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Toy Example
Gambling is a way of buying hope on credit. – Alan Wykes

Uncertain Bandits: Multi-armed bandits problem

Suppose there are two biased coins.
You will gain £1 for a head

▸ 1st coin: 3 tosses with 2 heads.

▸ 2nd coin: 3000 tosses with 2000 heads.
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Gambling is a way of buying hope on credit. – Alan Wykes

Uncertain Bandits: Multi-armed bandits problem

Suppose there are two biased coins.
You will gain £1 for a head

▸ 1st coin: 3 tosses with 2 heads.

▸ 2nd coin: 3000 tosses with 2000 heads.

▸ We are biased toward a less
uncertain choice.

▸ What shall we do if we need to
repeat for a million tosses?



Multi-armed bandits problem
Gambling is a way of buying hope on credit. – Alan Wykes

Uncertain Bandits: Multi-armed bandits problem

● Suppose there are M slot machines.

● One machine can be played at a time.

● Each machine may have its own state.

● The machines are independent.

● Playing a machine generates a cost
and its state may evolve.



Multi-armed bandits problem
Gambling is a way of buying hope on credit. – Alan Wykes

Uncertain Bandits: Multi-armed bandits problem

● Suppose there are M slot machines.

● One machine can be played at a time.

● Each machine may have its own state.

● The machines are independent.

● Playing a machine generates a cost
and its state may evolve.

Distribution Evolving state
Risky bandit Known Yes

Stationary bandit Unknown No
Non-stationary bandit Unknown Yes



Gittins’ index theorem as a risk model
An optimist is a guy that has never had much experience. –Don Marquis

Consider a risky bandit problem with known distribution.

▸ Costs (h(m)(t)) are not IID.

▸ Objective: Minimise E(∑
∞
n=0 β

nh(ρn)(tρn )).

There exist indices associated to each machine which can be evaluated
independently such that the optimal policy is to play at each epoch
a machine of the lowest index γ(m). (Gittins, 1979)

By modeling costs h(m)(t) under a Bayesian perspective, we can show that

γ(m) ≈ x̄(m) − σ(m)ψ( 1

(n(m) + 1)(1 − β)) (Brezzi and Lai, 2002)

where x̄(m) and σ(m) are posterior mean and s.d. and ψ is positive and nondecreasing.

Uncertain Bandits: Optimisticity for exploration



Gittins’ index theorem as a risk model
An optimist is a guy that has never had much experience. –Don Marquis

Consider a risky bandit problem with known distribution.

▸ Costs (h(m)(t)) are not IID.

▸ Objective: Minimise E(∑
∞
n=0 β

nh(ρn)(tρn )).

There exist indices associated to each machine which can be evaluated
independently such that the optimal policy is to play at each epoch
a machine of the lowest index γ(m). (Gittins, 1979)

By modeling costs h(m)(t) under a Bayesian perspective, we can show that

γ(m) ≈ x̄(m) − σ(m)ψ( 1

(n(m) + 1)(1 − β)) (Brezzi and Lai, 2002)

where x̄(m) and σ(m) are posterior mean and s.d. and ψ is positive and nondecreasing.

Uncertain Bandits: Optimisticity for exploration



Optimistic Analogy for Reinforcement learning
An optimist is a guy that has never had much experience. –Don Marquis

For stationary bandit problem,

▸ The mth machine generates IID costs (h(m)(t))
t∈N

with mean µ(m).

ρ∗ = arg min
m

(Est. of µ(m) − Learning Premium
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

decreases in n(m)

).

i.e. We have less learning reward when we are more certain about our estimator.

Uncertain Bandits: Optimisticity for exploration



Uncertainty Aversion
If you expect the worst, you’ll never be disappointed – Sarah Dessen

Suppose we will only play once.

▸ This is equivalent to setting β = 0.

▸ Gittins’ objective: Minimise E(h(ρ0)(tρ0)) = x̄(ρ0).

No accounting for uncertainty!

Including uncertainty aversion, we expect to have

γ(m) = Est. of µ(m) + (−Learning premium+Uncertainty aversion
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Uncertainty valuation

).
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Time-consistent Nonlinear Expectation
If you expect the worst, you’ll never be disappointed. – Sarah Dessen

Classical control problem under uncertainty aversion:

inf
ρ

sup
Q

EQ
(

L

∑
n=1

βnh(ρn)(tρn)) =∶ inf
ρ
E(

L

∑
n=1

βnh(ρn)(tρn)).

