails, i.e. $\varphi(x_1, \ldots, x_d) \leq \mathbb{c}_1 e^{\mathbb{c}_2(-|x_1|-\cdots-|x_d|)}$ for all $|x_1|, \ldots, |x_d|$. The causal linear process

$$X_k = \sum_{j=0}^{\infty} b_j \varepsilon_{k-j}$$
, for $k \in \mathbb{Z}$,

where ε_j are i.i.d. for $j \in \mathbb{Z}$ and the coefficients $b_j \in \mathbb{R}$ are such that $b_j \leq C_b(j+1)^{-\delta}$,

for some $\delta > \frac{3}{2}$ and $C_b > 0$ satisfies the acquired mixing condition.

THANK YOU!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?