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Abstract

We study the optimal stopping problems embedded in a typical mortgage.
Despite a possible non-rational behaviour of the typical borrower of a mort-
gage, such problems are worth to be solved for the lender to hedge against the
prepayment risk, and because many mortgage-backed securities pricing models
incorporate this suboptimality via a so-called prepayment function which can
depend, at time t, on whether the prepayment is optimal or not. We state the
prepayment problem in the context of the optimal stopping theory and present
an algorithm to solve the problem via weak convergence of computationally
simple trees. Numerical results in the case of the Vasicek model and of the CIR
model are also presented. The procedure is extended to the case when both
the prepayment as well as the default are possible: in this case, we present a
new method of building two-dimensional computationally simple trees and we
apply it to the optimal stopping problem.

1 Introduction

The aim of this paper is to study the optimal stopping problems corresponding to the
prepayment and default options embedded in a mortgage and their role in pricing
mortgage-backed securities (MBS). Although the average borrower of a mortgage

∗corresponding author. This work was partly supported by the University of Padova under grant
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may not exercise these options in an optimal time for many reasons (among which
its non-rationality due to him/her being typically not a professional of financial
markets), such problems are worth to be solved for two main reasons. The first
is that the lender of a mortgage wants to take into account the risk that many
borrowers, though being non-optimal decisors, could exercise their options at the
optimal time. The second is that, due to this non-optimality of the exercising
times, many pricing models for MBS incorporate this non-optimality via a so-called
prepayment function (an analogous of the default intensity in credit risk models),
which can explicitly depend on the fact that at time t the prepayment is an optimal
decision or not.

We now present the problem in a more formal way. First of all we focus on the
typical structure of a single mortgage with its own prepayment option, and to fix the
ideas we concentrate on the most simple fixed rate, fixed termination date mortgage
(although there are many other kinds of mortgage in the market). Then we present
the most common MBS traded in the financial markets, and in particular a class
of MBS which are guaranteed against the risk of default of the borrower, so that
the only relevant risk is the one relative to prepayment; after this, we present the
most common framework of pricing a MBS by use of the prepayment function and
how the optimal stopping problem may become relevant. Finally, we extend this
approach to the non-guaranteed case, i.e. when a default is also possible.

1.1 Single mortgage

We concentrate on fixed rate, fixed termination date mortgages on an underlying
good, which can be a house or a more general physical good. Assume that one
(usually called the borrower) borrows at time 0 from a so-called lender (usually a
bank) a capital equal to P at the nominal instantaneous rate ρ > 0, and pays it
back with a continuous intensity A in the time window [0, T ]. Then it is easy to see
that these quantities are linked by

P =

∫ T

0
e−ρtA dt = A

1 − e−ρT

ρ

If we instead assume that the borrower pays the capital back with N equal rates
AN at dates kT/N , k = 1, . . . , N at the nominal rate ρN prevailing for each small
period [kT/N, (k + 1)T/N ], then these quantities are linked by

P =

N
∑

i=1

AN

(1 + ρN )i
=
AN

ρN

(

1 − 1

(1 + ρN )N

)

.

In both of these payment methods, the borrower pays a total (non-discounted)
amount which is greater than P , the difference being related to the fact that the
borrower must also pay an interest for his (her) residual debt. With respect to this,
it is possible to decompose the (continuous or discrete) rate A (or AN ) in principal
quote and interest quote.

In many mortgages, the borrower has the option to prepay the mortgage at a
date t < T . The usual convention is that in this case the residual debt (s)he has to

2



repay is given by the remaining rates discounted by the nominal rate. If the rates
are paid in continuous time, then the residual debt to be repaid at time t is thus
given by

Ft :=

∫ T

t
e−ρ(u−t)A du = A

1 − e−ρ(T−t)

ρ
(1)

while if the rates are paid in discrete time at time nT/N with n < N , then

Fn :=

N
∑

i=n+1

AN

(1 + ρN )i−n
=
AN

ρN

(

1 − 1

(1 + ρN )N−n

)

.

Once this option is exercised, the contract terminates. This prepayment option has
thus the character of a contingent claim of American type.

From the point of view of the lender, if the borrower exercises his/her prepay-
ment option at time t (in discrete time, nT/N), this means that the lender receives
immediately the lump sum Ft (resp. Fn) instead of the future stream of payments
with intensity A (resp. AN ), which in continuous time has a market value at time
t equal to

Vt :=

∫ T

t
B(t, u)A du = A

∫ T

t
B(t, u) du (2)

while in discrete time its market value at time nT/N is

Vn :=
N
∑

i=n+1

ANB

(

n
T

N
, i
T

N

)

= AN

N
∑

i=n+1

B

(

n
T

N
, i
T

N

)

where in both cases we denote with B(t, s) the price at time t of a zero-coupon bond
with maturity s ≥ t. Thus, the lender is exposed to the risk of early exercise at time
t < T of an American option to exchange Vt for Ft. While we have seen that the
value of Ft is conventionally fixed and depends only on t and on the deterministic
quantities A and ρ, the value of Vt depends on the evolution of the term structure
given by (B(t, s))s∈[t,T ]. The optimal exercise of the prepayment option can thus be
triggered by market conditions, usually interest rates falling under a certain level.

Usually, the borrower has another option, called surrender option or default
option, which consists in forfeiting the whole contract in exchange for the physical
good underlying the mortgage. If the borrower exercises this option, then the lender
will no longer receive any stream of payment, but has the right to retain all the
payments previously done in addition to the underlying physical good. The options
of prepayment and of surrendering are alternative to each other, in the sense that
once that the borrower exercises one of the two, the contracts expires and (s)he
cannot exercise the other.

1.2 Mortgage-backed securities

Mortgage-backed securities are derivative assets based on the cash flows generated
by packages of mortgages (for this brief introduction we follow [11]). The issuer
usually aggregates a number of mortgages with approximately equal nominal rate
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and equal maturity, thus creating a pool of mortgages which is the underlying asset
of a MBS. There are different kind of MBS: some examples are

• pass-through: the MBS holder receives a fixed fraction of the whole cash flow
generated by the mortgage pool;

• collateralized mortgage obligations (CMOs): they work similarly to pass-through,
except for the fact that in a CMO there are different tranches, each one with
a different priority in receiving the cash flow;

• stripped interest-only MBS (IOs): the MBS holder receives a fixed fraction
only of the interest quote generated by the mortgage pool;

• stripped principal-only MBS (POs): the MBS holder receives a fixed fraction
only of the principal quote generated by the mortgage pool.

