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Zermelo's Navigation Problem
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Stochastic games on domains and HJBI

Zermelo's Navigation Problem

BVPs
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A time-optimal control problem: find the optimal trajectories of a
ship navigating a region € of strong winds.
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The domain Q is an annulus.

The wind “mainly” blows
towards the positive x-axis
with velocity ve.

The ship moves with a
velocity vs, and the captain
can control its direction «.

The captain prefers to exit
from the inner circle.
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Stochastic games on domains and HJBI BVPs

Stochastic exit time problem
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Given a bounded open set Q C R”, strategies {c}+>0 and
{Bt}t>0, we consider X*%B governed by:

dXt = b(Xt—, A, Bt)dt + O'(Xt) th, t e [0, OO), XO =X € Q,

and the following value function:

Tx,a,8
u(x) = inf supE[/ f(X:’a’ﬁ,at,ﬁt) dt + g(Xjf’a’f) ,
O‘EA[?EB 0 X, 0, 3

where 7, , 5 is the first exit time of X*%8 from Q, A and B
contain all admissible controls valued in A and B, respectively.
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Stochastic games on domains and HJBI BVPs

HJBI Dirichlet boundary value problem
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The value function u is a solution of the Hamilton—Jacobi—
Bellman—Isaacs (HJBI) equation:

—a¥ (x)0yu+ H(x,u, Vu) =0, in QR
u=g, onod,

where a = oo 7 /2, and the Hamiltonian is given by:

H(x,u,Vu) = max %nelg (b'(x, o, B)Dju(x)+c(x, a, B)u(x)—F(x, a, B)).

Oxford
Mathematics 4 Sept. 2019 DNN for control 6



Stochastic games on domains and HJBI BVPs

HJBI Dirichlet boundary value problem
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Let u be a solution to the HIJBI equation, the optimal (feedback)
controls are given by: for all x € Q,

(a(x), B(x))

eargmaxmin (b/(x, . 8)dju(x)+<(x. . H)u(x)~ F(x, 0, ).
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Artificial neural networks 6

Example one hidden layer OXFORD
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Hidden Output
layer layer

Input

Input #1 —
Input #2 —
Input #3 —

Input #4 —
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Artificial neural networks
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~ Definition
Let o: R — R be a given function. Foreach / =1,...,L, let
T RVN-1 RV T(x) = Wix + by
for some W, € RN*Ni-1 and p; € RV, A function F : RNo — RN,
F(x)= (Tpo(0oTi—1)o---(00 T1))(x), x¢€ RMNo,
is called (the realisation of) a feedforward neural network.
» L is the depth of F.

» Ni,...,Np_1 are the dimensions of the hidden layers.
» The number of unknown {W;, b}V, is the complexity € of F.
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Existing numerical methods

Neural network-based methods
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» Choose a family of neural networks F)y, parametrized by
0= {W/, bl}f_:l S ]RM, i.e., Fp = {Ue | 0 c RM}.
» Formulate the semilinear Dirichlet problem

*aU(X)auu+H(X’ U,vu) :0, in Qy

u=g, ondQ,
into a nonlinear optimization problem over F:

: ij 0 0 0y(12 0 2
min | = 105U + H, o, Vi) oy + 16 — gl
HcRM
e

mInUGQ}—M

Note that Y = L2(0) in most published works.

See, e.g., J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for
solving partial differential equations, J. Comput. Phys., 375 (2018), pp. 1339-1364.
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Existing numerical methods

Neural network-based methods
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» Discretize the optimization problem by using samples Q4 C Q2
and 0Qg C 0: solve mingcpm J(#), where

|szd| > 1= (09" (q) + Hixi, o (), Vi (x) P
X,EQd
1 0 2
+ u'(xi) —g(xi)|”.
5 g;;| (x7) — £(x)
Xi d
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Existing numerical methods

Neural network-based methods
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» Discretize the optimization problem by using samples Q4 C Q2
and 0Qg C 0: solve mingcpm J(#), where

|szd| > 1= (09" (q) + Hixi, o (), Vi (x) P
X,EQd
1 0 2
+ u'(xi) —g(xi)|”.
5 g;;| (x7) — £(x)
Xi d

» Find 6 € arg mingcgm J(#) by minimizing J(6) with stochastic
gradient descent (SGD) method:

Ok = ok — nVyJ(6%), Vk>1.
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Existing numerical methods

Neural network-based methods
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Pros:
> It is a mesh-free method.
> Neural networks can approximate certain high-dimensional
functions with reasonable complexity.
Cons:
» |t is a non-convex non-smooth optimization problem due to
the non-convexity of the Hamiltonian H.

» SGD requires evaluations of H and its gradient, which may
not be possible if A and B are high-dimensional.

» The choice of Y = [2(9Q) does not ensure the convergence
of Vu, hence no convergence of optimal controls.
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Neural network based policy iteration algorithm
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Iteratively linearize the HJBI equation:
—a¥9yu+ H(-,u,Vu) =0, inQ,

and then solve the linear equations by neural networks.

