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Motivation

Classical models in finance assume that the log-asset price Xt is given by:

dXt = µtdt+σtdWt

where µt is the drift, Wt is a BM and σt is the volatility of the asset.

I Stochastic volatility models (Heston model): These models reproduce
correctly the term structure of ATM skew

ψ(τ) =
∣∣∣ ∂
∂k
σBS(k,τ)

∣∣∣
k=0

for large maturities, but they fail to explain the convexity to very short
maturities

I Empirical studies indicate volatility is rougher than BM
[Gatheral et al, 2014].
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For small τ , in a model where the volatility is driven by a fractional
Brownian motion with Hurst parameter H, ψ(τ) = τH−1/2 with H = 0.1.
(see Figure of S&P ATM volatility skews)

I New class of models: fractional stochastic volatility models (rough
volatility models).

match roughness of time series data
fit implied volatility smiles remarkably well

Drawback: Loss of tractability, neither Markov nor semi-martingales.
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Heston Model

The Heston model is a stochastic volatility model where:

dSt = St
√
VtdWt

Vt = V0 +
∫ t

0
λ(θ−Vs)ds+

∫ t

0
λν
√
VsdBs

λ, θ, V0 and ν positive. W and B are two BM with correlation ρ.

Proposition (The characteristic function in the Heston model)
The characteristic function of the log-price Xt = log(St/S0) satisfies:

E[eiaXt ] = exp(g(a,t) +V0h(a,t)),

where h is the solution of the following Riccati equation

∂th= 1
2(−a2− ia) +λ(iaρν−1)h(a,s) + (λν)2

2 h2(a,s), h(a,0) = 0

and

g(a,t) = θλ

∫ t

0
h(a,s)ds
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Rough Heston Model
dSt = St

√
VtdWt,

Vt = V0 +
∫ t

0

(t−s)α−1

Γ(α) (λ(θ−Vs)ds+λν
√
VsdBs)

where α ∈ (1/2,1) governs the smoothness of the volatility.

Proposition (Characteristic function of the rough Heston
[El Euch and Rosenbaum (2016)])

The characteristic function of the log-price Xt = log(St/S0) satisfies:

E[eiaXt ] = exp(g1(a,t) +V0g2(a,t))

g1(a,t) = θλ

∫ t

0
h(a,s)ds, g2(a,t) = I1−αh(a,t)

where h is the solution of the following fractional Riccati equation:

Dαh= 1
2(−a2− ia) +λ(iaρν−1)h(a,s) + (λν)2

2 h2(a,s), I1−αh(a,0) = 0

Riemann-Liouville fractional integral and differential operators:

Irf(t) = 1
Γ(r)

∫ t

0
(t−s)r−1f(s)ds, Drf(t) = 1

Γ(1− r)
d

dt

∫ t

0
(t−s)−rf(s)ds

r ∈ (0,1],
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Affine Volterra Processes

We call stochastic Volterra equations to the stochastic convolution
equations of the form:

Xt =X0 +
∫ t

0
K(t−s)b(Xs)ds+

∫ t

0
K(t−s)σ(Xs)dWs, (1)

W is a multi-dimensional BM. K ∈ L2
loc(R+,Rd×d) is called kernel.

b and σ continuous and satisfy for some constant cLG the linear growth
conditions:

|b(x)|∨|σ(x)| ≤ cLG(1+|x|), x ∈ Rd (2)

We refer to the solutions of (1) as affine Volterra processes if
a(x) = σ(x)σ(x)T and b(x) are affine maps given by:

a(x) =A0 +x1A
1 + . . .xdA

d b(x) = b0 +x1b1 + . . .xdb
d

for some d−dimensional symmetric matrices Ai and vectors bi.
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Laplace representation of the kernel

Theorem (Bernstein–Widder theorem)
If K is completely monotone, there exists µ positive such that

K(t) =
∫ +∞

0
e−tγµ(dγ) (3)

In the fractional case with: K(t) = tα−1

Γ(α) , µ(dγ) = γ−α

Γ(α)Γ(1−α)dγ,
α ∈ (1/2,1).

We approximate µ(dγ) by
∑n
i=1 ciδγi(dγ) [Carmona et al, 2000], then K by

Kn

Kn(t) =
n∑
i=1

cie
−γit.
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Multi-factor model

For n ∈ N, we define the following process:

Xn
t =X0 +

∫ t

0
Kn(t−s)b(Xn

s )ds+
∫ t

0
Kn(t−s)σ(Xn

s )dWs, t ∈ [0,T ]

(4)

For n ∈ N and t≥ 0, we have

Xn
t =X0 +

n∑
i=1

ciY
γi
t

where for any i ∈ {1, ...,n}, Y γi is the affine process given by:

dY γit =

−γiY γit + b0 + b1X0 + b1

n∑
j=1

cjY
γj
t

dt+σ

X0 +
n∑
j=1

cjY
γj
t

dWt

(5)

Y = (Y (γi))ni=1 is affine, Markovian and can be simulated.
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Multi-factor model

Proposition (Convergence in law of Xn to X: Abi Jaber and El
Euch (2018) )

Let Xn = (Xn
t )t leT continuous weak solutions to (4), with the kernel Kn

such that there exist γ > 0 and C > 0:

sup
n≥1

(∫ T−h

0
|Kn(u+h)−Kn(u)|2du+

∫ h

0
|Kn(u)|2du

)
≤ Ch2γ , (6)

and ∫ t

0
|K(u)−Kn(u)|2du→ 0 (7)

for any t ∈ [0,T ] as n goes to infinity. Then (Xn)n≥1 is tight for the
uniform topology and any point limit X is a solution of (1).

