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1 Introduction

In this paper we present a closed formula for the price and for the replicating strategy of a
European option on several assets having the general payoff

CT =
N∑

j=1

(〈φj , S̄(T )〉 −Kj)1Ej ,

where φj and Kj , j = 1, . . . , N , are respectively n-dimensional real vectors and constants,
S̄ is a vector of n assets, each one traded in a (possibly) different country and converted in
the domestic currency via the exchange rate X1j(t) at time t, that is

S̄(t) = (S̄1(t), . . . , S̄n(t)), where S̄j(t) = X1j(t)Sj(t), t ∈ [0, T ], j = 2, 3, . . . , n

with the understanding that S1(·) = B1(·, T ) is the zero coupon bond with maturity T
traded in the domestic country, for which the exchange rate is X11 ≡ 1, Sj is traded in the
j-th country, for j = 2, . . . , n, 〈·, ·〉〉 is the euclidean scalar product in Rn, and the Ej are
disjoint sets in Ω depending on the value of S̄(T ). In our model, besides the assumption
of absence of arbitrage opportunities, we make the further hypotheses that the quantities
significant to our analysis (that is the prices Sj(t) in t of the j-th asset, the exchange rates
Xij(t) between the i-th country and the j-th one, and the spot forward rate rj(t, x) in time
t with maturity t + x of the j-th country) satisfy stochastic differential equations driven
by a k-dimensional Wiener process. This leads us to a specific structure for the stochastic
differential equations satisfied by these quantities. If we make the further assumption that
the market is complete and, if we consider the quantities cited above as a whole process,
it is Markov, then we are able to linearize the price of the multiple option and to get a
formula in terms of a linear combination of the assets Sj , weighted by the probabilities of
suitable exercise sets. In order to arrive to such a formula, we change the numeraire in each
of the elements of the linear combination using for each country j the corresponding risk-
neutral probability QS

j , and the forward-neutral probability QT
1 , introduced in El Karoui et

al. (1995) and Jamshidian (1989). With the additional assumptions that the risk premium
and the diffusion term of the forward rates are deterministic in all the countries, we are
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able to derive explicit formulae both for the price and for the hedging portfolio of the
multiple option. Finally we present a case in which our formula is reduced to the well known
Johnson’s formula for the option on the maximum on several assets (see Johnson,1987), and
two applications of our option, namely the MAP strategy (Multiple Asset Performance),
presented in Fong and Vasicek (1989), and the option on the arithmetic mean of n − 1
assets.

This work generalises results contained in Romagnoli and Vargiolu (1998), and uses three
different topics in finance: international finance, term structure of interest rates and options
on several assets, focusing much on the third topic. The first relevant work in international
finance is Garman and Kohlagen (1983), which is the seminal paper in the subject in the
same sense as the paper of Black and Scholes (1973) is in pricing and hedging of European
options. The main idea presented in the Garman-Kohlagen model is the assumption of
absence of arbitrage opportunities between the countries, formalized by the fact that the
foreign prices expressed in terms of the domestic currency by the exchange rate behaves
as a domestic price. Through this approach we may see the exchange rate as a domestic
asset that pays a continous dividend which corresponds to the foreign interest rate. Term
structure of interest rates is a wide topic in finance, but here we do not concentrate much
on it. We only notice that, though in a first approximation it is possible to suppose that
the rates are deterministic, since we are dealing with exchange rates, we suppose that the
interest rates in our n countries are stochastic. In order to justify this approach, we notice
that our main application is the MAP strategy, that is a derivative asset on stock indexes
of different countries, so the exchange risk is comparable to the risk of the considered
assets. In order to derive explicit formulae, though, we suppose that the volatility of the
bonds and the risk premiums in all the n countries are deterministic. A deterministic
volatility of the bonds is equivalent to the hypothesis that the forward rates are gaussian
processes (see for example Amin and Jarrow, 1991, Heath et al., 1992, and Musiela,1993).
In particular, we use the Musiela parametrisation (see Brace and Musiela, 1994, Musiela,
1993, or Vargiolu, 1999) for the interest rates rather than the Heath-Jarrow-Morton one
(see Heath et al., 1992), because the first easily allows to see that the instantaneous forward
rates (ri(t, ·))t of the different countries i = 1, . . . , n are Markov processes. Coming to the
third topic involved in this work, the first work about options on several assets is the paper
by Margrabe (1978), that analyses the simplest case of an option to exchange one asset
for another. Later, Stulz (1982) arrived to price an option on the maximum of two assets.
His work was generalized by Johnson (1987), who solved the same problem for a general
number of assets. The first and the last work follow more or less the same idea, that is
to linearize the payoff function and to find closed formulas in terms of a ponderate sum
of different probabilities calculated in different exercise sets in terms of the multivariate
gaussian distribution function. In particular we follow Johnson’s technique and find an
expression similar to Johnson’s formula. This also allows us to find a replicating strategy
in the n assets: this derives intuitively from Johnson’s formula, even if Johnson himself
does not derive the replication strategy from it. Moreover in this work there is the further
complication of stochastic interest rates. Because of the gaussian model we have chosen,
though, this complication affects the general structure of the price and replication formulae
only in terms of more complicated coefficients than those of Johnson.