Recall the optimal controls associated with u are given by:

(a(),8())

€ arg maxmin (b'(-, c, B)Oju+c(-, c, BYu—F (-, , B)).
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Neural network based policy iteration algorithm
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Algorithm (Policy iteration for HJBI equations)

Initialization: choose an initial guess u® and set k = 0.
1. Given the function u¥, update the control laws: ¥x € Q,

(¥(x), B(x))
in (b’ Ou* “Co=1
€ argmaxmin (b'(x, &, £)9;u" (x) +¢(x, @, B)u(x) ~f(x, @, B))
2. Solve the linear problem for u**1:

— aij(‘?;ju + bpOju+ ceu—f,=0, inQ u=g, ondQ, (1)

where ¢k (-) = o(, ak(~), ﬁk(-)) forp = b, c, f.
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Neural network based policy iteration algorithm
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Algorithm (Inexact policy iteration for HJBI equations)
Initialization: choose a family of trial functions F C H?(Q2), an
initial guess u® € F, a sequence {n}xen of non-negative scalars.

1. For each k > 0, given the function uk e F, update the
control laws (o, %) as before.

2. Find ukt! € F such that

I(=270 + bied; + ci)u" ™ — il lZ2qy + 10" — &llZp/2(00

k+1

< M |0 = |,

where by, cx and f, depend on (o, %) as in (1).
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Neural network based policy iteration algorithm

Convergence analysis
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Theorem

Suppose F is dense in H(Q), limk_ 00 nk = 0, and the coefficients
are sufficiently regular.
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Neural network based policy iteration algorithm

Convergence analysis
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Theorem

Suppose F is dense in H(Q), limk_ 00 nk = 0, and the coefficients
are sufficiently regular. Let u* € H?(S) be the solution to the
HJBI equation.

Then for any initial guess u® € F, we have:
1. {uF}ken converge superlinearly to u* in H?(Q), i.e.,
liMk—so0 |05 = 0¥l ooy /Il u* — u* ||y = 0.
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Neural network based policy iteration algorithm

Convergence analysis
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Theorem

Suppose F is dense in H(Q), limk_ 00 nk = 0, and the coefficients
are sufficiently regular. Let u* € H?(S) be the solution to the
HJBI equation.

Then for any initial guess u® € F, we have:
1. {uF}ken converge superlinearly to u* in H?(Q), i.e.,
limpsoo |U* T — 0| () /1 — ¥l ) = 0.
2. limkooo (UK, 9uk, 05uk)(x) = (u*, O;u*, Ojju*)(x) for
aexeQ,and foralli,j=1,...,n.
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Neural network based policy iteration algorithm

Convergence analysis
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Theorem

Suppose F is dense in H(Q), limk_ 00 nk = 0, and the coefficients
are sufficiently regular. Let u* € H?(S) be the solution to the
HJBI equation.
Then for any initial guess u® € F, we have:
1. {uF}ken converge superlinearly to u* in H?(Q), i.e.,
limpsoo |U* T — 0| () /1 — ¥l ) = 0.
2. limkooo (UK, 9uk, 05uk)(x) = (u*, O;u*, Ojju*)(x) for
ae. x€Q,andforalli,j=1,... n.

3. The control laws {(a*, 3%)} ren converge to the optimal
feedback control (a*, 5*).
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Numerical experiments: Zermelo’s Navigation Problem
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The position of X°* = (X*, Y;%) follows:

(Z);tx:a> — (VC()<1“7 ) Yt ' ) + Vs COS(Oét)> dt + <0'X 0 ) aw,
t

vs sin(a) 0 o,

Primary
Choice

/ » The velocity of the wind is

_ . el 2l
Ve = 1—0.2sin (Ww)

» ox =05and o, =0.2.
E— VS\’HL, » r=05and R = 2.
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Choice
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Numerical experiments: Zermelo’s Navigation Problem
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Let ar € A = [0, 27] be the direction of the boat. We consider

u(x) = inf, sup Bo[ra + (X0

» The first exit time is
Te,a = inf{t > 0| X°“ & Q}.

> g=0o0n9dB,(0) and g=1on
9Br(0).

» M denotes the uncertainty from
the unknown law of the random
perturbation.
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Zermelo's Navigation Problem
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Figure: The feedback control for the scenario where the ship moves
slower than the wind (v, = 0.5).
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Zermelo's Navigation Problem
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Figure: The value function for the scenario where the ship moves slower
than the wind (vs = 0.5).
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Numerical experiments: Zermelo’s Navigation Problem
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Residual := || — a¥0;u* + H(-, u*, Vu¥)|
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Figure: Residuals with respect to the number of policy iterations.
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Conclusions
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Iterative fitting for stochastic games with controlled drifts, using
» Sobolev spaces (for feedback controls);
» Newton methods (a.k.a. policy iteration) in function space;
» stochastic gradient descent (weakest link).

Extensions to finite-horizon games and optimal stopping problems.
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