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Abstract

We propose a model for the evolution of forward prices of several commodities,
which is an extension of the factor forward model in [3, 10], to a market where mul-
tiple commodities are traded. We calibrate this model in a market where forward
contracts on multiple commodities are present, using historical forward prices.
First we calibrate separately the four coefficients of every single commodity, us-
ing an approach based on quadratic variation/covariation of forward prices. Then,
with the same technique, we pass to estimate the mutual correlation among the
Brownian motions driving the different commodities. This calibration is compared
to a calibration method used by practitioners, which uses rolling time series and
requires a modification of the model, but turns out to be more accurate in practice,
especially with a low frequency of observed transaction. We present efficient meth-
ods to perform the calibration with both methods, as well as the calibration of the
intercommodity correlation matrix. Then we calibrate our model to WTI, ICE Brent
and ICE Gasoil forward prices. Finally we present how to estimate spot volatility
from forward parameters, with an application to the WTI spot volatility.

Keywords: two-factor model for commodity forward prices, historical calibration,
quadratic variation/covariation, rolling time series, non-convex optimization, semidef-
inite programming.
2010 MSC Classification: 60H35, 62H20, 62M05, 90C22, 90C26, 91B25

1 Introduction

When dealing with forward prices of a single commodity having different maturities,
the factor model proposed in [3, 10] is quite simple to understand, analytically tractable
∗enricoedoli@gmail.com
†Corresponding Author, +39 049 8271383 vargiolu@math.unipd.it.

1



and gives a good fit of several stylized fact. The first is the so-called Samuelson effect,
i.e. the local volatility of a short-term forward contract is greater than the local volatil-
ity of a long-term contract, and in particular an exponential decay is observed as the
time to maturity of the contract grows. The second stylized fact is that this volatility
does not go to zero, but rather to a fixed value, called long-term volatility, due to long
term uncertainty factors like technological innovations, change in geo-political equi-
libria, structural modifications to commodity prices, and so on. Moreover, the model
is consistent with market data and with the Schwarz-Smith model for the spot price
[12], (see [4] for details), which exibits mean reversion, another stylized fact which is
observed in the markets.

We extend this model by assuming to have K > 2 commodities in our market, and
that, for each one of the commodity, their forward prices follow the following two-
dimensional model: by denoting with F k(t, T ) the price at time t of a forward contract
on the commodity k = 1, . . . ,K with maturity T , we assume that under a forward-
neutral probability measure QT its dynamics are

dF k(t, T ) = F k(t, T )(e−λ
k(T−t)σk1 dW

k
1 (t) + σk2 dW

k
2 (t)) 0 6 t < T

where W k
1 and W k

2 are two correlated Brownian motions with correlation ρk and the
other parameters represent, respectively:

• σk1 - spot volatility, i.e. how much the forward price is influenced by short period
shocks;

• σk2 - long term volatility, i.e. how much the forward price is influenced by long
period uncertainty;

• λk - mean-reversion speed, or speed of decaying of the spot volatility.

Thus, when fitting this model to the market data of the k-th commodity, we have to
calibrate the four parameters pk = (σk1 , σ

k
2 , λ

k, ρk). Moreover, we assume that the Brow-
nian motions of the commodities also have an inter-commodity correlation, given by
the correlation matrix

ρk,ma,b := corr(W k
a (t),Wm

b (t)) = Cov (W k
a (t),Wm

b (t))/t, i.e. ρk,ma,b := Cov (W k
a (1),Wm

b (1))

for all a, b = 1, 2 and k,m = 1, . . . ,K: of course,

ρk,k1,2 = ρk,k2,1 = ρk

Thus, the 2K-dimensional Brownian motion (W 1
1 ,W

1
2 , . . . ,W

K
1 ,WK

2 ) has correlation
matrix

ρ = (ρk,m)16k,m6K :=

 ρ1,1 · · · ρ1,K

...
. . .

...
ρK,1 · · · ρK,K

 (1)
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where

ρk,m = (ρk,ma,b )16a,b62 :=

(
ρk,m1,1 ρk,m1,2

ρk,m2,1 ρk,m2,2

)
Recall that, being ρ a correlation matrix, it is symmetric, semi-positive definite, with
ρk,ka,a = 1 for all k = 1, . . . ,K and a = 1, 2 and ρk,ma,b ∈ [−1, 1] for all k,m = 1, . . . ,K and
a, b = 1, 2.

This model is an extension of the model in [10] to a multicommodity framework,
and also an extension of the model in [3], where only two commodities are taken into
account. The model is analytically tractable because, under the forward measure QT ,
each F k(·, T ) has a lognormal evolution, given by

F k(t, T ) = F k(t0, T ) exp
(∫ t

t0

e−λ
k(T−s)σk1 dW

k
1 (s) +

∫ t

t0

σk2 dW
k
2 (s)− 1

2

∫ t

t0

Σk(s, T )2 ds

)
(2)

where Σk(s, T ) is a sort of local volatility at time s, defined as

Σk(s, T ) :=
√
e−2λk(T−s)(σk1 )2 + 2ρke−λk(T−s)σk1σ

k
2 + (σk2 )2

Thus, conditional to the information up to time t0, logF k(t, T ) has a Gaussian distribu-
tion, with mean

E
QT
t0

[logF k(t, T )] = logF k(t0, T )− 1
2

∫ t

t0

Σk(s, T )2 ds

and variance

VarQT
t0

[logF k(t, T )] =
∫ t

t0

Σk(s, T )2 ds

In this paper we want to calibrate this model in a situation where, for each com-
modity k = 1, . . . ,K, forward contracts with (a finite number of) different maturi-
ties T k1 , . . . , T

k
Nk

are present, and few or no derivatives on these forward contracts are
traded, as can be the case of some markets and/or some commodities. We thus per-
form a calibration based on historical forward prices. The strategy is first to calibrate
separately the four coefficients of every single commodities, as we want them to have
priority and greater precision than the correlations among different commodities: in
fact, the main aim of our calibration is that it should reproduce well first of all the price
behaviour of single-commodity products. Secondly, we estimate the correlation matrix
also in the inter-commodity correlations.

More in details, Section 2 shows the calibration procedure of the four parameters
of a single commodity, with an approach based on quadratic variation-covariation.
Section 3 shows the calibration procedure of the residual parameters, i.e. the inter-
commodity correlations, again with an approach based on quadratic covariation. Sec-
tion 4 present an alternative calibration method which is mostly used by practitioners
and uses rolling time series: this method is simpler but, to be made rigorous, it requires
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to work with a modified model. In Section 5 we show how to efficiently calibrate the
single-commodity parameters in an efficient way in both procedures: in both cases, this
results in a non-convex problem in 4 variables, which can be brought to a non-convex
problem in 1 variable. In Section 6 we show how to perform the inter-commodity cali-
bration of the global correlation matrix ρ in a way which is numerically efficient, based
on the Cholesky decomposition: in doing this, we solve a non-standard semidefinite
programming problem. In Section 7 we test the two methods against simulated data
at two different time scales, namely with daily data and with high-frequency data (200
per day). In Section 8 we calibrate the model to WTI, ICE Brent and ICE Gasoil, while
in Section 9 we show how to estimate the spot volatility from forward parameters, pre-
senting a numerical estimation on the WTI spot. Section 10 concludes.