The paper is organized as follows: in Section 2 we present the model we used; in Section
3 we derive the pricing formula for the multiple option; in Section 4 we derive the hedging
strategy from the pricing formula we have found; in Section 5 we show that under stronger
assumptions our formula is reduced to Johnson’s formula (Johnson, 1987); in Section 6
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we present an example of application of our option, namely Fong-Vasicek’s MAP strategy
(Fong and Vasicek, 1989); in Section 7 we present another example of application, namely
the option on the arithmetic mean of several assets.

2 The model

We consider n assets, each one traded in a country, that could be all different ones, but this
is not necessary; anyway we assume that asset 1 is always traded in our domestic country,
while assets 2, . . . , n could be traded in the domestic country or in a number up to n− 1 of
foreign ones. ¿From now on, we will indicate as “the i-th country” or “the i-th currency”
respectively the country or the currency relative to the i-th asset, so if the i-th and the j-th
assets are traded in the same country, the i-th and the j-th country will coincide, as their
currency will. We consider a probability space (Ω,F , P) and we represent the information
at time t ∈ [0, T ] with a filtration (Ft)t, which for technical purposes we assume to be
complete and right continuous. We also suppose that all the processes are adapted to the
filtration (Ft)t. We name:

ri(t, θ) the instantaneous forward rate prevailing at time t for the maturity t + θ = T in
the i-th country; we will indicate shortly the spot rate ri(t, 0) with ri(t);

S0(t) the price at time t of the riskless asset in the domestic country, expressed in the
domestic currency

S1(t) = B1(t, T ) the price at time t of the zero coupon bond with maturity T in the
domestic country

Si(t) the price at time t of an asset in the i-th country, expressed in the i-th currency

Xij(t) the exchange rate from the i-th country to the j-th country, that is the price of 1
unity of the j-th currency expressed in i-th currency; if the i-th and the j-th currency
coincide, then Xij ≡ 1.

We suppose that the dynamic of the processes under the historic probability P are

dS0(t) = S0(t)r1(t) dt

dB1(t, T ) = B1(t, T )(µ1(t, T ) dt + 〈Γ1(t, T ), dŴ (t)〉)
dSi(t) = Si(t)(µi(t) dt + 〈σi(t), dŴ (t)〉)
dri(t, θ) = αi(t, θ) dt + 〈τi(t, θ), dŴ (t)〉
dXij(t) = Xij(t)(m(t) dt + 〈σX

ij (t), dŴ (t))〉

(1)

where 〈·, ·〉〉 is the euclidean scalar product on Rk, and (Ŵ (t))t is a k-dimensional brownian
motion which represent the sources of risk which affect the different economies, and where
we suppose that all the quantities we introduced satisfy the technical regularity conditions
for the integrals to be defined.