This means that the stream of payments depends on the prepayments of the mort-
gage which constitutes the pool, this dependence becoming much more dramatic
in the latter cases: in fact, in case of a prepayment, an IO-holder no longer re-
ceive interest for that single mortgage, while a PO-holder receives the principal of
that mortgage before the natural maturity, and a CMO-holder’s future cash flow
is linked to the priority of his/her CMO. Conversely, for a pass-through holder a
prepayment simply means a swap between a lump sum immediately and a fixed
stream of payments in the future, which usually have similar market values.

A particular class of MBS consists in those guaranteed by federal and/or US
government associations, well known examples being FNMA, FHLMC and GNMA
(Federal National Mortgage Association, Federal Home Loan Mortgage Corpora-
tion, and Government National Mortgage Association, respectively). These MBS
are insured against default in this way: if a mortgage is defaulted by the borrower
before its natural maturity, then the corresponding association (FNMA, FHLMC
or GNMA) replaces that mortgage in the pool by a lump sum corresponding to a
prepayment (and takes in exchange the underlying good), thus bearing the risk of
default. For this reason, in order to evaluate a guaranteed MBS, it is not required
to model the risk of default (as this is entirely covered by the corresponding associa-
tion), and the only sources of risk to be modeled are the interest rates dynamics and
the prepayment risk. Conversely, if a MBS is not of this kind, the modelling of the
default risk is also required: the relevance of this latter problem has been empha-
sised by the recent crisis of the two associations FNMA and FHLMC in September
2008.

In the sequel, we first concentrate on the problem of pricing a guaranteed MBS.
Then we extend our method also to the pricing of non-guaranteed MBS.

1.3 The pricing of guaranteed MBS

Being this the framework, it seems that in order to price a guaranteed MBS one
has simply to price, with the aid of the usual no-arbitrage theory, the corresponding
stream of payments, which always include an American-style option corresponding
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to the prepayment option of each borrower. Thus, for a mortgage having rate A
and a nominal interest rate ρ and maturity T , the price of a pass-through MBS at
time t would simply be

Vt − ess sup
τ∈[t,T ]

EQ[e−
R τ

t
ru du(Vτ − Fτ ) | Ft] = Vt − EQ[e−

R τ̂

t
ru du(Vτ̂ − Fτ̂ ) | Ft] (3)

where F and V are respectively given by Equations (1) and (2), (Ft)t is a suitable
filtration representing the amount of information up to time t (which could be
typically the filtration generated by the short rate r), the ess sup is taken over all
the (Ft)t-stopping times τ taking values in the interval [t, T ], and Q is a suitable
equivalent martingale measure. In particular, it would happen that every borrower
of a given pool finds optimal to prepay at the same stopping time τ̂ .

The above argument would be valid provided all the agents in the market, es-
pecially the borrowers who control the prepayment options, would act in a rational
way. The fact is that in this case, while the lenders are typically professionals of
the financial world (banks, insurance companies and so on), generally fully informed
about the financial markets, borrowers can be or are typically not acquainted with
rational economical reasoning and/or not fully informed about the financial mar-
kets; even if they are, there could be other non-optimal reasons for exercising their
prepayment options at a non-optimal time (typical reasons could be that the house
which is the underlying of the mortgage has been sold, or that the borrower becomes
aware of the optimality of prepayment with some delay with respect to the optimal
time). Thus, in a given pool, one can observe different prepayment times, optimal
as well as non-optimal, for different borrowers.

In order to price a MBS one has thus to model this non-optimal prepayment
behaviour and incorporate it in the MBS price. This is usually done by using
the so-called prepayment function. Let us call τ the (optimal or non-optimal) pre-
payment time of a ”typical” single borrower: this is a (Ft)t-stopping time, thus
a random variable, taking values in the set [0, T ]; call F (·|θ) its cumulative dis-
tribution function with respect to Q, conditional on a state variable θ, defined by
F (t|θ) := Q{τ ≤ t | θ}; assume that τ has also a conditional density f(·|θ) = F ′(·|θ).
Then the prepayment function (also known as hazard function or risk function in
other areas, and which is the exact analogous of the default intensity in credit risk)
is defined as

π(t|θ) := lim
∆t→0+

Q{t < τ ≤ t+ ∆t | τ > t, θ}
∆t

=
f(t|θ)

1 − F (t|θ)

which gives the density of prepayment at time t conditioned on the fact that the
borrower has not yet prepaid (and to the state variable θ). It is well known that
this is equivalent to saying that F (t|θ) = 1 − exp(−

∫ t
0 π(s|θ) ds) or that f(t|θ) =

π(t|θ) exp(−
∫ t
0 π(s|θ) ds).

Once we specify the hazard function π(·|θ) and the interest rates dynamics, we
can obtain the price of a MBS by incorporating π(·|θ) into the pricing formula in a
way similar to credit risk. In particular, for a mortgage pool having nominal interest

5



rate ρ and maturity T , the price of a pass-through MBS at time t would be

Vt − EQ[e−
R τ

t
ru du(Vτ − Fτ ) | Ft] =

= Vt − EQ

[
∫ T

t
π(u|θ)e−

R u

t
(rv+π(v|θ))dv(Vu − Fu) du

∣

∣

∣

∣

Ft

]

where, this time, τ is a prepayment time whose law is characterised by the prepay-
ment function π(·|θ). Notice that this formula is similar to a typical pricing formula
for a defaultable security where the recovery value Vτ − Fτ is paid at default [16].

In many model specifications, the prepayment function π depends on whether
at a given time t the prepayment is or not optimal with respect to the criterion of
Equation (3) (a notable exception being [13], where a different criterion is used): if
for all t ∈ [0, T ] we define

θt :=

{

1 if at time t it is optimal to prepay,
0 otherwise,

then, for example, Stanton’s model [17] specifies π as π(t|θt) := λ + θtρ, with λ, ρ
being two given positive constants: in this way, an exogenous (i.e. non-optimal but
happening due to exogenous reasons) prepayment has a hazard function λ, while
if it is optimal to prepay at time t the hazard function is augmented by ρ. In
other previous models [8, 9], it was assumed that π(t|θt) := λ(t) + ∞× θt, i.e. an
exogenous prepayment has a hazard function λ(t), while all the borrowers always
prepay immediately when it is optimal (the prepayment function explodes).