2 Single commodity calibration

We now fix the commodity k = 1, . . . ,K and assume that, as already mentioned in the
Introduction, we have a market where forward contracts with maturities T1, . . . , TN are
traded. Being k fixed, in this section we omit the dependences on k of the maturities.
Then, by denoting Xk

i (t) := logF k(t, Ti), we have that

dXk
i (t) = e−λ

k(Ti−t)σk1 dW
k
1 (t) + σk2 dW

k
2 (t) + drift 0 6 t < Ti

under the forward-neutral probability QT . Since we want to perform an historical cal-
ibration, we need dynamics under the real world probability P. By the Girsanov theo-
rem, the dynamics of Xk

i under P is given by

dXk
i (t) = e−λ

k(Ti−t)σk1 dW̃
k
1 (t) + σk2 dW̃

k
2 (t) + drift

where W̃ k
1 and W̃ k

2 are Brownian motions under P, still with the same mutual cor-
relation ρk, but the drift in the two dynamics are possibly different, as in the sec-
ond drift also the market price of risk is present. We notice that the coefficients
pk = (σk1 , σ

k
2 , λ

k, ρk) can be estimated directly under P. A more direct writing of the
dynamics of Xk

i under P is

dXk
i (t) = Σk

i (t) dW
k(t) + drift

where

Σk
i (t) := Σk(t, Ti) =

√
e−2λk(Ti−t)(σk1 )2 + 2ρke−λk(Ti−t)σk1σ

k
2 + (σk2 )2

and W k is a suitable 1-dimensional Brownian motion under P.
The fact that the diffusion coefficient of the Xk

i , i = 1, . . . , N , under P is determinis-
tic gives us a easy way to estimate the parameters. In fact, for t0 < t 6 Ti, the quadratic
variation of Xk

i under P is given by

〈Xk
i 〉tt0 := lim

n→∞

n∑
l=1

(Xk
i (tl+1)−Xk

i (tl))2 =
∫ t

t0

(Σk
i (u))2 du (3)
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where t0 < t1 < . . . < tn = t are suitable sequences, and the quadratic covariation of
Xk
i , Xk

j for t0 < t 6 min(Ti, Tj), always under P, is given by

〈Xk
i , X

k
j 〉tt0 := lim

n→∞

n∑
l=1

(Xk
i (tl+1)−Xk

i (tl))(Xk
j (tl+1)−Xk

j (tl)) =
∫ t

t0

Σk
i,j(u) du (4)

(for more details, see [11]). Now, the last term of these equalities is explicitly com-
putable (Σk

i,j(u) will be specified later in the next Lemma 2.2), while the middle term
can be approximated with historical observations. This gives us an idea to calibrate
the model: given the historical quadratic covariations, our aim is to find coefficients pk

such that the theoretical quadratic covariations of all forward contracts match as close
as possible the historical quadratic covariations.

In order to do this, we must calculate analytically the integrals in Equations (3–4).

Lemma 2.1 For t0 < t 6 Ti, the quadratic variation of the process Xk
i is given by

〈Xk
i 〉tt0 =

∫ t

t0

(Σk
i (u))2 du =

=

(
σk1
)2

2λk
(
e−2λk(Ti−t) − e−2λk(Ti−t0)

)
+
(
σk2

)2
(t− t0) +

+
2σk1σ

k
2ρ

k

λk

(
e−λ

k(Ti−t) − e−λk(Ti−t0)
)

Proof. See Appendix. �

Lemma 2.2 For t0 < t 6 min(Ti, Tj), the quadratic covariation of the processes Xk
i , Xk

j is
given by

〈Xk
i , X

k
j 〉tt0 =

(
σk2

)2
(t− t0)−

e−λ
k(Ti+Tj)

(
σk1
)2

2λk
(
e2λkt − e2λkt0

)
+

+
σk1σ

k
2ρ

k
(
e−λ

kTi + e−λ
kTj
)

λk

(
eλ

kt − eλkt0
)

Proof. See Appendix. �

As already pointed out, our strategy is to have the model quadratic covariations as
close as possible to the market quadratic covariations. More in details, at a generic ob-
servation time t, for each pair of maturities Ti, Tj the maximal interval in [t0, t] where we
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can define the quadratic covariation between Xk
i and Xk

j is given by [T 0
i,j , T

1
i,j ], where

T 0
i,j := max(t0, T̃i, T̃j) and T 1

i,j := min(t, Ti, Tj) (5)

and, for all i = 1, . . . , N , the time T̃i is the official time from when the forward F (t, Ti)

can be traded. Then the model quadratic covariation will be 〈Xk
i , X

k
j 〉
T 1
i,j

T 0
i,j

, to be com-

pared with the market quadratic covariation.
In order to estimate for the latter ones, for each i, j = 1, . . . , N , we use the realized

variation estimators

〈Xk
i 〉
T 1
i,j

T 0
i,j

:=
n∑
j=1

(
Xk
i (tj+1)−Xk

i (tj)
)2

(6)

and the realized covariation estimators

〈Xk
i , X

m
j 〉

T 1
i,j

T 0
i,j

:=
n∑
l=1

(
Xk
i (tl+1)−Xk

i (tl)
) (
Xm
j (tl+1)−Xm

j (tl)
)

(7)

(which in this section we will use only with k = m). It is a standard result [2] that these
estimators are unbiased and consistent provided that the drifts of Xk

i and Xm
j are zero.

Here this is not the case as the drifts are not zero, but it is possible to prove, by adapting
results in [2], that these estimators are biased (but with the bias depending on the drift
only on third order), consistent and asymptotically Gaussian.

Ideally, we would impose that

〈Xk
i , X

k
j 〉
T 1
i,j

T 0
i,j

= 〈Xk
i , X

k
j 〉
T 1
i,j

T 0
i,j

for all i, j = 1, . . . , Nk

However, the second terms of this system depend only on the four parameters pk =
(σk1 , σ

k
2 , λ

k, ρk), so the system is likely to be overdetermined for Nk > 2. For this reason,
we estimate the four parameters with a mean-square estimation as follows.

Definition 2.1 We define the estimator p̂k as the 4-dimensional vector which solves

min
pk

Nk∑
i,j=1

(
〈Xk

i , X
k
j 〉
T 1
i,j

T 0
i,j
− 〈Xk

i , X
k
j 〉
T 1
i,j

T 0
i,j

)2

(8)

In this way we obtain all the parameters pk for all the single commodities, while the
inter-commodity correlations (ρk,ma,b )a,b=1,2,k 6=m still remain to be estimated. Unfortu-
nately, though mean-square estimation is a classical in statistics, with this definition for
p̂k is very hard to prove properties like unbiasedness and consistency, due to the non-

linear dependence of 〈Xk
i , X

k
j 〉
T 1
i,j

T 0
i,j

on pk (especially on λk). It is also true that classical

recipes usually employed to obtain good estimators (like maximum likelihood, for ex-
ample) here result in computations which are impossible to carry out to obtain explicit
estimators. Thus, the compromise here is to use a classical recipe, like mean-squares
estimations, to obtain some estimators.
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Remark 2.1 The problem in Equation (8) is in principle a non-convex optimization
problem in the four parameters pk = (σk1 , σ

k
2 , λ

k, ρk), which can be numerically instable
and with many local minima. In Section 5 we show how it is possible to reduce it to
a 2-step optimization problem, where the first step is a quadratic optimization and the
second step is a non-convex problem in one variable.