We suppose there are no arbitrage opportunities in the domestic market; we shall see
in the next theorem that this implies the existence of a probability measure Q1 equivalent
to P, under which the actualized prices of all the domestic assets are martingales, and that
there are several contraints on the quantities introduced before.
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Lemma 1 If there are no arbitrage opportunities, then it exists a process λ1 with values in
Rn, called risk premium, such that

µ1(t) = r1(t)1 + σ1(t)λ1(t)

where 1 = (1, . . . , 1).

Proof. If σ1(t) is surjective, then the thesis is obvious; if σ1(t) is not surjective, we build
a self-financing strategy H such that (Hi(t)Si(t))i is the kernel of σ∗1(t), then the portfolio
V defined by H satisfies:

dV (t) = r1(t)V (t) dt + 〈(Hi(t)Si(t))i , µ1(t)− r1(t)1〉 dt

We notice that this portfolio is defined by a bounded variation process; this im-
plies, by the absence of arbitrage opportunities, that its drift is r1(t)V (t), so that
〈(Hi(t), Si(t))i , µ1(t) − r1(t)1〉 = 0. This means that µ1(t) − r1(t)1 ∈ Im σ1(t), and the
thesis follows.

Theorem 2 If there are no arbitrage opportunities in the domestic country, Si(t), ri(t, x)
and Xij(t) are solutions of equations (1), the process λ1 is progressively measurable and the

Novikov condition EP

[
exp

(
1
2

∫ T
0 ‖λ1 (t)‖2 dt

)]
< +∞ holds, then there exists a probability

Q1 equivalent to P under which the processes(
e−

R T
t r1(u) duS1(t)

)
t

and
(
e−

R T
t r1(u) duX1i(t)Si(t)

)
t

are martingales. Moreover, under P we have:

µi(t) = ri(t, 0) + 〈σi(t), λi(t)〉 (2)

Γi(t, T ) = −
∫ T−t

0
τi(t, u) du (3)

αi(t, θ) =
∂ri(t, θ)

∂θ
− τi(t, θ)Γi(t, t + θ) + λi(t) (4)

mij(t) = ri(t)− rj(t) + σX
ij (t)λi(t) (5)

σX
ij (t) = λi(t)− λj(t) (6)

where (λi(t)) are the risk premium of the i-th economy and (Γi(t, T ))t is the volatility of
a zero coupon bond with maturity T in the i-th country. The probability Q1 is defined by
the following Radon-Nikodym derivative with respect to P:

dQ1

dP
= exp

(∫ T

0
〈λ1(u), dŴ (u)〉 − 1

2

∫ T

0
‖λ1(u)‖2 du

)
and the process

W1(t) = Ŵ (t)−
∫ t

0
λ1(u) du
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is a Brownian motion under Q1. Finally the equations (1) under Q1 can be rewritten as
follows: ∀i, j = 1, . . . , n

dS0(t) = r1(t)S0(t) dt

dB1(t, T ) = B1(t, T )(r1(t) dt + Γ1(t, T ) dW1(t))
dSi(t) = Si(t)

((
ri(t) + 〈σi(t), σX

i1 (t)〉
)

dt + σi(t) dW1(t)
)

dri(t, θ) =
(

∂ri

∂θ
(t, θ)− τi(t, θ)Γi(t, t + θ) + 〈τi(t, θ), σX

i1 (t)〉
)

dt + τi(t, θ) dW1(t)

dXij(t) = Xij(t)
(
ri(t)− rj(t) + 〈σX

ij (t), σX
i1 (t)〉

)
dt + σX

ij (t) dW1(t)

Proof. The existence of Q1 follows from Novikov’s condition and from Girsanov’s
theorem, as does the fact that W1(t) is a brownian motion under Q1. The existence of the
risk premiums λi can be proved by standard absence of arbitrage arguments (the proof
is similar to that of Lemma 1), so relation (2) is justified. Relation (3) can be derived
by standard Itô calculus. Relation (4) can be derived by absence of arbitrage arguments
(see the Musiela model in Musiela, 1993). Relation (5) and (6) are derived by arbitrage
multicurrency arguments and are a straightforward generalization of the Garman-Kohlagen
model in Garman and Kohlagen (1983).