This means that, while in order to properly price a MBS one has to take into
account the possibly non-optimal prepayment behaviour of the borrowers, in some
models the prepayment function π can explicitly depend on the fact that, for a
rational borrower, it would be optimal to prepay or not. This also means that
solving the problem (3), while not sufficient to price a MBS, may be necessary for
many models.

1.4 The pricing of non-guaranteed MBS

In the case when also a default decision is available, the pricing is furtherly compli-
cated by the fact that the borrower owns two options wich are mutually exclusive,
so that the total value of a single mortgage at time t, if the borrower were fully
rational, would be Vt −Wt, where

Wt = ess sup
τ,δ∈[t,T ]

EQ[I{τ<δ}e
−

R τ

t
ru du(Vτ −Fτ ) + I{δ<τ}e

−
R τ

t
ru du(Vδ −Hδ) | Ft] (4)

τ and δ indicating the stopping times corresponding respectively to a prepayment
decision and to a default decision and the process H = (Ht)t∈[0,T ] representing the
price of the underlying physical good.

As in the case of prepayment, also the default decision can be triggered by
non-rational reasons; for example, a default decision can usually have also legal
consequences for the borrower (for example, a bad credit scoring) which go beyond
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the single transaction Vδ − Hδ. Conversely, even if the house has a high value at
a given time, it is also possible that the borrower is simply not able to repay the
mortgage anymore and cannot avoid to forfeit the house. For these reasons, in
order to evaluate correctly a MBS, it is important to model this non-optimal be-
haviour. Analogously to the case when only the prepayment risk is present, the
prepayment/default behavior can depend on the fact that at the current time it is
optimal or not to prepay and/or to default. For example, in [7] the non-optimal
behaviour is modeled as a generalisation of the Stanton model, with the intensities
λsp, λsd corresponding to exogenous (i.e. non-optimal) prepayment and default re-
spectively, and the additional intensities λp, λd corresponding to endogenous (i.e.
optimal) prepayment and default.

In the next sections we concentrate on solving the optimal stopping problems
(3) and (4), starting from the former. In particular, in Section 2 we present results
on optimal prepayment with no default in continuous time: as in this case we do
not have closed form solutions, we turn our attention to the discrete time version
of this problem with the aim to obtain an approximate solution, discussing various
methods which can be used. In Section 3 we focus on an efficient method, introduced
in a quite general setting in [14], to build discrete time models based on trees which
are computationally simple, and we present two applications to the Vasicek model
and to the CIR model, with some examples where we solve the prepayment problem
numerically. In Section 4 we show how to apply the solution of the prepayment
problem to the pricing of guaranteed MBS where the prepayment function can
depend on the optimality of prepayment at the current time. In Section 5 we pass to
the more general problem (4) and present numerical results on optimal prepayment
and default in discrete time for MBS not of the FNMA/GNMA type by extending
the procedure of computationally simple trees to this case, where a 2-dimensional
tree for both r and H will be needed, presenting also an application to the CIR
model. In doing this, we extend and simplify some aspects of the building of two-
dimensional trees with respects to what one can find in the present literature (see
[1, 12, 18] and the discussion in Section 5).

2 Optimal rational prepayment

From now on, we make the simplifying assumption that the short rate is a Markov
process, so that the entire term structure (B(t, s))0≤t≤s≤T can be obtained from the
process r; of course, many of the results can be generalised to the situation where
there is a d-dimensional Markov factor process that drives the term structure.

If the evolution of r follows a continuous time dynamics, we assume that its
evolution has the stochastic differential

drt = µ(rt) dt + σ(rt) dWt (5)

where W is a Brownian motion and µ, σ are functions such that Equation (5) has
a unique strong solution. In this case, the price of the zero coupon bond B(t, T )
is given by B(t, T ) = B̃(t, T, rt), where B̃ is the solution of the partial differential
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equation

{

B̃t(t, T, r) + (LB̃)(t, T, r) = rB̃(t, T, r), (t, r) ∈ (0, T ) × R,

B̃(T, T, r) = 1, r ∈ R

and L is the infinitesimal generator of r

(Lf)(t, T, r) := µ(r)fr(t, T, r) +
1

2
σ2(r)frr(t, T, r)

It is well known that, if one wants to solve an optimal stopping problem of the kind
of (3) in continuous time, its solution in terms of both the optimal value as well as
an optimal stopping time is linked to the free boundary value problem

{

max(ft + Lf − rf, ψ − f) = 0, (t, r) ∈ (0, T ) × R,
f(T, r) = ψ(T, r) = 0, r ∈ R

(6)

where ψ(t, r) is given by

ψ(t, r) = V (t, r) − F (t) = A

∫ T

t
B(t, u) du−A

1 − e−ρ(T−t)

ρ
=

= A

(

∫ T

t
B̃(t, u, r) du− 1 − e−ρ(T−t)

ρ

)

An optimal stopping time is given by

τ := inf{t ≤ T | f(t, rt) = ψ(t, rt)}

Unfortunately, Equation (6) admits an explicit solution only in very few cases, and
usually one has to implement numerical methods, among which we cite finite dif-
ferences or finite elements methods to solve Equation (6) or weak convergence of
discrete time processes to solve directly problem (3).

It is well known that one-dimensional explicit finite differences schemes are equiv-
alent to trinomial trees [11], thus they can be viewed as a particular case of weak
convergence methods, while implicit finite differences methods present better results
in terms of stability but not in terms of computational cost; finite elements methods
in dimension 1 are more or less equivalent to finite differences methods. In more
than 1 dimension, as concerns the finite differences method the same comments
of the one-dimensional case can be made, while finite elements methods are more
flexible but require the choice of a triangularization of the space domain, which
is a nontrivial problem by itself, while not presenting evident advantages over the
other computational methods. Moreover, both methods require a truncation of the
state space and conditions on the second-order operator which, if not satisfied, lead
to a transformation of the state space which can appear artificial (see [7, 17] for
examples).