3 Calibration of the intercommodity correlations

In order to calibrate for the intercommodity correlations, we continue to use the idea of
using the quadratic covariations among the log-forward prices Xi

k for k = 1, . . . ,K and
i = 1, . . . , Nk. In fact, for all suitable i, j, k,m, for t0 < t 6 min(T ki , T

m
j ), the quadratic

covariations of Xi
k, Xj

m is given by

〈Xk
i , X

m
j 〉tt0 := lim

n→∞

n∑
l=1

(Xk
i (tl+1)−Xk

i (tl))(Xm
j (tl+1)−Xm

j (tl)) =
∫ t

t0

Σk,m
i,j (u) du

As before, the middle term of these equalities can be estimated with historical observa-
tions, while the last term is explicitly computable, in a slightly more complex way than
the previous case, as shown in the following lemmas.

Lemma 3.1 For t0 < t 6 min(T ki , T
m
j ), we have

〈
Xk
i +Xm

j

〉t
t0

=
∫ t

t0

(
Σk,m
i,j (t)

)2
dt =

∫ t

t0

Θk,m
i,j R

k,m
(

Θk,m
i,j

)T
dt

where
Θk,m
i,j =

(
e−λ

k(Tki −t)σk1 , σk2 , e−λ
m(Tmj −t)σm1 , σm2

)
and

Rk,m =
(
ρk,k ρk,m

ρm,k ρm,m

)
=


1 ρk,k1,2 ρk,m1,1 ρk,m1,2

ρk,k1,2 1 ρk,m2,1 ρk,m2,2

ρk,m1,1 ρk,m2,1 1 ρm,m1,2

ρk,m1,2 ρk,m2,2 ρm,m1,2 1



Proof. We have that

d
(
Xk
i +Xm

j

)
= Θk,m

i,j dW k,m(t) + drift (9)

where W k,m(t) :=
(
W k

1 (t),W k
2 (t),Wm

1 (t),Wm
2 (t)

)T results in a Gaussian process with
independent stationary increments, zero mean and self-correlation matrix given by
Rk,m.
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In order to calculate the quadratic variation of Xk
i +Xm

j , we now want to represent
W k,m as a linear function of a 4-dimensional Brownian motion Ŵ k,m, i.e. W k,m =
Λk,mŴ k,m (where the components of Ŵ k,m are independent 1-dimensional Brownian
motions), then we have Rk,m = Λk,m(Λk,m)T . We can choose to perform a Cholesky
decomposition, so that Λk,m can be taken as a lower triangular matrix: in fact, since
Rk,m is semipositive definite, it can be written as Rk,m = Lk,mDk,m

(
Lk,m

)T , with Lk,m

unitary and lower triangular andDk,m diagonal; we can then let Λ̃
k,m

:= Lk,m
(
Dk,m

) 1
2 ,

with
(
Dk,m

) 1
2 the matrix having the diagonal elements which are square roots of those

of Dk,m, we have that

Λ̃
k,m
(

Λ̃
k,m
)T

= Lk,m
(
Dk,m

) 1
2

(
Lk,m

(
Dk,m

) 1
2

)T
= Lk,mDk,m

(
Lk,m

)T
= Rk,m

Then,
d
(
Xk
i +Xm

j

)
= Θk,m

i,j Λ̃k,mdW̄ k,m + drift

so that 〈
Xk
i +Xm

j

〉t
t0

=
∫ t

t0

Θk,m
i,j R

k,m
(

Θk,m
i,j

)T
dt

�

Lemma 3.2 For t0 < t 6 min(T ki , T
m
j ), the quadratic covariation of Xk

i , Xm
j is given by〈

Xk
i , X

m
j

〉t
t0

= ρk,m1,2 A
k,m
i,j + ρk,m2,1 B

k,m
i,j + ρk,m1,1 C

k,m
i,j + ρk,m2,2 D

k,m

where

Ak,mi,j :=
σm2 σ

k
1

(
e−λ

k(Tki −t) − e−λk(Tki −t0)
)

λk

Bk,m
i,j :=

σk2σ
m
1

(
e−λ

m(Tmj −t) − e−λ
m(Tmj −t0)

)
λm

Ck,mi,j :=
σm1 σ

k
1

(
e−λ

k(Tki −t)−λm(Tmj −t) − e−λ
k(Tki −t0)−λm(Tmj −t0)

)
λk + λm

Dk,m
i,j := σm2 σ

k
2 (t− t0)

Proof. See Appendix. �
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As in the previous section, our strategy is to have the model quadratic covaria-
tions as close as possible to the market quadratic covariations. More in details, at a
generic observation time t, for each pair of maturities T ki , Tmj the maximal interval
in [t0, t] where we can define the quadratic covariation between Xk

i and Xm
j is now

[T 0,k,m
i,j , T 1,k,m

i,j ], where

T 0,k,m
i,j := max(t0, T̃ ki , T̃

m
j ) and T 1,k,m

i,j := min(t, T ki , T
m
j )

where, for all k = 1, . . . ,K and i = 1, . . . , Nk, the time T̃ ki is the official time from when
the forward F k(t, Ti) can be traded. Then again we compare the market quadratic
covariations, estimated as in Equation (7), with the model quadratic covariations

〈Xk
i , X

k
j 〉
T 1,k,m
i,j

T 0,k,m
i,j

, where the Ak,mi,j , Bk,m
i,j , Ck,mi,j and Dk,m

i,j , for all the k,m, i, j used in the

calibration, are known from the calibration of the previous section, while ρk,ma,b are still
to be estimated. As before, one should aim to solve the linear system〈

Xk
i , X

m
j

〉T 1,k,m
i,j

T 0,k,m
i,j

= ρk,m1,2 A
k,m
i,j + ρk,m2,1 B

k,m
i,j + ρk,m1,1 C

k,m
i,j + ρk,m2,2 D

k,m
i,j

∀k,m ∈ {1, . . . ,K} ∀i ∈ Nk ∀j ∈ Nm

which, as before, is overdetermined as soon as |Nk|×|Nm| > 4. Thus, again we estimate
the ρk,ma,b with a mean-square estimation as follows.

