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Abstract

In this paper we calibrate the stationary Gaussian Musiela model to time series of
market data using the Karhunen-Loeve expansion in order to get an ortonormal ba-
sis (classically known as EOF, empirical orthonormal functions) in a separable Hilbert
space. The basis found is optimal for representing the covariance of the invariant mea-
sure of the forward rates’ process.

1 Introduction

In this paper we apply the Karhunen-Loeve expansion in order to estimate from time series
the functional coefficients of the stationary Gaussian Musiela model for the term structure
of interest rates. The core of this model is the stochastic partial differential equation

drt(x) =
(
∂

∂x
rt(x) + τ∗(x)

∫ x

0
τ(u) du

)
dt+ τ∗(x) dWt

r0 ∈W 1,1
loc (R+)

where W is a k-dimensional standard Brownian motion, τ is a deterministic function with
values in Rk, and the symbol ∗ indicates the transposition in Rk. In the equation, rt(x)
represents the spot forward rate, that is the instantaneous rate prevailing in t for a forward
contract at time t + x. We study the case when the process takes values in the separable
Hilbert space H1

γ (that is the Sobolev space of functions in R+ that, together with their
first weak derivative, are square integrable with respect to the measure e−γx dx) and we
present some results already present in literature in [17] about existence and uniqueness of
mild solutions of the equation and existence of Gaussian invariant measures N(b(·), Q∞)
in H1

γ . Our aim is to find an orthonormal basis (en)n in H1
γ and real numbers (µn)n such

that if we substitute the (τn)n with (
√
µnen)n we make the least possible error. In order to

do this, we present the Karhunen-Loeve expansion that is used to diagonalize the operator
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Q∞ in the form:

Q∞ =
∞∑
n=1

λnkn ⊗ kn

where λn ↘ 0 and (kn)n is an orthonormal basis in H1
γ . Following [12], we present an iter-

ative method to implement the Karhunen-Loeve expansion and we apply it to the Musiela
model, finding also a stopping criterion to find only the significant components of Q∞.
Unfortunately, the problem of passing from the (kn)n to the (τn)n (that is to the (en)n) is
rather difficult, so we present another approach: we prove that Q∞ satisfies the operator
relation AQ∞ + Q∞A

∗ + ττ∗ = 0, where A = ∂
∂x and ττ∗ =

∑∞
n=1 τn ⊗ τn. This implies

that, under the assumption that Tr ττ∗ < +∞, we can apply Karhunen-Loeve expansion
and the itherative algorithm to ττ∗ and get the (en)n we were looking for.

The Musiela model is a reparametrization of the better known model of Heath-Jarrow-
Morton (HJM) (see [8]), in which f(t, T ) represents the forward rate prevailing in t for the
time T . In other words, we have that f(t, t + x) = r(t, x). The Musiela parametrization
allows to consider the forward curve r(t, ·) as a Markov process in a suitable function space
(while in general in the HJM model this is not possible) and is coherent with other forward
rates models (see [2], [14] and [16]). There are two possible ways of solving the equation and
of using the Musiela model. The first one is to solve it in its generality. This means solving
a stochastic differential equation in a locally convex space. This is a rather difficult task
for which there are very few existing references in literature. The second one is to choose a
particular separable Hilbert space H ⊆ W 1,1