For the reasons above, while not claiming that those analytic methods are worse
than those based on weak convergence, we prefer to focus on this latter class. When
discretising a diffusion process, one can choose different approximation schemes, the
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most common being Euler discretisation of the SDE and binomial trees. In both
cases, if we consider N subdivisions of the interval [0, T ], the original problem (3)
becomes

ess sup
τ∈[n,N ]

EQ[e−
1

N

Pτ
i=n ri(Vτ − Fτ ) | Fn] (7)

where the ess sup is now taken over all the (Fn)n-stopping times τ taking integer
values between n and N , and V − F is given by

Vn − Fn = AN

N
∑

i=n+1

B

(

n
T

N
, i
T

N

)

− AN

ρN

(

1 − 1

(1 + ρN )N−n

)

.

with the zero-coupon values B now given by

B

(

n
T

N
, i
T

N

)

= EQ[e−
1

N

Pi−1

k=n
rk | Fn]

If the short rate r is Markov (meaning now a Markov chain), then the zero-coupon
values B( n

N T,
i
N T ) are deterministic functions of n and rn, thus in problem (7) the

conditional expectation gives a function which only depends on n and rn, as well as
Vn−Fn. In this case, problem (7) can be solved by using the Dynamic Programming
principle: define recursively the functions Wn, n = 0, . . . , N in this way:

WN (r) := VN (r) − FN (r) ≡ 0,

Wn(r) := max[(Vn − Fn)(r),EQ[e−
1

N
rn+1Wn+1(rn+1) | rn = r]] (8)

where an optimal stopping time is given by

τ̂ := inf{n ≤ N | Wn(rn) = (Vn − Fn)(rn)}

Given an initial value r0, the computational cost of calculating the functions (Wn)n
depends on the model that we choose for the discrete-time evolution of r. The most
common choices are:

• Euler scheme discretising a continuous-time diffusion: in this case the condi-
tional distributions of r are Gaussian, so that the state space is an infinite set
(typically the whole real line). In this case, if the (Wn)n cannot be calculated
in an analytical way, it is very difficult to evaluate them numerically. One
of the most common choices is to perform a quantisation, thus reducing the
problem to an optimisation problem on a discrete-space process.

• Binomial trees. In this case the state space for r is a finite set, but its cardi-
nality depends on the type of the tree. If the tree is not recombining, then the
state space for rn can consist of up to 2n points. If the tree is recombining,
then the cardinality of the state space for rn grows with n at most linearly.

In view of this, the most efficient choice would be to use a recombining binomial
tree dynamics for r. In fact assume that, at each time step n, the number of states
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that rn can assume is at most Kn (in the common binomial case, K = 1). This
means that one can use backward induction in order to calculate the functions
(8), having to calculate them in every one of the

∑N
n=1Kn = KN(N+1)

2 nodes
of the tree. Conversely, if the tree is not recombining, the nodes can be up to
∑N

n=1 2n = 2(2N−1) and calculating the functions (8) is much more time consuming.
At last, calculating the functions (8) within the Euler discretisation can be more
or less time consuming depending on the kind (recombining or not) of quantisation
scheme used.

In the following, we solve numerically the discrete-time problem (7) using a
recombining tree technique: in doing this we will follow the Nelson-Rawaswamy
approach of ”computationally simple trees” [14].

3 Computationally simple trees

Nelson and Rawaswamy define a computationally simple tree as a tree where the
number of nodes at each time n ≤ N grows at most linearly with the number of
time intervals.

As noticed before, in this case the total number of nodes up to time N is at
most equal to KN(N+1)

2 . If we use a binomial tree, typically K = 1, and in order
to calculate the functions (8) one has to calculate at each node of the tree two
expectations (of Vn(rn) and of Wn+1(rn+1)) over two possible future outcomes and
then a maximum, ending up with a constant number of operations at each node of
the tree.

3.1 Weak convergence

As we build the process (rn)n in order to approximate (via weak convergence) the
diffusion process of Equation (5), we need sufficient conditions for this weak con-
vergence to take place. We thus present the following theorem from [10], which is
also used in [14]: although in that paper the theorem is used in a one-dimensional
version, here we state it in its full generality in order to use it again in Section 5,
where a 2-dimensional version will be needed.

Theorem 3.1 Let X a stochastic process with dynamics

dXt = µ̄(Xt) dt+ Σ(Xt) dZt

with X0 ≡ x ∈ Rd, and µ̄ : Rd → Rd and a := ΣΣT : Rd → Rd×d are continuous
and such that there exists a pathwise unique solution for all x ∈ Rd. For h > 0,
let now (Xh

n)n be a d-dimensional Markov chain with Xh
0 = x and transition kernel

νh(x,Γ), and define, for all x ∈ Rd,

µ̄h(x) =
1

h

∫

|y−x|≤1
(y − x)νh(x,dy),

ah(x) =
1

h

∫

|y−x|≤1
(y − x)(y − x)T νh(x,dy).
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Assume that for all R > 0, ε > 0,

sup
|x|≤R

|µ̄h(x) − µ̄(x)| → 0, (9)

sup
|x|≤R

|ah(x) − a(x)| → 0, (10)

sup
|x|≤R

1

h
νh(x, {y : |y − x| ≥ ε}) → 0. (11)

Define now Xh(t) := Xh
[t/h] for all t ≥ 0. Then, for h → 0, (Xh)h converges weakly

to X.

In order to use this theorem to obtain a weak convergence scheme for a process
r solution of Equation (5), we let µ̄ := µ, Σ := σ and Z := W and assume that σ is
non-negative, and in this way we obtain the one-dimensional version used in [14]. It
also follows that a weak convergence can be achieved even without building a tree
for the evolution of the Xh, h > 0: this is the case, for example, of Euler schemes
for SDEs, where the transition kernels νh are typically Gaussian. Thus, in order
to obtain a recombining binomial tree, one has to make further assumptions as is
shown in the following subsection.

3.2 Computationally simple trees

In order to obtain Markov chains (rh)h which evolve along a tree, we use the con-
struction presented in [14]. Take the interval [0, T ] and divide it into N equal
subintervals having length h := T/N . For each h, consider a process (rh

t )t∈[0,T ],
which is constant on the subintervals and, at each time hk, k = 1, . . . , N , jumps
upwards or downwards with probability q and 1 − q, respectively. More precisely,
take qh, R

+
h , R

−
h : R → R such that 0 ≤ qh(r) ≤ 1 and −∞ < R−

h (r) ≤ R+
h (r) < ∞

for all r ∈ R, k = 0, 1, . . . , N . Now define the process rh as a Markov chain with
rh
0 = r0 for all h > 0 and transition kernel given by

νh(r, ·) := qh(r)δR+

h
(r)(·) + (1 − qh(r))δR−

h
(r)(·) (12)

where δx(Γ) := 1Γ(x), Γ ⊆ R is the Dirac delta centered in x. This means that
rh evolves as a tree with the two possible future outcomes R±

h (r) in each state r,
with probability qh(r) and 1 − qh(r) respectively. In order to establish the weak
convergence rh ⇒ r, we write explicitly

µ̄h(r) =
qh(r)[R+

h (r) − r] + (1 − qh(r))[R−
h (r) − r]

h
,

ah(r) = σ2
h(r) =

qh(r)[R+
h (r) − r]2 + (1 − qh(r))[R−

h (r) − r]2

h
,

and make the following assumption.