Definition 3.1 Define the ρ̂k,ma,b as the minimizers of the problem

min
ρk,ma,b

∑
i,j,(k 6=m)

(
ρk,m1,2 A

k,m
i,j + ρk,m2,1 B

k,m
i,j + ρk,m1,1 C

k,m
i,j + ρk,m2,2 D

k,m
i,j −

〈
Xk
i , X

m
j

〉T 1,k,m
i,j

T 0,k,m
i,j

)2

(10)
subject to the constraint that the global correlation matrix ρ, defined in Equation (1), must be
symmetric and semipositive definite, and to the other natural constraints

ρk,ma,b ∈ [−1, 1] ∀k,m = 1, . . . ,K, ∀a, b = 1, 2,
ρk,k1,2 = ρk ∀k = 1, . . . ,K,
ρk,k1,1 = ρk,k2,2 = 1 ∀k = 1, . . . ,K,

(11)

In this way we obtain all the inter-commodity correlations (ρ̂k,ma,b )a,b=1,2,k 6=m, which
still were to be estimated. Unfortunately we again find ourselves in the same situ-
ation as with p̂k, i.e. with this definition for ρ̂k,ma,b is very hard to prove properties like

unbiasedness and consistency, due this time to the nonlinear constraints on ρ̂k,ma,b , in par-
ticular the semipositive definiteness of the global matrix ρ. Also here, classical recipes
like maximum likelihood result in computations which are impossible to carry out to
obtain explicit estimators. Thus, the compromise here has been again to obtain some
estimators through a classical recipe.
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Remark 3.1 If one minimizes over the original correlations ρk,ma,b , then the constraint
for the global correlation matrix ρ to be semipositive definite is computationally very
demanding; in fact, the problem results in non-standard semidefinite programming
problem. An alternative way is to make, similarly to what done in Lemma 3.1, a
Cholesky decomposition of ρ: this allows to not impose the positive semidefiniteness
of the global correlation matrix ρ. This will be done more in details in Section 6.

4 An alternative calibration

Now we present an alternative calibration method, which is used among practitioners,
but has the fault that, to be rigorous, works on an approximation of the original model.
This method is based on the use of the so-called rolling time series. Assume from now
on, as is quite realistic for those commodities which do not have forward contracts with
long maturities traded in the market, that the maturities T1,. . . ,TN are the same for all
the commodities and are consecutive ends of months. Then the method of rolling time
series consists in taking the forward contract with maturity month Ti and treating it,
in the current month, as if its volatility were constant (and thus approximately equal
to Σk(s, Ti) with s a suitable point in the current month). When the current month
ends and the next begins, take these observations and paste it to the observations of the
forward with maturity month Ti+1: in this way, we obtain a time series of a forward
contract with more or less the same relative maturity. A refinement of this method can
be found for example in [1], but the version presented here is the most used among
practitioners.

This method can be made rigorous by redefining the model as

dF k (t, Ti)
F k (t, Ti)

= e−
λk

12
d12(Ti−t)eσk1dW

k
1 (t) + σk2dW

k
2 (t) 0 6 t < Ti (12)

If we, as before, denote Xk
i (t) := logF k(t, Ti), then we have that

X̄k
i (t1, t2) := Xk

i (t2)−Xk
i (t1) =

∫ t2

t1

σk1e
−λ

k

12
d12(Ti−s)edW k

1 (s) +
∫ t2

t1

σk2dW
k
2 (s) + drift

(13)
where ”drift” denotes a quantity which is deterministic under the risk-neutral proba-
bility and is possibly non-deterministic under the real world probability, containing in
this latter case also the market price of risk.

We now assume that the market price of risk is deterministic and stationary in time.
Then, if we have an equispaced grid t1 < . . . < t`, with tl+1 − tl ≡ ∆ in a given month,
then (X̄k

i (tl, tl+1))l=1,...,`−1 are i.i.d. Gaussian random variables with variance

Σk,k
i,i =

(
σk1

)2
e−2λkTi∆ + 2ρkσk1σ

k
2e
−λkTi∆ +

(
σk2

)2
∆ (14)

(recall that, being the Ti ends of months, one has 1
12d12Tie = Ti) and the same applies

when we extend this to the rolling time series in the following months. Moreover, if
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we take two different maturities Ti, Tj , then the two sequences of Gaussian random
variables (X̄k

i (tl, tl+1))l=1,...,`−1 and (X̄k
j (tl, tl+1))l=1,...,`−1 have covariance given by

Cov (X̄k
i (tl, tl+1), X̄k

j (tl, tl+1)) = Σk,k
i,j := (15)

:=
(
σk1

)2
e−λ

k(Ti+Tj)∆ + σk1σ
k
2ρ

k
(
e−λ

kTi + e−λ
kTj
)

∆ +
(
σk2

)2
∆

Finally, if we take two different commodities k 6= m, then the two sequences of Gaus-
sian random variables (X̄k

i (tl, tl+1))l=1,...,`−1 and (X̄m
j (tl, tl+1))l=1,...,`−1 have covariance

given by

Cov (X̄k
i (tl, tl+1), X̄m

j (tl, tl+1)) = Σk,m
i,j := (16)

:= ∆
[
ρk,m1,1 σ

k
1σ

m
1 e
−λkTi−λmTj + ρk,m1,2 σ

k
1σ

m
2 e
−λkTi + ρk,m2,1 σ

k
2σ

m
1 e
−λmTj + ρk,m2,2 σ

k
2σ

m
2

]
These model variances and covariances can be estimated using the standard esti-

mators

Σ̄k,m
i,j := sX̄k

i ,X̄
m
j

=

∑
l X̄

k
i (tl, tl+1)X̄m

j (tl, tl+1)
n

−
∑

l X̄
k
i (tl, tl+1)
n

∑
l X̄

m
j (tl, tl+1)
n

(17)

where n is the number1 of contemporary realizations of the time series (X̄k
i (tl, tl+1))l

and (X̄m
j (tl, tl+1))l. It is a standard result that these estimators are unbiased and con-

sistent.
Define then Σ̄k,m as

Σ̄k,m :=
(

Σ̄k,m
i,j

)
i6Nk,j6Nm

=


Σ̄k,m

1,1 · · · Σ̄k,m
1,Nm

...
. . .

...
Σ̄k,m
Nk,1

· · · Σ̄k,m
Nk,Nm


and Σ̄, which will be our realized covariance matrix, as

Σ̄ :=
(

Σ̄k,m
)
k,m6K

=

 Σ̄1,1 · · · Σ̄K,1

...
. . .

...
Σ̄1,K · · · Σ̄K,K


This has to be compared to the model covariance matrix Σ, defined as

Σ :=
(
Σk,m

)
k,m6K

=

 Σ1,1 · · · ΣK,1

...
. . .

...
Σ1,K · · · ΣK,K


1in order to be rigorous, one should define T

0/1
i,j as in the previous sections: we choose not to do so, as

it would make the notation heavier and we believe that all is clear from the context.
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where

Σk,m :=
(

Σk,m
i,j

(
pk,m

))
i6Nk,j6Nm

=


Σk,m

1,1 · · · Σk,m
1,Nm

...
. . .