Proposition states the convergence in law of the family Xn to X whenever
(1) admits a unique weak solution.
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Adjusted forward process
The adjusted forward process (ut)t≥0 and its factor-representation (unt )t≥0
are defined as follows:

unt (x) = E
[
Xn
t+x−

∫ x

0
Kn(x−s)b(Xn

t+s)ds
∣∣∣∣Ft]

Lemma
Assume that Kn satisfies (6). Let T > 0 and p > 2/γ be such that
supn≥1,t≤TE[|Xn

t |p] is finite. Then for every s, t ∈ [0,T ] and x,y ∈ [0,M ]

E[|unt (y)−uns (x)|p]≤ C(max (|t−s|, |y−x|))pγ

where C = C(p,K,M,T ). As a consequence un admits a Hölder continuous
modification of order α ∈ [0,γ−p/2[. Denoting this version by un, we have

E
[(

max
(t,y)6=(s,x)

|unt (y)−uns (x)|
|(t−s,y−x)|α

)p]
<∞

Proposition (Convergence of (un))

un converges in law to u under the uniform topology when n goes to infinity.
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Conditional Fourier Laplace transform of the process

Xt = ln(St) =
√
VtdWt− 1

2Vtdt,
ut(x) = V0 +

∫ t
0 K(t−s+x)

(
λ(θ−V s)ds+η

√
VsdWs

)
The conditional Fourier Laplace transform of the process
({unt (.)},(Xn

t )t≥0) is given by:

E

[
exp

(
wX

n
T +

∫ ∞
0

h
n(x)unT (x)dx

)∣∣Ft]= exp

(
wX

n
t +φn(T − t,w) +

∫ ∞
0

Ψn(T − t,x,hn,w)unt (x)dx

)
fractional Riccati equations:

∂tφ
n(t,w) =Rφn

(
ψn(t,w)

)
, φn(0) = 0

Ψn(t,x,h,w) =hn(x−t)1{x≥t}+=Ψn
(
w,ψn(t−x,w)

)
1{x<t}, Ψn(0,x) =hn(x)

where

Rφn
(
ψ
n(t,w)

)
=λθψ

n(t,w), =Ψn (w,ψn(t)) =
1
2

(w2−w)+
(
ρηw−λ+

η2

2
ψ
n(t,w)

)
ψ
n(t,w)

ψn(t) =
∫ ∞

0
hn(x)Kn(t+x)dx+K ∗=Ψn

(
ψn(.,w)

)
(t)
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Pricing American Options

We denote the value of the American option at time i by Ui, i= 0, . . . .M .

Theorem

We will suppose that hn→ h uniformly in n, Kn→K in L2
loc(R+),

(un,Xn) is tight and converges weakly to (u,X). Then,

Un0 → U0

uniformly in n.

I Idea of the proof:

Approximate the American option with Bermuda (uniformly in n)
Show the convergence of the Bermuda: We prove the result by
induction on the number of dates M of the Bermudan option. The
convergence in law of the forward process is used alongside an
argument of density (which comes from the Stone-Weierstrass
theorem) that allows us to reduce the problem to payoffs of the form
exp(wXT +

∫
h(x)uT (x)dx).
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Numerical Simulation in the Rough Heston model
Time grid: tk = k∆t, k = 1, . . . ,N , ∆t= T/N .

Euler scheme for the log price Xt = log(St)

Xtk+1 =Xtk +
(
r− Vtk2

)
∆t+

√
(Vtk )+∆t(ρN (0,1) +

√
1−ρ2Ñ (0,1))

Explicit-implicit Euler scheme for the variance process V n

Vtk = un0 (tk) +
n∑
i=1

cni Y
i
tk , Y i0 = 0 for all i= 1, . . . ,n

Y itk+1 = 1
1 +γi∆t

(
Y itk −λVtk∆t+η

√
(Vtk )+∆t

)
N (0,1), i= 1, . . . ,n

with

un0 (tk) = V0 +λθ

n∑
i=1

ci

(
1−e−γ

n
i tk

γni

)
and parameters

cni = (r1−α
n −1)r(α−1)(1+n/2)

n

Γ(α)Γ(2−α) r
(α−1)i
n , γni = 1−α

2−α
r2−α
n −1
r1−α
n −1

r
i−1−n/2
n
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(Vtk )+∆t(ρN (0,1) +

√
1−ρ2Ñ (0,1))

Explicit-implicit Euler scheme for the variance process V n

Vtk = un0 (tk) +
n∑
i=1

cni Y
i
tk , Y i0 = 0 for all i= 1, . . . ,n

Y itk+1 = 1
1 +γi∆t

(
Y itk −λVtk∆t+η

√
(Vtk )+∆t

)
N (0,1), i= 1, . . . ,n

with

un0 (tk) = V0 +λθ

n∑
i=1

ci

(
1−e−γ

n
i tk

γni

)

and parameters

cni = (r1−α
n −1)r(α−1)(1+n/2)

n

Γ(α)Γ(2−α) r
(α−1)i
n , γni = 1−α

2−α
r2−α
n −1
r1−α
n −1

r
i−1−n/2
n
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Pricing American Put options in the Rough Heston Model
Longstaff-Schwartz methodology.

T = 1, strike= 100, ρ=−0.7, θ = 0.02, λ= 0.3, ν = 0.3, V0 = 0.02 α= 0.6

Figure: Put options with 105 simulations, 50 time step, 20 factors and r20 = 2.5
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Optimal exercise surface

(a) α= 0.6 (b) α= 0.8

(c) α= 1

Figure: Optimal exercise surface of American Put options in the Rough Heston
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