We notice that if τi(·) is a deterministic function, then (ri(t, ·))t is a Markov process
having values in the space AC(R+, R), which can be identified with the Sobolev space W 1,1

loc ;
in the mathematical literature, to treat the problem more easily, it is preferred to suppose
that (ri(t, ·))t takes values in a separable Hilbert space H contained in W 1,1

loc (for some
possible examples, see Vargiolu, 1999). From this it follows that, if the σi, λi and τi are
deterministic functions of the time for all i = 1, . . . , n, then, for each choice of the maturity
T , the process (Si(t), Xij(t), ri(t, ·), i, j = 1, . . . , n)t is a Markov process having values in
Rn × Rn×n ×Hn.

3 The multiple option price

From now on, we’ll make the assumption that the market is complete; this means that there
exists only one risk neutral probability Q1 ≡ P such that the actualized prices of the assets
in the domestic countries are (local) martingales, as seen in Theorem 2.

Now we want to evaluate a multiple European option having the final payoff

CT =
N∑

j=1

(〈φj , S̄(T )〉 −Kj)1Ej ,

where φj and Kj , j = 1, . . . , N , are respectively n-dimensional real vectors and constants,
and S̄j(t) = X1j(t)Sj(t) for j = 2, . . . , n and t ∈ [0, T ].

Theorem 3 If the Novikov conditions

EQ1

[
exp

(
1
2

∫ T

0
‖σX

1i (t)‖2 dt

)]
< +∞

EQ1

[
exp

(
1
2

∫ T

0
‖σi(t)‖2 dt

)]
< +∞

EQ1

[
exp

(
1
2

∫ T

0
‖Γ1(t, T )‖2 dt

)]
< +∞


∀i = 1, . . . , n (7)
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are satisfied and the process (Si(t), Xij(t), ri(t, ·), i, j = 1, . . . , n)t is Markov, then the price
of the option having payoff CT is given by

C(t) =
N∑

j=1

(
n∑

i=2

φi
jX1i(t)Si(t)QS

i (Ej |Ft)−B1(t, T )KjQT
1 (Ej |Ft)

)
(8)

where QS
i is the risk neutral probability corresponding to the numeraire S̄i, and QT

1 is
the risk-neutral probability corresponding to the numeraire B1(t, T ), better known as the
forward neutral probability of the first country; QS

i and QT
1 are defined by the following

Radon-Nikodym derivatives:

dQS
i

dQ1
= exp

(∫ T

0
(〈σi(t) + σX

1i (t), dW1(t)〉 −
1
2

∫ T

0
‖σi(t) + σX

1i (t)‖2 dt

)
dQT

1

dQ1
=

e−
R T
0 r1(u) du

B1(0, T )
= exp

(∫ T

0
〈Γ1(t, T ), dW1(t)〉 −

1
2

∫ T

0
‖Γ1(t, T )‖2 dt

)
Proof. Under the risk neutral probability Q1 the value in t of our multiple option is:

C(t) = EQ1

e−
R T

t r1(u,0) du
N∑

j=1

(〈φj , S̄(T )〉 −Kj)1Ej

∣∣∣∣∣∣Ft


We can linearize the payoff of the option, by using the exercise sets Ej . Besides, we notice
that under Q1 we have

dS̄j(t)
S̄j(t)

= r1(t) dt + 〈σj(t) + σX
1j(t), dW1(t)〉 (9)

This gives us a formula for the price:

EQ1

[
e−

R T
t r1(u) duCT

∣∣∣Ft

]
=

=
N∑

j=1

(
EQ1

[
e−

R T
t r1(u) du〈φj , S̄(T )〉1Ej

∣∣∣Ft

]
−KjEQ1

[
e−

R T
t r1(u,0) du1Ej

∣∣∣Ft

])
=

=
N∑

j=1

(
n∑

i=2

EQ1

[
φi

jX1i(t)Si(t) exp
(∫ T

t
〈σi(u) + σX

1i (u), dW1(u)〉+

− 1
2

∫ T

t
‖σi(u) + σX

1i (u)‖2 du

)
1Ej

∣∣∣∣Ft

]
−KjEQ1

[
e−

R T
t r1(u,0) du1Ej

∣∣∣Ft

])
=

=
N∑

j=1

(
n∑

i=2

φi
jS̄i(t)EQS

i
[1Ej |Ft]−B1(t, T )KjEQT

1
[1Ej |Ft]

)
=

=
N∑

j=1

(
n∑

i=1

φi
jS̄i(t)QS

i (Ej |Ft)−B1(t, T )KjQT
1 (Ej |Ft)

)

The last member of the equality gives us the formula.

We have found a rather explicit formula for the price, which depends of the value of
the traded assets X1i(t)Si (t) at time t and of the exercise probabilities QS

i (Ei|Ft) and
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QT
1 (E1|Ft)) where we have written in different way the exercice set Ej because in the first

case it is express in function of S̄i (t) and in the second case in function of S1 (t). Furthermore
these probabilities depend on the particular dynamics of the forward rates in the n countries.

Now we show that, under the assumption that the forward rates processes are gaussian
and the risk premiums λi of the n countries are deterministic, as the volatilities σi of Si,
we are able to derive a closed formula for the price of the option. To have gaussian forward
rates processes is equivalent to have Γi(t, T ) deterministic. In this case it is rather easy
to prove, under technical conditions, existence and uniqueness of the solution (in a weaker
sense than the usual, namely in the mild sense, see Da Prato and Zabczyk, 1992) of the
Musiela equation (as it is shown in Vargiolu, 1999).

Theorem 4 If Γi(t, T ), σi (t) and σX
ij (t) are deterministic functions belonging to L2([0, T ])

∀i, j = 1, . . . , n, then the price of the currency multiple option is given by

C(t) =
N∑

j=1

(
n∑

i=2

φi
jX1i(t)Si(t)Nn−1

mi(t),Ri(t)

{
x

∣∣∣∣∣
(

Si(t)
Sj(t)

exj

)
j=1,...,n,j 6=i

∈ Ei

}
−

− B1(t, T )KjNn−1
m1(t),R1(t)

{
x

∣∣∣∣∣
(

S1(t)
Sj(t)

exj

)
j=2,...,n

∈ E1

})
(10)

where the vectors mi are given by eq. (12), the matrices Ri are given by eq. (13), and
Nn−1

m,R is the (n− 1)-dimensional gaussian measure given by

Nn−1
m,R(A) =

1√
(2π)n−1 det R

∫
A

e−
1
2
〈R−1(x−m),x−m〉 dx ∀A ⊆ Rn−1 measurable (11)

where d ∈ Rn−1 and R is a positive definite symmetric real (n− 1)× (n− 1) matrix.

Remark 5 From this theorem on a number of Gaussian probabilities of sets will appear.
These sets will be often subsets of R{1,...,n}r{i}, but for sake of simplicity we will always
identify those sets as subsets of Rn−1, though their elements would always be of the kind
x = (x1, . . . , xi−1, xi+1, . . . , xn).

