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Zermelo’s Navigation Problem

Zermelo, Ernst (1931). Über das Navigation-

sproblem bei ruhender oder veränderlicher Wind-

verteilung. Zeitschrift für Angewandte Mathematik

und Mechanik. 11 (2).
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Stochastic games on domains and HJBI BVPs
Zermelo’s Navigation Problem

A time-optimal control problem: find the optimal trajectories of a
ship navigating a region Ω of strong winds.
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I The domain Ω is an annulus.

I The wind “mainly” blows
towards the positive x-axis
with velocity vc .

I The ship moves with a
velocity vs , and the captain
can control its direction α.

I The captain prefers to exit
from the inner circle.
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Stochastic games on domains and HJBI BVPs
Stochastic exit time problem

Given a bounded open set Ω ⊂ Rn, strategies {αt}t≥0 and
{βt}t≥0, we consider X x ,α,β governed by:

dXt = b(Xt , αt , βt)dt + σ(Xt) dWt , t ∈ [0,∞); X0 = x ∈ Ω,

and the following value function:

u(x) = inf
α∈A

sup
β∈B

E
[ ∫ τx,α,β

0
f (X x ,α,β

t , αt , βt) dt + g(X x ,α,β
τx,α,β

)

]
,

where τx ,α,β is the first exit time of X x ,α,β from Ω, A and B
contain all admissible controls valued in A and B, respectively.
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Stochastic games on domains and HJBI BVPs
HJBI Dirichlet boundary value problem

The value function u is a solution of the Hamilton–Jacobi–
Bellman–Isaacs (HJBI) equation:

−aij(x)∂iju + H(x , u,∇u) = 0, in Ω ⊂ Rn,

u = g , on ∂Ω,

where a = σσT/2, and the Hamiltonian is given by:

H(x , u,∇u) = max
α∈A

min
β∈B

(
bi (x , α, β)∂iu(x)+c(x , α, β)u(x)−f (x , α, β)

)
.
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Stochastic games on domains and HJBI BVPs
HJBI Dirichlet boundary value problem

Let u be a solution to the HJBI equation, the optimal (feedback)
controls are given by: for all x ∈ Ω,

(α(x), β(x))

∈arg max
α∈A

min
β∈B

(
bi (x , α, β)∂iu(x)+c(x , α, β)u(x)−f (x , α, β)

)
.
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Artificial neural networks
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Artificial neural networks

Definition

Let % : R→ R be a given function. For each l = 1, . . . , L, let

Tl : RNl−1 → RNl , Tl(x) = Wlx + bl

for some Wl ∈ RNl×Nl−1 and bl ∈ RNl . A function F : RN0 → RNL ,

F (x) =
(
TL ◦ (% ◦ TL−1) ◦ · · · (% ◦ T1)

)
(x), x ∈ RN0 ,

is called (the realisation of) a feedforward neural network.

I L is the depth of F .

I N1, . . . ,NL−1 are the dimensions of the hidden layers.

I The number of unknown {Wl , bl}Nl=1 is the complexity C of F .
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Existing numerical methods
Neural network-based methods

I Choose a family of neural networks FM parametrized by
θ := {Wl , bl}Ll=1 ∈ RM , i.e., FM = {uθ | θ ∈ RM}.

I Formulate the semilinear Dirichlet problem

−aij(x)∂iju + H(x , u,∇u) = 0, in Ω,

u = g , on ∂Ω,

into a nonlinear optimization problem over FM :

min
θ∈RM︸︷︷︸

min
uθ∈FM

‖ − aij∂iju
θ + H(·, uθ,∇uθ)‖2

L2(Ω) + ‖uθ − g‖2
Y .

Note that Y = L2(∂Ω) in most published works.

See, e.g., J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for

solving partial differential equations, J. Comput. Phys., 375 (2018), pp. 1339–1364.
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Existing numerical methods
Neural network-based methods

I Discretize the optimization problem by using samples Ωd ⊂ Ω
and ∂Ωd ⊂ ∂Ω: solve minθ∈RM J(θ), where

J(θ) =
1

|Ωd |
∑
xi∈Ωd

| − aij(xi )∂iju
θ(xi ) + H(xi , u

θ(xi ),∇uθ(xi ))|2

+
1

|∂Ωd |
∑

xi∈∂Ωd

|uθ(xi )− g(xi )|2.

I Find θ ∈ arg minθ∈RM J(θ) by minimizing J(θ) with stochastic
gradient descent (SGD) method:

θk+1 := θk − η∇θJ(θk), ∀k ≥ 1.
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Existing numerical methods
Neural network-based methods

Pros:

I It is a mesh-free method.

I Neural networks can approximate certain high-dimensional
functions with reasonable complexity.

Cons:

I It is a non-convex non-smooth optimization problem due to
the non-convexity of the Hamiltonian H.

I SGD requires evaluations of H and its gradient, which may
not be possible if A and B are high-dimensional.