loc (R+) and to solve the equation in H. This is
much easier and one can find many works in literature. In particular, throughout this work
we refer to the book [5] which gives a nearly complete treatment of stochastic integration
and stochastic differential equations in separable Hilbert spaces, even if there are other
possible approaches (see for example [13] or [18]). This strategy leads us to two questions:
can one find a separable Hilbert space that is the “right” one for the equation? Second, does
there exists an orthonormal basis (i.e. a complete orthonormal system) in this space which
minimizes the error when one approximates the dynamics with the first n components of
this basis? The answer to the first question seems very arbitrary and depends on subjective
tastes: it seems natural to consider some Sobolev space with at least the first derivative
defined in some sense, but some choices (finite or infinite time horizon, weight to put in
this horizon) remain. Once the space H is fixed, the second question is very interesting.
From a theoretical point of view, it gives a good interpretation of the behaviour of r and
from a pratical point of view one can choose to approximate the dynamics of r (which a
priori is infinite dimensional) with the first n components of the “optimal” orthonormal
basis, thus making the least possible error. In this way it would be possible to implement
and calibrate the model efficiently. To this purpose, we notice that the usual procedure in
market practise and in the literature is to fix a priori both the number of the sources of
noise (i.e. the dimension of the Brownian motion) as the shape of the functional parameters
τi, i = 1, . . . , n, regardless of the fact that these choices are efficient (see for example [1],
[2], [3] for some ways to do this). The idea of finding an “efficient” basis appears for the
first time (to our knowledge) in [6]: in that work the existence of optimal (τn)n to calibrate
the model is proved in a generic separable Hilbert space H of continuous functions, but no
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operative way to obtain these (τn)n is presented. In this work, in order to calibrate the
model, we chose to use time series because it gives much more information than an implied
calibration does (used for example in [2] and [3]). In particular, we apply the method
known as “Karhunen-Loeve expansion”. This method is classically used in fluid dynamics
in order to find an orthonormal basis, whose vectors are known as “empirical orthonormal
functions”, which diagonalize the covariance operator R of an infinite dimensional random
variable, which is a compact selfadjoint operator. It turns out that this method gives good
numerical results, in the sense that only a few components of the basis are sufficient to
describe much of the evolution of the system, and there doesn’t exist another orthonormal
basis that can improve the result. We present the method following [12] and we present
an iterative algorithm to obtain the eigenvalues and the eigenvectors of R as a possible
estimation of the number N of components necessary to describe sufficiently R. Then we
present a way to apply the method to the Musiela model, considering a time series as a
sample of the infinite dimensional random variable rt having as law an invariant measure
of the equation. Here there is a hidden detail: we always studied the Musiela model under
the risk-neutral probability Q, while we can obtain from the time series an estimation of
the historical probability P. This doesn’t create problems: since Q and P are equivalent,
the Gaussian random variable we are studying has the same covariance under both P and
Q, so we can proceed safely. We show the steps to implement the model numerically, and
we give an idea of how to pass from the covariance of the invariant measure

R =
∞∑
n=1

∫ ∞
0

Suτn ⊗ Suτn du =
∞∑
n=1

λnkn ⊗ kn

to the (τn)n.
The work is organized as follows. In section 2 the Gaussian Musiela model used in

this work is presented. In section 3 some existing results on the Musiela equation are cited,
namely about the existence and uniqueness of the solution, and the existence of Gaussian
invariant measures for the forward rate curve. In section 4 we present Italian market of
bonds, and we give a method to get samples of the forward curve starting from time series
based on Italian bonds. In section 5 we present a theoretical framework for Karhunen-Loeve
expansion. In section 6 we present an iterative method used in order to get the eigenvalues
and the eigenvectors of the covariance operator in an efficient way. In section 7 we apply
the results to the Musiela model.

The author wishes to thank Nicole El Karoui for having given him the idea of finding
the “right” ortonormal basis for the Hilbert space used in the Musiela model that inspired
his work, and Franco Flandoli for his invaluable advice and suggestion to use Karhunen-
Loeve expansion.

2 Presentation of the Gaussian Musiela model

Now let’s introduce the Musiela model for the term structure of interest rates. We have
a probability space (Ω,F ,P), endowed with the filtration (Ft)t≥0. We suppose that the
price at time t of a bond expiring at time T is given by the process (B(t, T ))t∈[0,T ], and we
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suppose to have a random field (r(t, x))t,x≥0, in which r(t, x) is called spot forward rate
at time t for the maturity t+ x and represents the rate at which at time t one can enter a
forward contract at time t+ x for a short (infinitesimal) period of time. Then the price at
time t of a bond expiring at time T is given by:

B(t, T ) = exp
(
−
∫ T−t

0
r(t, u) du

)
.

We call spot rate the quantity r(t, 0); it represents the rate at which at time t one can
enter a contract expiring immediately after. We also call price progress of the savings
account the process (β(t))t, given by:

β(t) = exp
(∫ t

0
r(u, 0) du

)
.