Assumption 1 Assume that the conditions in Equations (9–10) hold and that for
all δ > 0, T > 0,

lim
h↓0

sup
|r|≤δ,0≤t≤T

|R+
h (r, t) − r| = lim

h↓0
sup

|r|≤δ,0≤t≤T
|R−

h (r, t) − r| = 0, (13)
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Notice that Equation (13) implies Equation (11). We can now state the following
result from [14].

Theorem 3.2 Under Assumption 1, for h ↓ 0 the sequence (rh)h converges weakly
to r, which is solution of Equation (5).

In order to obtain a computationally simple tree, besides satisfying Assumption
1, the functions R−

h , R+
h must also satisfy this condition: we must require that the

total displacement of a up-movement followed by a down-movement is equal to the
analogous displacement when the movements have reverse order. This means that
the equality

R+
h (r) − r +R−

h

(

R+
h (r)

)

−R+
h (r) = R−

h (r) − r +R+
h

(

R−
h (r)

)

−R−
h (r)

i.e. R−
h (R+

h (r)) = R+
h (R−

h (r)), must be true for all r ∈ R, h > 0.
We now follow Nelson and Rawaswany and present two models for the interest

rate r where we can build computationally simple trees which weakly converge to r.

3.3 Weak convergence to the Vasicek model

Assume that r follows the Vasicek model

drt = β(α− rt)dt+ σdWt, (14)

with β > 0, and define

R+
h (r) := r + σ

√
h,

R−
h (r) := r − σ

√
h,

qh(r) := max

(

0,min

(

1

2
+

√
h
β

2σ
(α− r), 1

))

With this choice, the local drift and second moment are respectively

µh(r) =







β(α− r) if 0 < qh(r) < 1

σ/
√
h if qh(r) = 1

−σ/
√
h if qh(r) = 0,

and σ2
h(r) = σ2. By Theorem 3.2, with this choice the sequence (rh)h converges

weakly to r.

3.3.1 Numerical examples

We present a numerical solution of the prepayment problem in Figure 1. We set
r0 = 0.03, T = 2 years, and the nominal rate ρ = 0.04, with model parameters
β = 0.02, σ = 0.1, α = 0.15. We divide the interval [0, 2] into N = 12, 24 and 48
subintervals (corresponding to prepayment decisions taken every 2 months, 1 month
and 15 days respectively). For each node, we indicate with a red cross an optimal
decision to prepay (stop) and with a blue dot an optimal decision to continue.
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Figure 1: Optimal prepayment with the Vasicek model with N = 12, 24, 48 (other
parameters: r0 = 0.03, T = 2, ρ = 0.04, β = 0.02, σ = 0.1, α = 0.15). For each
node, we indicate with a red cross an optimal decision to prepay (stop) and with a
blue dot an optimal decision to continue.

The method is efficient enough to be applied also to longer maturities with the
same prepayment frequencies: take for example T = 20 years and N = 240, corre-
sponding to a prepayment decision taken every month, with all the other parameters
kept equal (r0 = 0.03, ρ = 0.04, β = 0.02, σ = 0.1, α = 0.15). In order to emphasize
the functional form of the optimal prepayment boundary, we omitted the interest
rates outside the interval [−0.2; 0.2] because the probability of r going outside this
interval is very small: we present the result in Figure 2.
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Figure 2: Optimal prepayment with T = 20, N = 240 (other parameters: r0 = 0.03,
ρ = 0.04, β = 0.02, σ = 0.1, α = 0.15). Again, for each node we indicate with a
red cross an optimal decision to prepay and with a blue dot an optimal decision to
continue. We also omitted the interest rates outside the interval [−0.2; 0.2] because
the probability of r going outside this interval is very small.

3.4 Weak convergence to the CIR model

In order to build a computationally simple tree for the CIR model, we first make a
transformation of the state variable rt of the form Xt := X(rt) with X ∈ C2. If r
satisfies Equation (5), then

dX(rt) =

(

µ(rt)
∂X(rt)

∂r
+

1

2
σ2(rt)

∂2X(rt)

∂r2t
+
∂X(rt)

∂t

)

dt+ σ(rt)
∂X(rt)

∂r
dWt.

Now choose X such that

X(r) =

∫ r dz

σ(z)
, (15)

With this choice, we have σ(r)∂X(r)
∂r ≡ 1, so that the diffusion term of (X(rt))t is

constant and we can again build a computationally simple tree in a similar way as
we did for the Vasicek model. If X is invertible (a sufficient condition for this is
that σ(r) > 0 for all r, which we assumed), then we can come back to the process
r by applying the inverse transformation.
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If we assume that r follows the CIR model

drt = k(µ− rt)dt+ σ
√
rtdWt, (16)

with k > 0, µ > 0, then a suitable transformation X is given by

X(r) :=

∫ r dz

σ
√
z

=
2
√
r

σ
, (17)

with x0 = X(r0), the inverse transformation being

R(x) :=

{

σ2x2

4 if x > 0,
0 otherwise.

(18)

We can easily see that σ(0) = 0 < µ(0), so that r = 0 is not an absorbing state.
Because of this, Nelson and Rawaswamy present a procedure that requires, when r is
near 0, to make an upward jump which is a multiple of the corresponding downward
jump. For this reason, we define

J+
h (x) :=

{

the smallest even integer j such that
σ2(x+j

√
h)2

4 − σ2x2

4 ≥ k(µ− σ2x2

4 )h
(19)

J−
h (x) :=

{

the smallest even integer j such that

either σ2(x−j
√

h)2

4 − σ2x2

4 ≤ k(µ− σ2x2

4 )h or x− j
√
h ≤ 0,

(20)

qh(x) :=

{

hk(µ−R(x))+R(x)−R−

h
(x)

R+

h
(x)−R−

h
(x)

, if R+
h (x) > 0,

0 otherwise.
(21)

R±
h (x) ≡ R(x± J±

h (x)
√
h), (22)

The quantities J±
h (x) are defined in such a way that 0 ≤ qh(x) ≤ 1 in Equation (21),

so that the local drift converges to the drift of Equation (16). The following result
holds.

Corollary 3.1 Define the processes (rh)h using (12) and (17–21). For h ↓ 0, the
sequence (rh)h ⇒ r weakly, which is the solution of Equation (16).