...
Σk,m
Nk,1

· · · Σk,m
Nk,Nm


As in the previous sections, one is tempted to let

Σ (p) = Σ̄

which is, as usual, overdetermined. We thus proceed as in the previous calibrations:
first of all we estimate all the parameters for each commodity k = 1, . . . ,K separately,
by making a least-square estimation in the usual way:

min
pk

Nk∑
i,j=1

(
Σk,k
i,j

(
pk
)
− Σk,k

i,j

)2
(18)

Once that the pk = (σk1 , σ
k
2 , λ

k, ρk) have been estimated, they are kept fixed and the
second calibration is performed, again by least-squares, as

min
ρk,ma,b

∑
k 6=m

Nk∑
i=1

Nm∑
j=1

(
Σk,m
i,j − Σk,m

i,j

)2
(19)

which gives the intercommodity correlations ρk,ma,b , a, b = 1, 2, k 6= m.

Remark 4.1 As in Section 2, also the optimization problem in Equation (18) is a non-
convex optimization problem in the four parameters pk = (σk1 , σ

k
2 , λ

k, ρk), which can
be numerically instable and with many local minima. In Section 5 we show how it
is possible to reduce also this to a 2-step optimization problem in the same way as in
Remark 2.1.

Remark 4.2 As in Section 3, here too the calibration problem results in non-standard
semidefinite programming problem. Thus, it is convenient to work with the Cholesky
decomposition of the matrix Σ: in this way, analogously with what happens in Remark
3.1, one has the same number of coefficients (in fact, Σ is symmetric and its Cholesky
square root is lower triangular with the same dimension), but one has the constraint
of Σ being positive semidefinite which is automatically satisfied. As in the previous
method, this is done with more details in the following Section 6.

5 Single commodity 2-step calibration

As already noticed in Remarks 2.1 and 4.1, the optimization problems (8) and (18),
needed to perform the mean-square calibration in the single commodities, are non-
convex optimization problem in the four parameters pk = (σk1 , σ

k
2 , λ

k, ρk). Here we

12



show how they can be reduced to a 2-step optimization problem which has the prob-
lems (8) and (18) as particular cases, and whose 2 steps are numerically easier and more
stable to implement. More in details, the first step is a quadratic optimization and the
second step is a non-convex problem in only one variable.

We now formulate the general optimization problem, of which (8) and (18) can be
seen as two particular cases. As we are working only on a single commodity k, we
will omit the dependence on k in the sequel and write N instead of Nk and (σ1, σ2, λ, ρ)
instead of (σk1 , σ

k
2 , λ

k, ρk,k1,2). The general problem can be formulated as

min
σ1,σ2,λ∈R+,ρ∈[−1,1]

N∑
i=1

N∑
j=1

(ai,jσ2
1 + bi,jσ

2
2 + ci,jρσ1σ2 − X̄i,j)2 (20)

We can obtain problem (8) by letting

ai,j =
e−λ(Ti+Tj−2T 1

i,j) − e−λ(Ti+Tj−2T 0
i,j)

2λ
bi,j = T 1

i,j − T 0
i,j

ci,j =
e−λ(Ti−T

1
i,j) − e−λ(Ti−T

0
i,j) + e−λ(Tj−T

1
i,j) − e−λ(Tj−T

0
i,j)

λ
,

X̄i,j =
〈
Xk
i , X

k
j

〉T 1
i,j

T 0
i,j

with T 0
i,j and T 1

i,j defined in Eq. (5). Problem (18) can be obtained by letting

ai,j = e−λ(Ti+Tj)∆
bi,j = ∆,

ci,j =
(
e−λTi + e−λTj

)
∆,

X̄i,j = Σ̄i,j

where Σ̄i,j stands for Σ̄k,k
i,j as defined in Eq. (17). In both specifications, as well as in the

general formulation (20), we omit the dependence on λ of ai,j , bi,j and ci,j for ease of
notation.

Now we solve the general problem (20) in two steps. The first step consists in fixing
a λ > 0 and making a change of variables v1 := σ2

1 , v2 := σ2
2 , v3 := ρσ1σ2. Then problem

(20) can be written as

min
v1,v2∈R+,|v3|6

√
v1v2

N∑
i=1

N∑
j=1

(ai,jv1 + bi,jv2 + ci,jv3 − X̄i,j)2 (21)

which is a quadratic problem in v1, v2, v3, to be solved for v1, v2 ∈ R+ (as they are
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variances) and |v3| 6
√
v1v2 (as |ρ| 6 1). The first order conditions turn out to be
∑

i,j

(
ai,jv1 + bi,jv2 + ci,jv3 − X̄i,j

)
ai,j = 0∑

i,j

(
ai,jv1 + bi,jv2 + ci,jv3 − X̄i,j

)
bi,j = 0∑

i,j

(
ai,jv1 + bi,jv2 + ci,jv3 − X̄i,j

)
ci,j = 0

where
∑

i,j stands for
∑N

i=1

∑N
j=1. By collecting terms in the new variables v :=

(v1, v2, v3)T , these conditions can be rewritten as Πv = p, with
∑

i,j

(
a2
i,j

) ∑
i,j (ai,jbi,j)

∑
i,j (ai,jci,j)∑

i,j (ai,jbi,j)
∑

i,j

(
b2i,j

) ∑
i,j (bi,jci,j)∑

i,j (ai,jci,j)
∑

i,j (bi,jci,j)
∑

i,j

(
c2
i,j

)
 = Π,


∑

i,j ai,jX̄i,j∑
i,j bi,jX̄i,j∑
i,j ci,jX̄i,j

 = p

For both problems (8) and (18), the matrix Π is invertible for each λ > 0, thus we obtain
a unique solution v = vλ for the problem (21).

The second step is now to solve, in the single variable λ, the problem

min
λ∈R+

N∑
i=1

N∑
j=i

(ai,jvλ1 + bi,jv
λ
2 + ci,jv

λ
3 − X̄i,j)2

which is, in general, non-convex (recall that also ai,j , bi,j and ci,j depend on λ).
This two-steps method works very well if vλ, obtained as the solution of Πv =

p, satisfies vλ1 , v
λ
2 ∈ R+, |vλ3 | 6

√
vλ1 v

λ
2 for all λ > 0. If this is not the case, then vλ

must be found by applying for example the Kuhn-Tucker multipliers method (or other
constrained optimization methods), which are slightly more time consuming. In our
case, in the calibration example of Section 8, the two-steps method gives results in less
than 10 seconds, while the original optimization problem is instead solved in times that
are greater of a factor from 10 to 20.

6 Calibration of the intercommodity correlation matrix

Both the calibrations based on the quadratic variation-covariation approach (Sections 2
and 3) as well as on the variance-covariance of rolling time series (Section 4) are based
on the two-steps procedure: first calibrate the 4 parameters pk = (σk1 , σ

k
2 , λ

k, ρk) for each
commodity k = 1, . . . ,K (for which we presented an efficient procedure in Section 5),
and then calibrate the intercommodity correlations ρk,ma,b for a, b = 1, 2 and k 6= m. This
second step must be consistent both with itself as with the first step. More in details,
the resulting global correlation matrix ρ, defined in Equation (1), must be nonnegative
definite, being the correlation matrix of a 2K-dimensional Brownian motion. Besides,
ρ must have a diagonal with all entries equal to 1 and with some other fixed entries,
which are the ones found during the first calibration.
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As reported in Remarks 3.1 and 4.2, if one imposes this constraint naively on the
functions to be minimized in Equations (10) and (19), one obtains a non-standard
semidefinite programming problem, which is highly nonlinear in its constraints, thus
very time consuming as soon as K > 2.