We say a system of operator E( ⋅ ∣Ft) ∶ L∞(P,FT ) → L∞(P,Ft) ∶ t = 0,1, ..,T

is an (Ft)-consistent coherent nonlinear expectation if it satisfies strict
monotonicity, positive homogeneity, subadditivity and Lebesgue property (lower
semi-continuity) and

● (Ft)-consistency: for t ≤ t ′ ≤ T ,

E(E(X ∣Ft′)∣Ft) = E(X ∣Ft).

The filtration (Ft) must be identified in advance.
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Our information structures
If you expect the worst, you’ll never be disappointed. – Sarah Dessen

We have M bandits, each with a filtered space (Ω(m), (F
(m)
t ),P(m)) and

a consistent coherent nonlinear expectation

E
(m)(X ∣F

(m)
t ) = ess sup

Q∈Q(m)
EQ(X ∣F

(m)
t )

(See Follmer & Schied, 2016).

▸ Define the orthant space by Ω̄ = ⊗m Ω(m), similarly P̄, and

F̄(s) =⊗
m
F
(m)

(s(m)) ∶ s = (s(1), s(2), ..., s(m)).

▸ Define the orthant nonlinear expectation by

Es(Y ) = ess sup
Q∈Q̄

EQ(Y ∣F̄(s)) ∶ Q̄ = {Q =⊗
m

Q(m) for Q(m) ∈ Q(m)}.

Uncertain Bandits: Uncertainty Aversion



Time consistency
When the Facts Change, I Change My Mind. What Do You Do, Sir?–Keynes

One may want to minimise

E0(
L

∑
n=1

βnh(ρn)(tρn)) =∶ E0(H
ρ)

but Es does not satisfy time-consistency.

▸ No DPP ⇒ Curse of dimensionality.

▸ Inconsistency in decision making. i.e. ‘Optimal’ strategies
may not be followed in the future.

▸ Using an indifference valuation perspective can be helpful.

Uncertain Bandits: Optimality and Consistency
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‘Gittins’ optimality’
When the Facts Change, I Change My Mind. What Do You Do, Sir?–Keynes

▸ E0(H
ρ −E0(H

ρ)) = 0.

▸ minρE0(H
ρ) ∶= Cρ

∗
≤ Cρ where Cρ ∈ R and E0(H

ρ − Cρ) = 0.

Definition
We say Y ρ is a compensator of a cost Hρ (under strategy ρ) if

E0(H
ρ
−Y ρ

) = 0.

We say ρ∗ is a Gittins’ optimum if there exists a compensator
family {Y ρ}ρ such that Y ρ∗ ≤ Y ρ.

▸ In a dynamic setting, we require Y ρ to be predictable and
supercompensate at all times.

Uncertain Bandits: Optimality and Consistency
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The main theorem
There is no more miserable human being than one in whom nothing is habitual but indecision. —W. James

For a machine m, we have (F(m)t )t≥0-adapted random costs h(m)(t).

Theorem
A Gittins’ optimal strategy for the cost Hρ ∶= ∑L

n=1 β
nh(ρn)(tρn ) can be

given by always playing a machine with the minimal index γ(m)(s) where

γ(m)(s) ∶= ess inf {γ ∶ ess inf
τ∈T (m)(s)

E(m)(
τ

∑
t=1

βt(h(m)(s + t) − γ) ∣ F(m)s ) ≤ 0}.

▸ γ(m) can be found by solving a nonlinear optimal stopping problem
independently for each machine.

▸ Playing based on indices yields a consistent decision.
(i.e. an optimal decision follows through.)

Uncertain Bandits: Robust Gittins
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Bernoulli Bandit
But to us, probability is the very guide of life. —Joseph Butler

▸ Bernoulli bandit: h(t) ∼ B(1, θ) : θ is unknown.

▸ We model the uncertainty by

E
k
(t)(⋅) ∶= ess sup

θ∈Θk
t

Eθ(⋅)

where Θk
t is a posterior credible set of size k (under an improper prior).

▸ We extend it by Ek( ⋅ ∣Ft) ∶= E
k
(t)(...E

k
(T−1)(⋅)...).

▸ It can be shown that

γ(t) = γk,β(pt ,
1

√
nt

) =∶ pt +Uncertainty valuation.