3.4.1 Numerical examples

We again present a numerical solution of the prepayment problem in Figure 3. We
set r0 = 0.03, T = 2 years, and nominal rate ρ = 0.04, with model parameters
β = 0.02, σ = 0.1, α = 0.15. As before, we divide the interval [0, 2] into N = 12,
24 and 48 subintervals, and for each node we indicate with a red cross an optimal
decision to prepay (stop) and with a blue dot an optimal decision to continue.
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Figure 3: Optimal prepayment with the CIR model with N = 12, 24, 48 (other
parameters: r0 = 0.03, T = 2, ρ = 0.04, β = 0.02, σ = 0.1, α = 0.15). Again, for
each node we indicate with a red cross an optimal decision to prepay and with a
blue dot an optimal decision to continue.

Also in this case, the method remains efficient enough to be applied to longer
maturities with the same prepayment frequencies: in the same ”long maturity”
example as before (T = 20, N = 240, r0 = 0.03, ρ = 0.04, β = 0.02, σ = 0.1,
α = 0.15) we have the result in Figure 4. As before, in order to emphasize the
functional form of the optimal prepayment boundary, we omitted the interest rates
outside the interval [0; 0.2] because the probability of r going outside this interval
is very small.
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Figure 4: Optimal prepayment with T = 20, N = 240 (other parameters: r0 = 0.03,
ρ = 0.04, β = 0.02, σ = 0.1, α = 0.15). Again, for each node we indicate with a
red cross an optimal decision to prepay and with a blue dot an optimal decision to
continue, and we omitted the interest rates outside the interval [−0.2; 0.2] because
the probability of r going outside this interval is very small.

3.5 Flexibility of the algorithm

The algorithm is flexible enough to incorporate a more complex rate structure than
the ”classical” constant rate. For example, assume that a mortgage is written with
a so-called entrance interest rate ρ1 up to the time T1 and an interest rate ρ2 > ρ1

for the remaining time [T1, T ], while the repayments rates are adjusted in such a
way that they are constant in the two periods [0, T1] and [T1, T ]. Then it can be
proved that, if we divide the interval [0, T ] into N intervals such that T1 = N1

T
N for

some integer N1, the repayment rates in the two periods are respectively

A(n) = A1 =
Pρ1

1 − ( 1
1+ρ1

)N
, n ≤ N1,

A(n) = A2 =
Pρ2

1 − ( 1
1+ρ2

)N−N1

1 − ( 1
1+ρ1

)N−N1

1 − ( 1
1+ρ1

)N
, n > N1.
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In this case, the prepayment option is written on

Ft =

∫ T

0
e−

R u

t
ρ(s) dsA(u) du, Vt =

∫ T

0
B(t, u)A(u) du

where ρ(s) := ρ1 for s ≤ T1 and ρ(s) := ρ2 for s > T1, which can be discretised in a
recursive way as

Fn :=
N
∑

i=n+1

A(i)

(1 + ρ(i))i−n
=

A(n+ 1)

1 + ρ(n+ 1)
+

Fn+1

1 + ρ(n+ 1)

where ρ(n) := ρ1 for n ≤ N1 and ρ(n) := ρ2 for n > N1, and

Vn :=

N
∑

i=n+1

A(i)B

(

n
T

N
, i
T

N

)

=

= A(n + 1)B

(

n
T

N
, (n + 1)

T

N

)

+ E[e−
1

N
rn+1Vn+1 | rn]

and both the theoretical framework and the construction of the algorithm follow in
an analogous way as before.

As an example, we present a numerical result for a mortgage having entrance
rate ρ1 = 0.03 for the first T1 = 3 years and rate ρ2 = 0.04 for the remaining 17
years, for a total of T = 20 years divided into N = 120 subintervals (corresponding
to prepayment decisions taken every 2 months) when the short rate follows a CIR
model with parameters r0 = 0.03, β = 0.02, σ = 0.1, α = 0.15. The result is shown
in Figure 5.

4 The pricing of mortgage-backed securities

We already saw in Section 1.3 that in order to price a MBS one has to take into
account the non-optimal behaviour of the borrowers: we choose to do this via a
prepayment function π(t|θ), where θ could be a stochastic process.

Once we specify the hazard function π(·|θ) and the interest rates dynamics, we
can obtain the price of a MBS by incorporating π(·|θ) into the pricing formula. In
particular, for a mortgage pool having nominal interest rate ρ and maturity T , the
price of a pass-through MBS at time t would be Vt − Ot, where Ot is the price at
time t of the so-called prepayment option, defined by

Ot := EQ[e−
R τ

t
ru du(Vτ − Fτ ) | Ft] =

= EQ

[∫ T

t
π(u|θ)e−

R u

t
(rv+π(v|θ))dv(Vu − Fu) du

∣

∣

∣

∣

Ft

]

where τ is a prepayment time whose law is characterised by the prepayment function
π(·|θ). Notice that in this case, as τ is not typically an optimal prepayment time,
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Figure 5: Optimal prepayment of a mortgage with entrance rate ρ1 = 0.03 for the
first T1 = 3 years and rate ρ2 = 0.04 for the remaining 17 years, for a total of T = 20
years divided into N = 120 subintervals, when the short rate follows a CIR model
with parameters r0 = 0.03, β = 0.02, σ = 0.1, α = 0.15.

the value of Ot can also be less than zero. This quantity can be discretised in a
recursive way as

On = E

[

N
∑

i=n

π(i|θi)e
− Pi

j=n(rj+π(j|θj))(Vi − Fi)

∣

∣

∣

∣

∣

Fn

]

=

= e−rn−π(n|θn)(π(n|θn)(Vn − Fn) + E[On+1|Fn])

In order to investigate the impact of the non-optimal prepayment structure on the
value of the MBS, we can easily adapt the computationally simple tree algorithm of
the previous section to this framework.

As an example, if we adopt the Stanton model for π, then π(t|θt) := λ + θtρ̄,
where λ, ρ̄ > 0 correspond respectively to the intensity of exogenous payment and
to the additional intensity of endogenous payment, and θt is a stochastic process
adapted to (Ft)t equal to 1 in the case when at time t it is optimal to prepay, and
0 otherwise.