The actualized price at time t of a bond expiring at time T is given by:

B̃(t, T ) =
B(t, T )
β(t)

= exp
(∫ t

0
r(u, 0) du−

∫ T−t

0
r(t, u) du

)
. (1)

Now we add the hypotheses that there exists a k-dimensional standard Brownian motion
(Wt)t≥0 adapted to (Ft≥0)t, and there exist two progressively measurable random fields
(α(t, x))t,x≥0, (τ(t, x))t,x≥0, that can also depend on (r(t, x))t,x, such that ∀x ≥ 0, (α(t, x))t
has trajectories in L1(R+;R), (τ∗(t, x))t has trajectories in L2(R+;Rk) and such that the
forward rate satisfies the following stochastic differential equation:{

dr(t, x) = α(t, x) dt+ τ∗(t, x) dWt

r(0, x) given.
(2)

where τ∗(t, x) dWt stands for
∑k

i=1 τi(t, x) dW i
t . A natural thing to ask is that the actualized

bond price process (B̃(t, T ))t∈[0,T ] is a martingale under a probability measure Q equivalent
to P, which is called risk-neutral probability or equivalent martingale measure. To
this purpose, we cite the:

Theorem 1 If r(t, x) follows an equation of the form (2), then the following facts are
equivalent:

1. ∀T > 0 the process (B̃(t, T ))t∈[0,T ] is a local martingale with respect to Q.

2. (r(t, x))t,x is such that ∀t ∈ R+ the application x→ r(t, x) Q-a.s. belongs to AC(R+)
and Eq. (2) becomes {

drt = (Art + c(t, ·)) dt+ τ∗(t, ·) dWt

r0 ∈ AC(R+)
(3)

where

A =
∂

∂x
, c(t, x) =

k∑
n=1

τn(t, x)
∫ x

0
τn(t, u) du
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If one of the conditions above is verified, then for all T > 0 the dynamics of B(t, T ) is given
by: {

dB(t, T ) = B(t, T ) (r(t, 0) dt+ Γ(t, T ) dWt) , t ≤ T
B(T, T ) = 1

where Γ(t, T ) = −
∫ T−t

0 τ(t, u) du.

Proof. See [15]. �

If we make the further hypotheses that (Ft)t is the completion of the natural filtra-
tion of the Brownian motion (Wt)t, and that |τt(x)| ≤ M(T ) P-a.s. ∀t, x such that
t + x ≤ T , then the process (B̃(t, T ))t is a martingale; then the hypotheses of the
martingale representation theorem hold, and so every square integrable random variable
(that is every contingent claim) can be represented as the sum of his expectation, which
is the arbitrage free price of the claim, and of a stochastic integral with respect to (Wt)t.
Besides, we can build a self-financing portfolio strategy based on B(·, T ) and on β(·), which
simulates the claim (see [15]).

Now we make some hypotheses under which this equation will have explicit solutions.
We suppose that the process (τt)t is identically equal to a real k-valued deterministic function
τ(x) belonging to W 1,1

loc (R+). Then the equation becomes:{
drt = (Art + c) dt+ τ∗ dWt

r0 ∈ L2(Ω,F0,P;H)
(4)

This is a Langevin equation which, under right hypotheses, has an explicit solution.
We notice that the general model is in the space W 1,1

loc (R+), which is a locally convex
space. In this kind of space, the theory of stochastic integration is rather difficult, while
it becomes much simpler in Hilbert space. Though such a problem can be treated in its
generality, the standard method is to choose a separable Hilbert space H ⊆W 1,1

loc (R+) and
to solve the equation in that space (see [3], [7], [17]). Natural choices for H can be H1(R+)
and H1

γ(R+) with γ > 0, that is the Sobolev space of L2 functions with weak derivative also
in L2, and the same kind of space with respect to the exponential measure γe−γx dx. The
behaviour of the equation in the two kind of spaces is quite the same: in fact the formal
expressions for the explicit solution and the law of the process are the same. However,
the space H1 doesn’t contain constant functions and this, besides having a bad economic
interpretation (a nonzero flat forward rate curve, which is the easiest interest rate model,
is not allowed!), is the main reason why in H1 there is a unique invariant measure, while in
H1
γ there are infinitely many Gaussian ones (see [17]).