Proof. If Γi, σi and σX
ij are L2([0, T ]) functions, then the Novikov conditions

(7) are satisfied. Besides, since Γi, σi and σX
ij are deterministic, then the process

(Si(t), Xij(t), ri(t, ·), i, j = 1, . . . , n)t is Markov, so the formula (8) holds. In order to know
the exercise probabilities, we have to write the dynamics of the assets S̄j under the proba-
bilities QS

i ∀i, j = 1, . . . , n, starting from (9).
Under QS

i , the process WS
i (t) = W1(t) −

∫ t
0

(
σi(u) + σX

1i (u)
)

du is a brownian motion,
and S̄j has the dynamics

dS̄j(t)
S̄j(t)

= r1(t, 0) dt + 〈σj(t) + σX
1j(t), dWS

i (t) +
(
σi(t) + σX

1i (t)
)

dt〉〉 =

=
(
r1(t, 0) + 〈σj(t) + σX

1j(t), σi(t) + σX
1i (t)〉

)
dt + 〈σj(t) + σX

1j(t), dWS
i (t)〉

Then we have:

S̄j(T ) = S̄j(t) exp
(∫ T

t

(
r1(u, 0) + 〈σX

1j(u) + σj(u), σX
1i (u) + σi(u)−

− 1
2
σX

1j(u)− 1
2
σj(u)〉

)
du +

∫ T

t
〈σj(u) + σX

1j(u), dWS
i (u)〉

)
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and

S̄i(T )
S̄j(T )

=
S̄i(t)
S̄j(t)

exp
(
−1

2

∫ T

t

∥∥σi(u)− σj(u) + σX
ji (u)

∥∥2
du+

+
∫ T

t
〈σi(u)− σj(u)− σX

ji (u), dWS
i (u)〉

)
Then we have found that the law of the vector

(
log
(

S̄i(T )/S̄i(t)
S̄j(T )/S̄j(t)

))
j

under QS
i is:

(
log
(

S̄i(T )/S̄i(t)
S̄j(T )/S̄j(t)

))
j=1,...,n

∼ N(mi(t), Ri(t))

where mi(t) is a (n− 1)-dimensional vector with the j-th component given by

mj
i (t) = −1

2

∫ T

t

∥∥σi(u)− σj(u)− σX
ji (u)

∥∥2
du (12)

and where the (j, k)-component of the matrix Ri(t) is:

Rjk
i (t) =

∫ T

t

〈
σi(u)− σj(u)− σX

ji (u), σi(u)− σk(u)− σX
ki(u)

〉
du (13)

So we can write the exercise risk neutral probability of i-th country:

QS
i (Ei) = Nn−1

mi(t),Ri(t)

{
x ∈ Rn−1

∣∣∣∣∣
(

Si(t)
Sj(t)

exj

)
j=1,...,n,j 6=i

∈ Ei

}

We have removed the conditioning because (Si(t), Xij(t), ri(t, ·), i, j = 1, . . . , n)t is Markov.
In order to find the last exercise probability, we notice that under QT

1 , the process
W T

1 (t) = W1(t)−
∫ t
0 Γ1(u, T ) du is a brownian motion, so the process S̄j has the dynamics

dS̄j(t)
S̄j(t)

= r1(t, 0) dt +
〈
σj(t) + σX

1j(t), dW T
1 (t) + Γ1(t, T ) dt

〉
=

=
(
r1(t, 0) +

〈
σX

1j(t) + σj(t),Γ1(t, T )
〉)

dt +
〈
σj(t) + σX

1j(t), dW T
1 (t)

〉
Then we have:

S̄j(T ) = S̄j(t) exp
(∫ T

t

(
r1(u, 0) + 〈σX

1j(u) + σj(u),Γ1(u, T )− 1
2
σX

1j(u)−

−1
2
σj(u)〉

)
du +

∫ T

t
〈σj(u) + σX

1j(u), dW T
1 (u)〉

)
and

S̄1(T )
S̄j(T )