I The choice of Y = L2(∂Ω) does not ensure the convergence
of ∇u, hence no convergence of optimal controls.
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Neural network based policy iteration algorithm

Iteratively linearize the HJBI equation:

−aij∂iju + H(·, u,∇u) = 0, in Ω,

and then solve the linear equations by neural networks.

Recall the optimal controls associated with u are given by:

(α(·), β(·))

∈arg max
α∈A

min
β∈B

(
bi (·, α, β)∂iu+c(·, α, β)u−f (·, α, β)

)
.
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Neural network based policy iteration algorithm

Algorithm (Policy iteration for HJBI equations)

Initialization: choose an initial guess u0 and set k = 0.
1. Given the function uk , update the control laws: ∀x ∈ Ω,

(αk(x), βk(x))

∈ arg max
α∈A

min
β∈B

(
bi (x , α, β)∂iu

k(x)+c(x , α, β)uk(x)−f (x , α, β)
)

2. Solve the linear problem for uk+1:

− aij∂iju + bik∂iu + cku − fk = 0, in Ω; u = g , on ∂Ω, (1)

where φk(·) := φ(·, αk(·), βk(·)) for φ = bi , c , f .
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Neural network based policy iteration algorithm

Algorithm (Inexact policy iteration for HJBI equations)

Initialization: choose a family of trial functions F ⊂ H2(Ω), an
initial guess u0 ∈ F , a sequence {ηk}k∈N of non-negative scalars.

1. For each k ≥ 0, given the function uk ∈ F , update the
control laws (αk , βk) as before.

2. Find uk+1 ∈ F such that

‖(−aij∂ij + bik∂i + ck)uk+1 − fk‖2
L2(Ω) + ‖uk+1 − g‖2

H3/2(∂Ω)

≤ ηk+1‖uk+1 − uk‖2
H2(Ω),

where bk , ck and fk depend on (αk , βk) as in (1).
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Neural network based policy iteration algorithm
Convergence analysis

Theorem

Suppose F is dense in H2(Ω), limk→∞ ηk = 0, and the coefficients
are sufficiently regular.

Let u∗ ∈ H2(Ω) be the solution to the
HJBI equation.
Then for any initial guess u0 ∈ F , we have:

1. {uk}k∈N converge superlinearly to u∗ in H2(Ω), i.e.,
limk→∞ ‖uk+1 − u∗‖H2(Ω)/‖uk − u∗‖H2(Ω) = 0.

2. limk→∞(uk , ∂iu
k , ∂iju

k)(x) = (u∗, ∂iu
∗, ∂iju

∗)(x) for
a.e. x ∈ Ω, and for all i , j = 1, . . . , n.

3. The control laws {(αk , βk)}k∈N converge to the optimal
feedback control (α∗, β∗).
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Numerical experiments: Zermelo’s Navigation Problem

The position of ~X x ,α
t = (X x ,α

t ,Y x ,α
t ) follows:(

dX x ,α
t

dY x ,α
t

)
=

(
vc(X x ,α

t ,Y x ,α
t ) + vs cos(αt)

vs sin(αt)

)
dt +

(
σx 0
0 σy

)
dWt
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I The velocity of the wind is

vc = 1− 0.2 sin
(
π x2+y2−r2

R2−r2

)
.

I σx = 0.5 and σy = 0.2.

I r = 0.5 and R =
√

2.
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Numerical experiments: Zermelo’s Navigation Problem

Let αt ∈ A = [0, 2π] be the direction of the boat. We consider

u(x) = inf
α∈A

sup
Q∈M

EQ
[
τx ,α + g(~X x ,α

τx,α)
]
.
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I The first exit time is
τx,α := inf{t ≥ 0 | ~X x,α

t 6∈ Ω}.
I g ≡ 0 on ∂Br (0) and g ≡ 1 on
∂BR(0).

I M denotes the uncertainty from
the unknown law of the random
perturbation.
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Zermelo’s Navigation Problem
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Figure: The feedback control for the scenario where the ship moves
slower than the wind (vs = 0.5).
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Zermelo’s Navigation Problem
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Figure: The value function for the scenario where the ship moves slower
than the wind (vs = 0.5).
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Numerical experiments: Zermelo’s Navigation Problem

Residual :=‖− aij∂iju
k +H(·, uk ,∇uk)‖2

2,Ω,val + ‖uk − g‖2
3/2,∂Ω,val.

1 5 10 12 15 20 25 30 35 40 45 50 54

Iteration k

0.00098

0.038  

4.336  

H
J
B
I
R
e
s
id
u
a
l

H = 50, η0 = 40, ηk = 1/k
H = 80, η0 = 80, ηk = 2

−k

Figure: Residuals with respect to the number of policy iterations.
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Conclusions

Iterative fitting for stochastic games with controlled drifts, using

I Sobolev spaces (for feedback controls);

I Newton methods (a.k.a. policy iteration) in function space;

I stochastic gradient descent (weakest link).

Extensions to finite-horizon games and optimal stopping problems.
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