Uncertain Bandits: Bernoulli bandits
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Difference between γ and p (Uncertainty valuation)
But to us, probability is the very guide of life. —Joseph Butler

Uncertain Bandits: Bernoulli bandits
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Monte-Carlo Simulation
Facts are stubborn things, but statistics are pliable.—Mark Twain

▸ Randomly choose a and b independently from Γ(1,1/100).

▸ Take 50 samples from Beta(a,b) and use them as true
probabilities of the 50 Bernoulli bandits.

▸ Evaluate algorithms over 10000 trials/simulation.

▸ Start with initial information of size 10 from each bandit.

We will consider the performance of each algorithm by considering

▸ Expected-expected regret: R(L) ∶= ∑L
n=1 (θ(ρn) − θ∗).

▸ Suboptimal plays: N∨(L) ∶= ∑
L
n=1 I(θ(ρn) ≠ θ∗).

Uncertain Bandits: Monte-Carlo Simulation



Performance
Facts are stubborn things, but statistics are pliable.—Mark Twain

Uncertain Bandits: Monte-Carlo Simulation
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Conclusion
The finest studies are like the finest of anything else: They cost big bucks. —Charles Wheelan

Contribution

▸ We propose an alternative optimality criterion to address consistent
decision making under uncertainty over multiple filtrations.

▸ We derive an index which only involves a one dimensional
(time-consistent) robust problem which is computationally tractable.

▸ Our model takes into account the desire to learn and uncertainty
aversion.

Reference

▸ S.N. Cohen and T. Treetanthiploet, Gittins’ theorem under
uncertainty, arXiv:1907.05689.
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Sketch idea of the proof
Everything should be made as simple as possible, but not simpler—Albert Einstein

▸ Observe that γ(m)(t) is the minimum compensated reward which
could encourage us to pay the cost from time t until the optimal
stopping time τ∗.

▸ By the minimality of γ(m)(t), we must have zero total return under
the optimal stopping, i.e.

E
(m)

(
τ∗

∑
s=t+1

βs
(h(m)(s) − γ(m)(t))∣F

(m)
t ) = 0

▸ In particular, at time τ∗, we need to increase the compensated
reward to encourage further play.

Uncertain Bandits: proof of robust Gittins
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Sketch idea of the proof
Everything should be made as simple as possible, but not simpler—Albert Einstein

▸ We increase the reward minimality by considering the reward process

Γ(m)(t) = max
0≤θ≤t−1

γ(m)(θ).

▸ This minimal reward encourage us to pay the random cost h(m)(t)
until the horizon T (m) with the return 0.

▸ Since this reward encourage us to continue at any point in time, for
every t ≥ 0,

E
(m)

(
T (m)

∑
s=t+1

βs
(h(m)(s) − Γ(m)(s))∣F

(m)
t ) ≤ 0

with equality at t = 0.
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Sketch idea of the proof
Everything should be made as simple as possible, but not simpler—Albert Einstein

▸ Now imagine that we are taking a break from the m-th arm to play
another arm. Once we return to play the m-th arm we face a
further rescaling of the discount factor. In particular, we have the
discount factor α(s)βs instead of βs where α is decreasing.

▸ By the robust representation theorem, for any ε > 0, show that there
exists Q ∈ Q(m) such that

EQ
[
T (m)

∑
s=1

α(s)βs
(h(m)(s) − Γ(m)(s))] ≥ −ε

for every predictable decreasing process α in [0,1].

▸ In particular,

E(∑
n

βn
(h(ρn)(tρn ) − Γ(ρn)(tρn ))) ≥ 0.
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Sketch idea of the proof
Everything should be made as simple as possible, but not simpler—Albert Einstein

▸ If we take a break (i.e. leave the arm) only when

E
(m)

(
T (m)

∑
s=t+1

βs
(h(m)(s) − Γ(m)(s))∣F

(m)
t ) = 0

i.e. when γ(m) reaches a new maximum, the total cost must be zero.

▸ In particular,

E(∑
n

βn
(h(ρ

∗
n )(tρ

∗
n ) − Γ(ρ

∗
n )(tρ

∗
n ))) = 0.

▸ Finally, as t ↦ Γ(m)(t) is increasing, ρ∗ minimise ∑
N
n=1 β

nΓ(ρ
∗
n )(tρ

∗
n )

for all N.
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