We now present some results of a study of the equation in H1
γ , which is contained in

[17], where we send the interested reader to. We use the theory of the stochastic integration
in separable Hilbert spaces contained in [5] which is nearly complete.
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3 The Musiela equation in the space H1
γ

Theorem 2 . If τi ∈ H1
γ ∩H1 ∩ L4

γ ∀n ∈ N,
∑∞

n=1 ‖τn‖2H1
γ
< +∞,

∑∞
n=1 ‖τn‖4H1 < +∞,∑∞

n=1 ‖τn‖4L4
γ
< +∞, and r0 ∈ L2(Ω,F0,Q;H1

γ), then there exists a unique mild solution of
Equation (4), given by

rt(x) = r0(x+ t) +
k∑
i=1

∫ t

0
τi(x+ t− u)

(∫ x+t−u

0
τi(v) dv

)
du+

+
∫ t

0
τi(x+ t− u) dW i

u =

= r0(x+ t) +
1
2

k∑
i=1

((∫ x+t

0
τi(u) du

)2

−
(∫ x

0
τi(u) du

)2
)

+

+
k∑
i=1

∫ t

0
τi(x+ t− u) dW i

u (5)

If r0 is a Gaussian random variable, then the solution is a Gaussian process with functional
mean:

E[rt] = StE[r0] +
∫ t

0
St−uc du (6)

and functional covariance (if t ≤ v):

Cov (rt, rv) = SvCov (r0, r0)S∗t +
k∑
i=1

∫ t

0
St−uτi ⊗ S∗v−uτi du (7)

Since H1
γ is a space of continuous functions, this means that ∀t, v, x, y ≥ 0:

E[rt(x)] = E[r0(x+ t)] +
1
2

k∑
i=1

((∫ x+t

0
τi(u) du

)2

−
(∫ x

0
τi(u) du

)2
)

Cov (rt(x), rv(y)) = Cov (r0(t+ x), r0(v + y)) +
k∑
i=1

∫ t

0
τi(x+ t− u)τi(y + v − u) du

Theorem 3 . Given Equation (4) in the Hilbert space H1
γ , necessary and sufficient con-

ditions to have an invariant measure are τn ∈ H1
γ(R+) ∩ H1(R+) ∩ L4

γ(R+) ∀n ∈ N,∑∞
n=1 ‖τn‖2H1 < +∞,

∑∞
n=1 ‖τn‖4L4

γ
< +∞, and there exist infinitely many invariant mea-

sures. In particular, the measures of the kind:

δb∗(·)+b0 ∗N(0, Q∞), b0 ∈ R

are invariant measures, where:

Q∞ =
k∑
i=1

∫ +∞

0
τi(·+ u)⊗ τi(·+ u) du (8)
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b∗(x) = −
k∑
i=1

∫ x

0
τi(u)

∫ u

0
τi(v) dv du = −1

2

k∑
i=1

(∫ x

0
τi(u) du

)2

(9)

4 Forward rates in the Italian market

In this section we try to calibrate the model to the Italian market data. We chose to make
the calibration using a historical approach for two reasons: the first is that in the Italian
market there are very few derivative assets; the second is that a historical calibration can
give much more information on the shape of the forward curve than an implicit calibration
can give. In order to calibrate the model, we suppose that (rt)t is a stationary solution of
the Musiela equation (4) in the space H1

γ . Then the marginal law of rt under P is

P(rt) = N(b,Q∞) ∀t ≥ 0

with b ∈ H1
γ and

Q∞ =
∫ ∞

0

∞∑
n=1

Suτn ⊗ Suτn du,

Since the process is stationary, in order to know its law it is sufficient to know Q∞; in fact,
once we know Q∞, we are able to get the τn and to get c from them.

Here there is a hidden detail: the Musiela model is formulated under the risk-neutral
probability Q, while from the time series we can obtain an estimation of the historical
probability P. This doesn’t create problems, because since Q and P are equivalent, the
Gaussian random variable we are studying has the same covariance both under P as under
Q, so we can proceed without difficulty.

Now we suppose to have N̄ observations rti(x), i = 1, . . . , N̄ of the forward curve for
x ∈ [0, T ], where T is a fixed time horizon. Since the process r is stationary, we can consider
N̄ observations rti = rti(ω), i = 1, . . . , N̄ as N̄ realizations of the random variable rt for a
given t ≥ 0, which has law N(b,Q∞).