In the following numerical example, we assume that the short rate follows the
CIR model with r0 = 0.03, β = 0.02, σ = 0.1, α = 0.15, and also take as parameters
of the Stanton prepayment function λ = 0.0338 and ρ̄ = 0.6452 on a mortgage
with rate ρ = 0.04 and T = 20. By taking N = 240, we can calculate the value
of the prepayment option On at each node. We can, for example, represent the
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states where On > 0 (or On < 0), i.e. the market value Vn of a typical mortgage
is worth more (respectively, less) than the pass-through MBS Vn − On (which also
contains the prepayment option exercised in a non-optimal way), with a blue dot
(respectively, with a red cross) and obtain Figure 6.
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Figure 6: The states where the market value of the prepayment option, obtained
with a Stanton intensity with λ = 0.0338 and ρ̄ = 0.6452, is positive (blue dot) or
negative (red cross), in the case of a mortgage with rate ρ = 0.04 and T = 20. We
assume that the interest rates follow a CIR model with r0 = 0.03, β = 0.02, σ = 0.1,
α = 0.15 and we discretise using N = 240 subdivisions.

5 Optimal prepayment/default behavior

In this section, we analyse the situation when the risk of prepayment is not the
only risk in the model and the default risk is also present. Usually this is done
by identify a stochastic process, called the ”price of the house”, which triggers the
default decision of the borrower: actually, this is not a real price of a real house,
as even in a single pool the price of the underlying houses can follow different time
evolutions depending on their locations, types and environmental conditions, but
must be interpreted as an appropriate proxy (for example, a real estate market
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index). For example, in the Downing-Stanton-Wallace model [7] it is assumed that
the ”price of the house” evolves as a geometric Brownian motion

dHt = Ht((rt − qH) dt+ σH dWH
t ) (23)

where r is the short rate, qH is a constant dividend, σH > 0 is the volatility param-
eter, and WH is a Brownian motion, not necessarily independent of r. In the case
of default, the borrower forfeits the house to the lender; thus, the default option is
an option of American type to exchange the market value of the stream of payments
Vt for the value of the house Ht.

As said in Section 1, since the option of prepayment and of surrendering are
alternative to each other, it is impossible to evaluate them separately. Instead, their
optimal combined value is given by Equation (4), provided that the borrower acts in
a rational way, which may not happen. For this reason, also the default behaviour
at time t is usually represented via a default intensity, which can depend on the fact
that at time t is optimal to default or not.

From what is stated before, it is easily seen that finding a solution to the problem
(4) in terms of optimal stopping times (τ̂ , δ̂) can be necessary in order to properly
price a MBS, in analogy with the case when only the prepayment risk is present.
Unfortunately, similarly to problem (3), also this problem has no general solution
in closed form when formulated in continuous time. We thus concentrate ourselves
on finding a numerical method based on computationally simple trees which solve
problem (4).

The first thing to do is to formulate problem (4) in discrete time, which is done
in this way:

Wn = ess sup
τ,δ∈[n,N ]

E[I{τ<δ}e
−

Pτ−1

j=n rj(Vτ −Fτ )+I{δ<τ}e
−

Pτ−1

j=n rj(Vδ −Hδ) | Fn] (24)

As in Section 2, if the short rate r and the ”price of the house” H are Markov chains,
then Vn is a deterministic functions of n and rn, thus the conditional expectation
with respect to Fn is a deterministic function of rn and Hn, and the problem can
be solved by using the Dynamic Programming principle. Define recursively the
functions Wn, n = 0, . . . , N in this way:

WN (r,H) := 0,

Wn(r,H) := max
(

(Vn − Fn)(r), Vn(r) −H,

EQ[e−
1

N
rn+1Wn+1(rn+1,Hn+1) | rn = r,Hn = H]

)

Then Wn = Wn(rn,Hn) for every n = 0, . . . , N , and two optimal stopping times are
given by

τ̂ := inf{n ≤ N | Wn(rn,Hn) = (Vn − Fn)(rn)},
δ̂ := inf{n ≤ N | Wn(rn,Hn) = Vn(rn) −Hn}

Given initial values r0,H0, the computational cost of calculating the functions (Wn)n
depends again on the model that we choose for the discrete-time evolution of (r,H).

21



For this reason, we now build a two-dimensional computationally simple tree similar
to those of Section 3. In particular, we will build two binomial trees for r and H
respectively, and in this way the nodes at each time step n will be n2. The total
number of nodes will thus be

∑N
1 n2 = N(N+1)(2N+1)

6 = O(N3), which is still an
acceptable computational cost for the pricing.

We now illustrate explicitly the construction of the two-dimensional tree, which
presents some new aspects with respect to what one can find in literature. In fact,
the construction of a two-dimensional tree for state variables which are separate
Markov processes driven by Brownian motion which are possibly correlated, first
presented in [12], is by now a standard (see for example [1]): but that is not our
case. Conversely, the construction of a two-dimensional tree for state variables which
are not Markov by their own but form a two-dimensional Markov process, driven by
possibly correlated Brownian motions, is less common and was firstly sketched out
in [18] along these steps:

1. transform the state variables in the spirit of [14] (as seen in Section 3.4) in
order for the diffusion to be constantly 1 for both: however, these new state
variables can stilll be driven by correlated Brownian motions;

2. make an affine transformation in order to obtain other new state variables
with unitary diffusion term and driven by independent Brownian motions;

3. for each state variable, build a binomial (or trinomial) tree, and combine each
node by 4 (9) joint probabilities to the 4 (9) future outcomes;

4. at each node, convert the new variables back to the original ones, and price
contingent claims via backward induction.

We now present a new construction which allows to skip Step 2), by calculating in a
suitable way the joint probabilities in Step 3) in order to preserve the original corre-
lation structure. Since this construction is new (at least to the authors’ knowledge),
we present it in some detail. We finally notice that, after this work was done, we
were aware of a recent paper [3] where the authors model exactly our state variables
with two-dimensional trees, but still using the 4-step procedure of [18].

The first step is to use Theorem 3.1 in our context. Assume that r follows
a CIR process as in Equation (16) and that H evolves as in Equation (23), with

WH = ρrHW +
√

1 − ρ2
rHW

′, with ρrH ∈ [−1, 1] and W ′ independent of W . Then

µ̄(r,H, t) =

(

k(µ− r)
H(r − qH)

)

,

a(r,H, t) =

(

σ2
rrt σr

√
rtσHρrHH

σr
√
rtσHρrHH σ2

HH
2

)

Notice that we explicitly generalise [7], where the calculations were carried out with
ρrH = 0.
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Now we build a 2-dimensional tree for the discretisation of (r,H). For h > 0,
define (rh,Hh) as a Markov chain with (rh

0 ,H
H
0 ) := (r0,H0) and transition kernel

νh((r,H), ·) := qh
1 (r, h)δ(r+

h
,H+

h
)(r,H)(·) + qh

2 (r, h)δ(r+

h
,H−

h
)(r,H)(·) +

+qh
3 (r, h)δ(r−

h
,H+

h
)(r,H)(·) + qh

4 (r, h)δ(r−
h

,H−

h
)(r,H)(·)

where
∑4

i=1 q
h
i (r,H) = 1 for all r, H, h > 0, and r±h ,H

±
h are still to be specified.