A more clever way to formulate the semi-definiteness constraint is based, as antici-
pated in both Remarks 3.1 and 4.2, on the Cholesky decomposition of ρ. Recall that the
Cholesky decomposition states that, being ρ semipositive definite, it can be written as
ρ = WW T for a suitable square lower-triangular matrix W .

The advantage of the Cholesky decomposition is that, by calling Wi the i-th row of
W for i = 1, . . . , 2K, we can express the constraints on ρ via bilinear constraints on the
Wi. More in details, the fact that the principal diagonal of ρ has unitary elements is
translated into the condition

‖Wi‖2 = 1 ∀i = 1, . . . , 2K, (22)

where ‖ · ‖ denotes the Euclidean norm in R2K .
The fact that the elements of ρ which correspond to a ρk which was already cali-

brated (i.e. ρk,k1,2 = ρk,k2,1 = ρk) must be taken as already assigned is translated into

W2k−1W
T
2k = ρk ∀k = 1, . . . ,K, (23)

Finally, the fact that |ρk,m1,2 | 6 1 follows from the Cauchy-Schwarz inequality for
Euclidean norm and scalar product in R2K and from Equation (22): in fact,

|ρk,m1,2 | = |W2k−1W
T
2m| 6 ‖W2k−1‖ · ‖W T

2m‖ = 1

and the heaviest constraint, i.e. the semipositive definiteness of ρ, is automatically
satisfied by the very definition of W .

Now, the functions to be minimized in Equations (10) and (19) can be written, in a
more abstract form, as

G(ρ) := ‖Ξρ−E‖22
with Ξ and E suitably defined in the two problems. This minimization problem trans-
lates into

min
W

∥∥ΞWW T −E
∥∥2

2

where W varies over the space of all lower-triangular matrices with the constraints
in Equations (22-23). This is a quadratic problem with quadratic constraints, which is
numerically time-efficient and quite stable. In our case, in the calibration example of
Section 8, this method gives results in less than 20 seconds.

7 A numerical test for the two methods

In order to test the two methods, we simulate daily prices of 36 futures of a single
commodity, where maturities are equispaced with a 1-month interval. The parameters
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that we impose are σ1 = σ2 = 0.02, λ = 0.04, ρ = 0.3. We then calibrate the model,
based on these simulated observations, by using first the method based on the quadratic
variations and covariations of Sections 2, and then the method based on rolling time
series of Section 4. In both methods, we used the procedures of Section 5 in order to
obtain a more tractable optimization problem.

The results of the test can be seen in Figure 1(a), where the green circles represent
the square of the local volatility structure Σk,k

i,i computed by inserting in Equation (15)
the true parameters, while the red curve represents the estimate with the covariation
method (Sections 2-3) and the blue curve represents the estimate with the method of
rolling time series (Section 4).
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(b) 200 observations per day

Figure 1: Log-return variance, i.e. squared local volatility, with respect to time to ma-
turity. The green circles represent the square of the local volatility structure calculated
with the true parameters, while the red curve represents the estimate with the covaria-
tion method (Sections 2-3) and the blue curve represents the estimate with the method
of rolling time series (Section 4).

We can see that the rolling time series method gives quite a good fit, while instead
the covariation method gives a fit which is quite far from the real volatility shape. The
reason for this misbehaviour could be that the quadratic covariation needs a limit to be
performed, while we only have a finite number of observation.

Of course, the more the interval between observations becomes thinner, the more
the estimators that we use come near to the theoretical quadratic covariations. For
this reason, we do another simulation, with the same parameters, but now with 200
observations per day, and report the result in Figure 1(b). This results in a much better
fit for the covariation method, but it is also evident that the method based on rolling
time series gives now a perfect fit.

This is actually bad news, at least for the quadratic covariation approach. In fact, it is
true that some commodities (e.g. ICE Brent) have a number of transactions on some for-
ward contracts which allow this daily number of observations to be performed. How-
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ever it is also true that, for maturities from 9 months on, exchanges of forward contracts
are less frequent. Moreover, for other commodities (such as power, for instance), there
are, in practice, no contracts that allow such high observation frequency.

As a consequence, this would result in covariation estimators performed on real
data which give many zeroes in the estimators of Equations (6–7), resulting in a bias
towards zero: this is known as the Epps effect [6]. One example of how this would
underestimate the volatility is given at the beginning of Section 8. One way to circum-
vent this would be to use estimators which prevent the Epps effects in asynchronous
observations, such as for example the Fourier estimators studied in [9]. This however
is outside the scopes of this paper.

8 A calibration example

Given the results of the previous section, we decide to calibrate the multicommodity
model using the method in Section 4, based on the variance-covariance structure of
rolling time series. For the calibration, we selected three of the most liquid commodities
in the international markets, namely the WTI (West Texas Intermediate) oil, also known
as Texas Light Sweet, the ICE Brent oil, and the ICE Gasoil, with daily observations
going from January 3, 2012 to June 3, 2013.

Before showing the real calibration, we present an illustration in Figure 2 on how the
calibration with the first method, based on quadratic variations-covariations, effectively
underestimates heavily the volatility surface. Our suspect is that this is due to the Epps
effect mentioned at the end of Section 7. For this reason, from now on we concentrate
ourselves on the calibration done with the rolling time series method.
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Figure 2: Log-return variance and covariance with respect to time to maturity (in years)
for WTI, ICE Brent and ICE Gasoil, with the variation-covariation method. The red lines
represent the estimates with the rolling series method of Section 4, while the blue circles
are the empirical variances of the rolling series.
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8.1 Single commodity calibrations

As seen in the previous sections, the first thing to do is to calibrate the four parameters
pk of commodity k = 1, 2, 3. We represent the results of the calibration in Figure 3
in two ways. The first one is a plot of the variance of rolling series with respect to
their maturity, as shown in Figures 3(a), 3(c), 3(e), respectively. The second way is a
plot of the cross-covariances of the forward contracts with respect to their maturities,
as shown in Figures 3(b), 3(d), 3(f), respectively. This is possible because Equation
(15) gives the model covariances Σk,k

i,j of the forward log-returns, which can then be
compared with the corresponding empirical estimates Σ̄k,k

i,j , with k = 1, 2, 3 and with
i, j covering maturity spans which are commonly found in the market (3 year for WTI
and ICE Brent, and 1 years and 8 months for ICE Gasoil).