From now on, we indicate ri = rti for brevity. Then we can approximate:

E[rt] ' Ẽ[rt] =
1
N̄

N̄∑
i=1

ri (10)

Cov (rt, rt) = Q∞ ' 1
N̄

N̄∑
i=1

ri ⊗ ri (11)

Now let’s see how we can get the observations ri. In the Italian market the bonds
issued by the national bank (Banca d’Italia) can be assumed not to have risk of default.
The Banca d’Italia issues BOT (Buoni Ordinari del Tesoro), which are zero-coupon bonds
with maturity 3 months, 6 months or 1 year issued each month; CTZ (Certificati del Tesoro
Zero-coupon), which are zero-coupon bonds with maturity 18 or 24 months; BTP (Buoni
del Tesoro Pluriennali), which are fixed coupon bonds with maturity 3, 5, 7 or 10 years,
issued every 3 months. We can get the price of zero-coupon bonds with typical maturities
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Tj = j · 3 months, j = 1, . . . ,K (for example K = 40, that is 10 years). For maturities
of up to 2 years we can look directly to the prices of the BOTs and CTZ, and for higher
maturities we can decompose the prices of BTP in their different coupons to get the price
of the single zero-coupons; this can be done for example using a “strip” technique (see [9]).
We suppose we have data in the form B(t, Tj), Tj = j · 3 months, j = 1, . . . ,K, t = i days,
i = 1, . . . , N̄ . We can get the forward rates in this way: since

B(t, T ) = exp
(
−
∫ T−t

0
r(t, u) du

)
then

r(t, x) = − ∂

∂T
logB(t, T )|T=t+x

Here there is a problem. Since T is a variable that can assume only the discrete values Tj ,
we cannot perform a real derivation. Instead, we can approximate the derivative with:

r(t, x) ' −
log B(t,t+x+3 months)

B(t,t+x)

3 months
=

log B(t,t+x)
B(t,t+x+3 months)

0.25
= 4 log

B(t, t+ x)
B(t, t+ x+ 3 months)

If we put x = T − t, then for each day t the values of (B(t, t + x))x have a 1 day shift to
the left, so if we have N̄ samples we have a discrete scheme with K · N̄ values. We can
interpolate each curve and we can obtain N̄ samples of forward rates’ curves, and we can
build the operator Q∞ by Eq. (11). Now let’s see how we can get the (τn)n in an efficient
way using Karhunen-Loeve expansion.

5 Karhunen-Loeve expansion

In this part we follow the approach of [12]. The Karhunen-Loeve expansion is a tool that is
classically used in fluid dynamics giving nice numerical results, and we believe that it also
succeeds in treating our problem well.

We suppose we have a random variable u with values in a separable Hilbert space H
and we indicate its scalar product with 〈·, ·〉 and the relative norm with ‖ · ‖. From now
on, we suppose that E[u] = 0 (we can always reduce the problem to this case by defining
u′ = u− E[u]).

We consider the bilinear functional defined by the variance of u in H:

〈Rh, k〉 = E[〈u, h〉〈u, k〉] ∀h, k ∈ H

Lemma 4 If u ∈ L2(Ω,F ,P;H), then R is a compact selfadjoint operator.

Proof. We calculate the trace of R: if (en)n is an orthonormal basis of H, we have:

Tr R =
∞∑
n=1

〈Ren, en〉 =
∞∑
n=1

E[〈u, en〉〈u, en〉] = E

[ ∞∑
n=1

〈u, en〉2
]

= E[‖u‖2] < +∞

this means that R is a trace class operator; this implies that R is compact. The fact that
R is selfadjoint follows trivially from its definition. �
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Corollary 5 There exists a complete orthonormal set (kn)n in H such that Rkn = λnkn,
with λn ↘ 0, so we can represent R as

R =
∞∑
m=1

λmkm ⊗ km (12)

Proof. The result is a classical result of functional analysis, and it derives from the fact
that R is compact and selfadjoint in H. For a proof, see for example [4] or [10]. �

We notice that in order to know the operator R, it is sufficient to know the sets (λn)n
and (kn)n. The (kn)n has also another interpretation. In fact the following holds:

Lemma 6 The (kn)n are extremals of the functional

k → E[〈u, k〉2]
‖k‖2

=
〈Rk, k〉
‖k, k‖2

Proof. We calculate the first variation of the functional in the point k̄: ∀ε > 0, k ∈ H1
γ ,

we calculate the functional in k̄ + εk and we obtain:

F (ε, k) =
〈Rk̄, k̄〉+ 2ε〈Rk̄, k〉+ ε2〈Rk, k〉
‖k̄‖2 + 2ε〈k̄, k〉+ ε2‖k‖2

Then k̄ is an extremal if and only if ∂F
∂ε (ε, k)|ε=0 = 0 ∀k ∈ H1

γ . This leads to

2〈Rk̄, k〉‖k̄‖2 = 2〈k̄, k〉〈Rk̄, k̄〉 ∀k ∈ H1
γ

so all the eigenvectors of R are extremal points and the result follows. �

From the lemma it follows that k1 maximizes the function above. In other words,
the knowledge of the (kn)n gives us the precise behaviour of R; this analysis is analogous
to the principal components analysis used in statistics.

6 Calculation of the eigenvalues of R: an iterative method

Now we present an iterative method to find the first eigenvalue λ1 ofR and the corresponding
unitary eigenvector k1.

We fix k0 ∈ H, and we define:

kn+1 = Rkn (13)

Lemma 7 We have that

‖kn+1‖
‖kn‖

→ λ1,
kn

λn1

H1
γ−→ 〈k1, k

0〉k1
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Proof. From (12), it follows that kn =
∑∞

m=1 λ
n
mkm〈km, k0〉. By induction:

k1 = Rk0 =
∞∑
m=1

λmkm〈km, k0〉

kn+1 = Rkn =
∞∑
m=1

λmkm

〈
km,

∞∑
m′=1

λnm′km′〈km′ , k0〉

〉
=
∞∑
m=1

λmkmλ
n
m〈km, k0〉

so

kn

λn1
− 〈k1, k

0〉k1 = k1〈k1, k
0〉+

∞∑
m=1

λnm
λn1

km〈km, k0〉 − 〈k1, k
0〉k1 =

∞∑
m=2

(
λm
λ1

)n
km〈km, k0〉

and we have the second statement of the lemma. Furthermore,

‖kn+1‖
‖kn‖

=
‖kn+1‖
λn+1

1

λn1
‖kn‖

· λ1 = λ1

∥∥∥∥∥k1〈k1, k
0〉+

∞∑
m=2

(
λm
λ1

)n+1

km〈km, k0〉

∥∥∥∥∥∥∥∥∥∥k1〈k1, k
0〉+

∞∑
m=2

(
λm
λ1

)n
km〈km, k0〉

∥∥∥∥∥
→ λ1

giving the first statement of the lemma. �

In order to find the other eigenvalues and eigenvectors, we can apply the method to
the operator R1 = R− λk1 ⊗ k1 and so on.

We search for a number N that would be in some way an index of how much of the
terms of the series are “significant”; we define

N =

∞∑
n=1

λn

λ1

This estimation represents the fact that at least N terms of the series are needed for the
sum to be significant. If we use this method, having obtained λ1 from the algorithm (13),
we get N , since the sum of the eigenvalues of R is given by:

∞∑
m=1

λm =
∞∑
m=1

〈Rkm, km〉 = E

[ ∞∑
m=1

〈u, km〉2
]

=

= E

[〈 ∞∑
m=1

〈u, km〉km,
∞∑

m′=1

〈u, km′〉km′
〉]

= E[〈u, u〉]

7 Application to the Musiela model

Now we want to apply the Karhunen-Loeve expansion to the process (rt)t. We suppose
that (rt)t is a stationary solution of the Musiela equation (4) in the space H1

γ and that we
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have N̄ observations ri, i = 1, . . . , N̄ of the forward curve for x ∈ [0, T ]. As seen before, we
can approximate mean and covariance of the Gaussian random variable rt using Equations
(10) and (11). The most intuitive approach would be to apply directly the Karhunen-Loeve
expansion to the samples ri, but this would only allow us to get a representation of Q∞:

Q∞ =
∞∑
n=1

∫ ∞
0

Suτn ⊗ Suτn du =
∞∑
n=1

λnkn ⊗ kn

but, once we obtain the (kn)n, we still have to obtain the (τn)n. This is a non trivial
problem. One can be tempted to solve the problems∫ ∞

0
Suτn ⊗ Suτn du = λnkn ⊗ kn ∀n ∈ N (14)

but this is a problem that is solvable if and only if τn is an eigenvector of A, that is if and
only if τn(x) = Ce−αx. In fact, if τn is not an eigenvector of A, then the operator on the
left hand side has rank greater than 1 and it can’t be represented by an operator of the
form λnkn ⊗ kn. More generally, a reduction of the kind:

n∑
i=1

∫ ∞
0

Suτi ⊗ Suτi du =
n∑
i=1

λiki ⊗ ki

is possible if and only if the vector subspace [τi]i=1,...,n in H1
γ is stable under A. This leads

us to take in consideration a family of curves of the kind [p(x)e−αx] with α ∈ R+ where p
is a polynomial of degree ≤ n (see [1]), but this puts strong limitations on the form of the
τn, thus making our work useless.

Example 8 The easiest case is to search for a τn which is an eigenvector of Su, as we see
in this case: if k1(x) = Ce−αx, then we search for a τ1 having the form τ1(x) = τe−αx. For
a generic φ ∈ H1

γ , we have

C2λe−αx〈φ(x), e−αx〉 =
∫ ∞

0
τe−α(x+u)〈φ(x), τe−α(x+u)〉 du =

=
∫ ∞

0
τ2e−α(x+u)e−αu〈φ(x), e−αx〉 du

Then, simplifying on both sides the terms e−αx〈φ(x), e−αx〉 we obtain:

C2λ =
∫ ∞

0
τ2e−2αu du = τ2

[
− 1

2α
e−2αu

]+∞

0

=
τ2

2αC2

and we find τ =
√

2αλ/C. Anyway the problem of inverting the application from the τn to
the kn in the general case does not seem to have an easy solution.

Let us try another approach.
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Lemma 9 If Suτn
H1
γ−→ 0 ∀n, then Q∞ satisfies the equation

AQ+QA∗ + ττ∗ = 0 (15)

where ττ∗ =
∑∞

n=1 τn ⊗ τn.

Proof. We have:

AQ∞ +Q∞A
∗ = A

∞∑
n=1

∫ +∞

0
Suτn ⊗ Suτn du+

∞∑
n=1

∫ +∞

0
Suτn ⊗ Suτn duA∗ =

=
∞∑
n=1

∫ +∞

0
(A(Suτn ⊗ Suτn) + (Suτn ⊗ Suτn)A∗) du =

=
∞∑
n=1

∫ +∞

0
(Suτn ⊗ (ASuτn) + (ASuτn)⊗ Suτn) du =

=
∞∑
n=1

[Suτn ⊗ Suτn]+∞0 = −
∞∑
n=1

τn ⊗ τn

and the result follows. �

Lemma 10 If τ ∈ H1, then Suτ
H1
γ−→ 0.

Proof. We have:

‖Suτ‖2H1
γ
≤ ‖Suτ‖2H1 =

∫ +∞

0

(
τ2(x+ u) + τ ′2(x+ u)

)
dx =

=
∫ +∞

u

(
τ2(x) + τ ′2(x)

)
dx→ 0

since τ ∈ H1, and we have the result. �

Corollary 11 Q∞ satisfies Equation (15).

Proof. Since Q∞ is an invariant measure then, from section 3, τn ∈ H1 ∀n, and the result
follows from lemma 9 and 10. �

Let’s see which consequences such a relation will have in our case. If Q = λk ⊗ k,
then:

AQf = λ〈k, f〉k′ QA∗f = λ〈k′, f〉k

so AQ and QA∗ are operators going from H1
γ to two one dimensional subspaces generated

respectively by k′ and k. In particular we have:

AQ = λk ⊗ k′, QA∗ = λk′ ⊗ k

12



If Q is a (possibly infinite) sum, then A and A∗ apply to each component of Q in the way
seen above. This means that we can implement the Karhunen-Loeve expansion in this way:
instead of decomposing Q∞ and going back to ττ∗, we can decompose ττ∗ itself! In order
to do this, we only need this:

Assumption 12 Tr ττ∗ < +∞.