We now make, for the two variables, a state transform in order to have a com-
putationally simple tree in both the dimensions. For r we adopt the usual transfor-

mation rn = σ2
rX2

n

4 , while for H we search for a transformation S(H) such that

S(H) =

∫ H dz

σHz
=

logH

σH

and H(S) = eσHSt is thus a suitable transformation. Define then

H+
h (S) = e(S+

√
h)σH = H(S)e

√
hσH , H−

h (S) = e(S−
√

h)σH = H(S)e−
√

hσH

so H±
h (H) = He±

√
hσH . We then have

µ̄h(r,H) =
1

h

(

(r+h − r)qr
h + (r−h − r)(1 − qr

h)
(H+

h −H)qH
h + (H−

h −H)(1 − qH
h )

)

,

ah(r,H) =
1

h

























(r+h − r)2qr
h + (r−h − r)2(1 − qr

h)

(r+h − r)(H+
h −H)q1h+

+(r+h − r)(H−
h −H)q2h+

+(r−h − r)(H+
h −H)q3h+

+(r−h − r)(H−
h −H)q4h

(r+h − r)(H+
h −H)q1h+

+(r+h − r)(H−
h −H)q2h+

+(r−h − r)(H+
h −H)q3h+

+(r−h − r)(H−
h −H)q4h

(H+
h −H)2qH

h + (H−
h −H)2(1 − qH

h )

























where qr
h = qr

h(r,H) := q1h(r,H) + q2h(r,H) is the probability of an up-movement for
r and qH

h = qH
h (r,H) := q1h(r,H) + q3h(r,H) is the probability of an up-movement

for H.
Theorem 3.1 implies that the marginal distributions of r and H converge; thus

we impose, as in the one-dimensional case, that qr
h ≡ qh as defined in Equation (21)

and

q1h(r, h) + q3h(r, h) = qH
h (r,H) =

hH(r − qH) +H −H−
h (H)

H+
h (H) −H−

h (H)
=

=
h(rt − qH) + 1 − e−

√
hσH

e
√

hσH − e−
√

hσH

for states r,H such that qr, qc ∈ [0, 1]. If this does not happen, we force qr and qc
to be 0 or 1 as suitable, as in the one-dimensional case. Anyway, for h → 0, this
happens with smaller and smaller probability, as one can easily verify that

lim
h→0

qr
h(r,H) = lim

h→0
qH
h (r,H) =

1

2
.
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uniformly on compact sets with respect to r,H. Also, with this definition of qH
h the

local mean and variance of Hh converge to those of H uniformly on compact sets
(see [14]). Now we only have to choose a marginal probability among q1h, q

2
h, q

3
h, q

4
h

in order to accomodate for the convergence of the covariance. We have that






q2h = qr
h − q1h,

q3h = qH
h − q1h,

q4h = 1 − qr
h − qH

h + q1h

so we can express everything in terms of q1h. We can rewrite (ah)12 as

(ah)12 =
1

h

(

(r− − r)(H− −H) + (r+ − r−)(H− −H)qr
h + (r− − r)(H+ −H−)qH

h +

+ (r+ − r−)(H+ −H−)q1h
)

= (i) + (ii) + (iii) + (iv)

By calculating the limits for h→ 0, we have

lim
h→0

(i) = σσH
√
rH lim

h→0
J−

h (r),

lim
h→0

(ii) = −σσH
√
rH lim

h→0
(J+

h (r) + J−
h (r))qr

h(r,H),

lim
h→0

(iii) = −2σσH
√
rH lim

h→0
J−

h (r)qH
h (r,H),

lim
h→0

(iv) = 2σσH
√
rH lim

h→0
(J+

h (r) + J−
h (r))q1h(r,H),

Imposing that the limit of (ah)12 converges to ρrHσσH
√
rH is equivalent to impose

that

ρrH = lim
h→0

(

J−
h (r) − (J+

h (r) + J−
h (r))qr

h(r,H) − 2J−
h (r)qH

h (r,H) + 2(J+
h (r) + J−

h (r))q1h(r,H)
)

We thus let

q1h(r,H) :=
ρ

2(J+
h (r) + J−

h (r))
+

J−
h (r)

2(J+
h (r) + J−

h (r))
−1

2
qr
h(r,H)− J−

h (r)

J+
h (r) + J−

h (r))
qH
h (r,H)

if the right hand side belongs to [0, 1], otherwise we let qh
2 (r,H) equal to 0 or 1

suitably.
By using Theorem 3.1 to all of the above, it is possible to prove the following

Theorem 5.1 Define r±, H± and qi, i = 1, . . . , 4 as above. Then (rh,Hh)h con-
verges weakly to (r,H) solution of Equations (16,23).

We now present an implementation of this algorithm where we can explic-
itly see the two optimal boundaries between the continuation, default and pre-
payment regions. Since a 3-dimensional graphic would have been quite difficult
to understand, we choose to present the boundaries at 4 different times, namely
n = N/4, N/2, 3N/4, N , each node being represented as a red cross in case of de-
fault, as a green + in case of prepayment and as a blue dot in case of continuation.
We let r0 = 0.03, H0 = 110, ρrH = 0.035, β = 0.02, σr = 0.1, α = 0.15, σH = 0.4,
qH = 0.3 and ρrH = 0.1. For this simulation we put T = 12 years with N = 96
and represent the results for the house price in log scale. Again, the most extreme
values for r and H (r > 0.2 and H > 1000), states which are very rare, have not
been drawn. The result is shown in Figure 7.
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Figure 7: Prepayment and default states at n = N/4, N/2, 3N/4, N , with N = 96
indicating a total maturity of T = 12 years (other parameters r0 = 0.03, H0 = 110,
ρrH = 0.035, β = 0.02, σr = 0.1, α = 0.15, σH = 0.4, qH = 0.3 and ρrH = 0.1).
Each node indicates a red cross in case of default, a green + in case of prepayment
and a blue dot in case of continuation. The results for the house price are in log
scale, and the most extreme values for r and H (r > 0.2 and H > 1000) have not
been drawn.
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