More in details, for the WTI in Figures 3(a) and 3(b) we see a very good fit of the
estimated model to the empirical variance-covariance structure, apart for the 1.5-years
maturity. For the ICE Brent, in Figures 3(c) and 3(d) we notice a fit which is even better
in terms of goodness. Finally, for the ICE Gasoil in Figures 3(e) and 3(f) we notice a sat-
isfying fit, apart from the first maturities, probably due to anomalous price movements.
All the parameters found have been reported in Table 1.

WTI ICE Brent ICE Gasoil
σ1 0.6892 5.4527 4.1725
σ2 0.5162 5.2915 4.0473
λ 0.0826 0.0078 0.0105

ρ1,2 -0.9628 -0.9997 -0.9996

Table 1: Single commodity calibration results

The most relevant remark that can be made here is that the ρ̄k,k1,2 , for k = 1, 2, 3,
are all very near to −1: this means that the two factors driving these commodities
are almost perfectly correlated, which is consistent with the common empirical find-
ings about crude oil markets, where usually one single factor explains more than 95%
of the total variance (see e.g. [7]). One could then argue that a more parsimonious
model would have only one Brownian factor per commodity, with the global volatility
e−λ

k(Ti−t)σk1 − σk2 . This however could be misleading and not suited for all the possible
scenarios.

To see this, we perform a rolling estimation, i.e. take a 60-days estimation horizon
and obtain a time series of estimated parameters. A sample of this is reported in Table
2 for the WTI.

One can see that in some cases ρ can be far from −1, and in that case using a single
factor is clearly insufficient. Besides, one can notice that this happens exactly when
λ is far from 0, while for values of λ near 0, ρ is near −1. This behaviour could in
principle be proved with an asymptotic expansion for λ→ 0, which is however beyond
the scopes of this article. We instead show that this intuition is confirmed numerically
when one looks at the joint rolling estimation graphics of λ and ρ, as shown in Figure 4.
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Figure 3: Log-return variance and covariance with respect to time to maturity (in years)
for WTI, ICE Brent and ICE Gasoil. In Figures (a), (c) and (e), the red line represent
the estimate with the rolling series method of Section 4, while the blue circles are the
empirical variances of the rolling series. In Figures (b), (d) and (f), the lined surface
represent the estimate with the rolling series method of Section 4, while the circles are
the empirical covariances of the rolling series.
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σ1 σ2 λ ρ

1–60 0.2148 0.1369 0.4943 -0.4151
61–120 6.0590 5.7911 0.0109 -0.9996
121–180 0.6071 0.4228 0.0948 -0.9492
181–240 0.3416 0.2045 0.1662 -0.6728
241–300 5.5947 5.4752 0.0070 -0.9999

Table 2: Rolling estimations on the WTI for some 60-days frames (from day 1 to 60, from
day 61 to 120 and so on).

Each point of these graphics has been estimated by taking a 60-days estimation horizon
starting from the day in the x-axis on. It is quite evident, for all the three commodities,
that when λ ' 0, ρ ' −1: in these market scenarios one can effectively think that only
one factor moves the entire term structure of volatilities. Conversely, when λ is far from
0, also ρ is far from −1, this corresponding to market scenarios where two factors are
needed to move the term structure.
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Figure 4: Rolling estimations for λ and ρ in the three commodities, in two different
scales: in all the three figures, the values for λ are in the left vertical scale, while those
for ρ are in the right one.

8.2 Estimation of the global correlation matrix

The second step is to estimate the intercommodity correlation matrix as seen in Section
6. The result is

ρ̄ =



1 −0.9628 0.7203 −0.6734 0.4390 −0.4135
−0.9628 1 −0.7167 0.6753 −0.4306 0.4097
0.7203 −0.7167 1 −0.9997 0.4339 −0.4214
−0.6734 0.6753 −0.9997 1 −0.4301 0.4179
0.4390 −0.4306 0.4339 −0.4301 1 −0.9996
−0.4135 0.4097 −0.4214 0.4179 −0.9996 1


Now some remarks can be formulated after these numerical results.
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The first remark is mathematical and is that the ρ̄k,k1,2 , for k = 1, 2, 3, are exactly equal
to those found in the single-commodity estimations, consistently with the procedure of
Section 6.

A more empirical remark is that the six Brownian motions appear to be correlated
among each other through the correlation matrix ρ̄, but less than one expects when
observing market price comovements of the commodities. For example, it is a well
known fact that WTI and ICE Brent prices have a very high correlation, being the same
type of crude oil, while this is not evident at all from the corresponding correlations in
ρ̄, all around ±0.5. This is because the correlations in ρ̄ are those among the driving
Brownian motions, and not those among the commodities prices.

In order to obtain those latter correlations, one has to use Equations (14) and (16) to
recover the correlations between the (log) prices of two given market instruments: in
fact, if we are interested in the correlation between the Ti-month forward of commodity
k and the Tj-month forward of commodity m, then this can be easily computed as

Rk,mi,j :=
Σk,m
i,j√

Σk,k
i,i Σm,m

j,j

We show the result of this calculation for the values Rk,mi,i (i.e. correlations of forward
prices with the same maturity of commodities k and m) in Figure 5.
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Figure 5: Correlations of forward prices with the same maturity among commodities.
WTI versus ICE Brent in solid blue, WTI versus ICE Gasoil in dashed red, ICE Brent
versus ICE Gasoil in dotted green.

From this latter figure, we can clearly observe a positive high correlation among all
contracts with the same maturity, higher than what one may expect from the correlation
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matrix ρ̄. The economic reason for this high correlation is of course that these forward
contracts belong to the same market segment (energy), and in particular they all are
oil subproducts. More in details, while the ICE Gasoil forwards appear with a positive
correlation with respect to WTI and ICE Brent which is however far from ±1, the for-
wards of the two crude oil products, WTI and ICE Brent, appear to have correlations
ranging from 0.8897 to 0.9518. This can be explained by the fact that the two products
have similar physical characteristics and are often used in financial markets as a proxy
of one another.

9 Spot prices

We now present an application of our estimation procedure to the volatility of the spot
price, which is classically defined as

Sk (t) = lim
T→t

F k (t, T ) (24)

From the practical point of view, there are several reason why it is difficult, if not im-
possible, to estimate spot parameters from the direct observation of the time series Sk,
and is instead better to infer them from the forwards’ dynamics:

• an official spot market of the commodity could simply not exist (ICE Brent and
Gasoil) or could exist in multiple places, so that the ”official” spot price is an
average of these small markets (WTI);

• spot markets could follow very short term movements (for example, an important
buyer which is short of the commodity in that moment), which do not influence
forward prices, nor future spot dynamics;

• spot markets usually have seasonality more pronounced than the corresponding
forward markets.

A natural question to ask is then whether one can infer the spot volatility from the
parameters of forward contracts as obtained in the previous sections. In order to do
this, the first thing is to compute the spot volatility from the definition of spot price in
Equation (24) and from the model for F k(t, T ).