The assumption seems quite natural when dealing with an invariant measure. In fact
requiring that Tr Q∞ < +∞ is equivalent to requiring that

∫ +∞
0

∑∞
n=1 ‖Suτn‖2 du <

+∞. This implies
∑∞

n=1 ‖Suτn‖2 < +∞ du-a.s.; but (Su)u is a C0 semigroup in H1
γ such

that ‖Su‖ ≤ e
γ
2
u (see [17]), then the function u → e−

γ
2
u‖Suτ‖ is decreasing ∀τ ∈ H1

γ , so
e−

γ
2
u∑∞

n=1 ‖Suτn‖2 < +∞ ∀u > 0. Finally Tr Q∞ < +∞ implies
∑∞

n=1 ‖Suτn‖2 < +∞
∀u > 0. Besides, if Assumption 12 is not true, then it is not possible to fix a stopping
criterion based on a number

N =
Tr ττ∗

µ1

where µ1 is the first eigenvalue of ττ∗, because N turns out to be infinity. Assumption 12
implies the following

Corollary 13 There exists a complete orthonormal set (en)n in H1
γ such that ττ∗en = µnen

with µn ↘ 0, and we can represent ττ∗ as

ττ∗ =
∞∑
m=1

µnen ⊗ en

If Assumption 12 holds, then:

∞∑
m=1

µm = Tr ττ∗ = −Tr (AQ∞ +Q∞A
∗) = −

∞∑
m=1

〈(AQ∞ +Q∞A
∗)km, km〉 =

= −
∞∑
m=1

〈AQ∞km, km〉 −
∞∑
m=1

〈Q∞A∗km, km〉 =

= −E

[ ∞∑
m=1

〈r̄t, km〉〈r̄t, A∗km〉

]
− E

[ ∞∑
m=1

〈r̄t, A∗km〉〈r̄t, km〉

]
=

= −2E

[ ∞∑
m=1

〈r̄t, km〉〈Ar̄t, km〉

]
= −2E[〈r̄′t, r̄t〉]

At last, we can write the Musiela model in this way: drt(x) =

(
∂

∂x
rt(x) +

∞∑
n=1

τn(x)
∫ x

0
τn(u) du

)
dt+

∞∑
n=1

τn(x) dWn
t

r0 ∈ H1
γ(R+)

with τn =
√
µnen ∀n ∈ N∗. The main advantage of this representation, as already outlined in

[6], is the following: if we define rNt as the solution of the equation obtained by substituting
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in the previous one the infinite sum with a sum until N , then rN has the diffusion term that
best approximates the one of r in the class of H-valued processes that satisfy a stochastic
differential equation driven by N Brownian motions.

Now let’s see how we can implement the Karhunen-Loeve expansion on ττ∗. As
before, we suppose we have N̄ observations ri(x), i = 1, . . . , N̄ of the forward curve for
x ∈ [0, T ]. Since the process is stationary, we can consider a realization of rt consisting of
the N̄ observations ri, i = 1, . . . , N̄ .

1st step — we center r, passing to r̄t = rt − E[rt]:

r̄j = rj −
1
N̄

N̄∑
i=1

ri

then r̄t ∼ N(0, Q∞), and Cov (rt, rt) = Q∞ is given by (11).

2nd step — we build ττ∗ = AQ∞ +Q∞A
∗:

ττ∗ = − 1
N̄

N̄∑
i=1

(r̄′i ⊗ r̄i + r̄i ⊗ r̄′i)

3rd step — we apply the algorithm for ττ∗: we fix an initial k0 and we define:

en+1 = − 1
N̄

N̄∑
i=1

(〈r̄′i, en〉r̄i + 〈r̄i, en〉r̄′i)

and we find µ1 and e1.

4th step — we define R1:

R1 = − 1
N̄

N̄∑
i=1

(r̄′i ⊗ r̄i + r̄i ⊗ r̄′i)− µ1e1 ⊗ e1

and we come back to the 3rd step. We can stop to the suitable N , obtained as:

N =

∞∑
m=1

µm

µ1
=
−2E[〈r̄′, r̄〉]

µ1
' −

2
N̄

N̄∑
i=1

〈r′i, ri〉

µ1
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