Starting from Equation (2), for each t and ∆ > 0 such that t+ ∆ 6 T we can write

logF k(t+ ∆, T )− logF k(t, T ) =
∫ t+∆

t
σk1e
−λk(T−s)dW k

1 (s) +
∫ t+∆

t
σk2dW

k
2 (s) + drift

By taking the limit for T → t+ ∆, we obtain

lim
T→t+∆

(
log
(
F k(t+ ∆, T )

)
− log

(
F k(t, T )

))
=

= lim
T→t+∆

(∫ t+∆

t
σk1e
−λk(T−s)dW k

1 (s) +
∫ t+∆

t
σk2dW

k
2 (s)

)
+ drift =

=
∫ t+∆

t
σk1e
−λk(t+∆−s)dW k

1 (s) +
∫ t+∆

t
σk2dW

k
2 (s) + drift
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and, by applying Equation (24), we arrive at

logSk(t+∆) = logF k(t, t+∆)+
∫ t+∆

t
σk1e
−λk(t+∆−s)dW k

1 (s)+
∫ t+∆

t
σk2dW

k
2 (s)+ drift

Then, conditional to the knowledge up to time t, we have that

Vart
[
logSk(t+ ∆)− logSk(t)

]
=

=
∫ t+∆

t

((
σk1

)2
e−2λk(t+∆−s) +

(
σk2

)2
+ 2ρkσk1σ

k
2e
−λk(t+∆−s)

)
ds =

=
∫ ∆

0

((
σk1

)2
e−2λk(∆−s) +

(
σk2

)2
+ 2ρkσk1σ

k
2e
−λk(∆−s)

)
ds =

=

(
σk1
)2

2λk
(

1− e−2λk∆
)

+
(
σk2

)2
∆ +

2σk1σ
k
2ρ

k

λk

(
1− e−λk∆

)
'

' ∆
[(
σk1

)2
+
(
σk2

)2
+ 2σk1σ

k
2ρ

k

]
+ o(∆)

where the last asymptotics is for ∆ → 0. In this way it is possible to obtain the spot
volatility from the parameters of the forward prices model.

With this in mind, we try to see if the above equation succeeds in estimating the
spot volatility for the WTI, which has an official spot market. More in details, with the
parameters that we estimated in the previous section for WTI we plot the volatility ver-
sus maturity also for the maturity 1/252 (corresponding to one day), as seen in Figure
6. The spot volatility estimated with the forward prices’ parameters is then 3.06 · 10−4,
while the realized volatility estimated directly from the spot market data is 2.92 · 10−4,
with an error of 4.7%.
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Figure 6: Volatility versus maturity for the WTI. The green dot is the spot volatility.
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10 Conclusions

We present a multicommodity model for forward prices which extends the models pre-
sented in [3, 10]. We show two calibration methods based on time series of past for-
ward prices, which can be used when liquid derivatives are not traded in the market.
The first calibration method, presented in Sections 2 and 3, is based on the quadratic
variations and covariations of log-prices, which are analytically computable, while the
second method, presented in Section 4, uses the idea of rolling time series, but requires
a modification of the model to be used exactly. Both methods require a two-steps proce-
dure to estimate the parameters. First one must estimate four parameters per commod-
ity, which requires to solve a non-convex 4-dimensional optimization problem, which
is hard to solve numerically: in Section 5 we show how this problem can be brought
down to a quadratic 3-dimensional problem and to a non-convex 1-dimensional prob-
lem, both of which are numerically more tractable. The second step is to calibrate a
global intercommodity correlation matrix: for this last step, it is numerically convenient
to express the global correlation matrix via its Cholesky decomposition, which results
in a quadratic minimization problem with quadratic constraints, which is numerically
tractable, as detailed in Section 6. In Section 7 we test the two methods against simu-
lated data, and conclude that the rolling series method seems to perform well at very
different time scales, while the first one needs high-frequency data to produce reliable
results. In Section 8 we calibrate simultaneously the model to WTI, ICE Brent and ICE
Gasoil, and produce four parameters for each of the three commodities above as well
as their 6-dimensional correlation matrix. Finally in Section 9 we present an application
to the estimation of the WTI spot volatility: by applying the entire forward curve we
obtain an estimate with the forward parameters which is 10% far from the realized spot
market volatility.
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Appendix: proofs of Lemmas

Lemma 2.1. Proof. We have∫ t

t0

(
Σk
i (t)

)2
dt =

∫ t

t0

(
e−2λk(Ti−t)

(
σk1

)2
+
(
σk2

)2
+ 2e−λ

k(Ti−t)σk1σ
k
2ρ

k

)
dt

=
(
σk1

)2 [
e−2λk(Ti−t)

]t
t0

+
(
σk2

)2
(t− t0) + 2σk1σ

k
2ρ

k
[
e−λ

k(Ti−t)
]t
t0

=

(
σk1
)2

2λk
(
e−2λk(Ti−t) − e−2λk(Ti−t0)

)
+
(
σk2

)2
(t− t0) +

+
2σk1σ

k
2ρ

k

λk

(
e−λ

k(Ti−t) − e−λk(Ti−t0)
)

�

Lemma 2.2. Proof. This is a particular case of Lemma 3.2 below, which follows
immediately by putting m = k and noticing that ρk,k1,1 = ρm,m1,1 = 1 and ρk,k1,2 = ρk,k2,1 = ρk.
�

Lemma 3.2. Proof. The best way to proceed is to use the so-called polarization
identity

2〈Xk
i , X

m
j 〉tt0 = 〈Xk

i +Xm
j 〉tt0 − 〈X

k
i 〉tt0 −

〈
Xm
j

〉t
t0

(25)

where the only missing term here is 〈Xk
i + Xm

j 〉tt0 : in order to calculate this, first we
obtain the stochastic differential of Xk

i +Xm
j as

d
(
Xk
i +Xm

j

)
= e−λ

k(Tki −t)σk1dW̃
k
1 (t) + σk2dW̃

k
2 (t) +

+e−λ
m(Tmj −t)σm1 dW̃

m
1 (t) + σm2 dW̃

m
2 (t) + drift

The variation 〈Xk
i +Xm

j 〉tt0 is then equal to

〈
Xk
i +Xm

j

〉t
t0

=

(
σk1
)2 (

e−2λk(Tki −t) − e−2λk(Tki −t0)
)

2λk
+

+
2
(
σk2ρ

k,k
1,2 + σm2 ρ

k,m
1,2

)
σk1

(
e−λ

k(Tki −t) − e−λk(Tki −t0)
)

λk
+

+
(σm1 )2

(
e−2λm(Tmj −t) − e−2λm(Tmj −t0)

)
2λm

+

+
2
(
σk2ρ

k,m
2,1 + σm2 ρ

m,m
1,2

)
σm1

(
e−λ

m(Tmj −t) − e−λ
m(Tmj −t0)

)
λm

+

+
2σm1 σ

k
1ρ

k,m
1,1 e

−λkTki −λmTmj
(
e(λ

k+λm)t − e(λk+λm)t0
)

λk + λm
+

+
(

2σm2 σ
k
2ρ

k,m
2,2 + σk2 + σm2

)
(t− t0)
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and by using the polarization identity (25), Lemma 2.1 and the facts that ρk,k1,2 = ρk and
ρm,m1,2 = ρm, we have the desired result. �
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