=
S̄1(t)
S̄j(t)

exp
(
−1

2

∫ T

t
‖σj(u)− Γ1(u, T ) + σX

1j(u)‖2 du+

+
∫ T

t
〈σj(u)− Γ1(u, T ) + σX

1j(u), dW T
i (u)〉

)
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so we can find the last exercise probability:

QT
1 (E1) = Nn−1

m1(t),R1(t)

{
x ∈ Rn−1

∣∣∣∣∣
(

S1(t)
Sj(t)

exj

)
j=2,...,n

∈ E1

}
where

mj
1(t) =

1
2

∫ T

t
‖σj(u)− Γ1(u, T ) + σX

1j(u)‖2 du (14)

4 The hedging strategy

We have found the price of the currency multiple option of the form:

C(t) = EQ1

e−
R T

t r1(u,0) du

 N∑
j=1

(〈φj , S̄(T )〉 −Kj)1Ej

∣∣∣∣∣∣Ft

 =

=
N∑

j=1

(
n∑

i=2

EQS
i

[
φi

jX1i(t)Si(t)1Ei |Ft

]
− EQT

1
[KjB1(t, T )1E1 |Ft]

)

Now we want to find a hedging portfolio in terms of the assets S̄i(t) = X1i(t)Si(t), i =
1, . . . , n, that is we want to build a self-financing portfolio

V (t) =
n∑

i=1

Hi(t)X1i(t)Si(t)

such that V (t) = C(t) ∀t ≤ T Q-a.s.

Theorem 6 Under the same assumptions of theorem 3, the hedging portfolio is given by:

H1(t) = −
N∑

j=1

KjQT
1 (E1|Ft)

Hk(t) = QS
k (Ek|Ft) ·

N∑
j=1

φk
j ∀k = 2, . . . , n

Proof. We may write the price of the option as a deterministic function of s̄1 = S̄1(t) =
S1(t) and s̄i = S̄i(t) = X1i(t)Si(t) ∀i = 2, . . . , n as follows:

F (s̄1, . . . , s̄n) =
N∑

j=1

(
n∑

i=2

EQS
i

[
φi

j s̄i1Ei |Ft

]
− EQT

1
[Kj s̄11E1 |Ft]

)

The proportion of the i-th asset S̄i in the replicating self financing portfolio is, as it is
well known (see for example Lamberton and Lapeyre, 1991), the derivative of the function
F (s̄1, . . . , s̄n) with respect to s̄i, so we have:

∂F

∂s̄k
=

N∑
j=1

(
n∑

i=2

EQS
i

[
∂

∂s̄k
φi

j s̄i1Ei

∣∣∣∣Ft

]
− EQT

1

[
∂

∂s̄k
Kj s̄11Ej

∣∣∣∣Ft

])

9



so:
∂F

∂s̄1
= −

N∑
j=1

KjEQT
1

[1E1 |Ft] = −
N∑

j=1

KjQT
1 (E1|Ft)

∂F

∂s̄k
=

N∑
j=1

φk
j QS

k (Ek|Ft) = QS
k (Ek|Ft)

N∑
j=1

φk
j ∀k = 2, . . . , n

where we have taken the derivative under the expectation sign and where the terms with
i 6= k in the sum and the last one are null because their integrands are 0 almost everywhere
(with respect to the different QS

i and QT
1 ).

5 Johnson’s option on the maximum of several assets

Now we present a particular case, namely Johnson’s option on the maximum of several as-
sets. This is an option on several assets in the same market, and it is a famous case of option
of several assets; here we see that Johnson’s formula can be derived as a straightforward
application of ours.

In this case our assets are all traded in a single market so all the countries 1, . . . , n
coincide, and we have X1i ≡ 1 ∀i = 1, . . . , n. Besides the interest rate is supposed to be
deterministic and having a flat structure: r1(t, x) ≡ r, so σX

1i ≡ 0, Γi ≡ 0 and QT
1 = Q1

∀T > 0. For this reason there is no need to consider the dynamics of the zero coupon
bond with maturity T (because it coincides with the money market account), so we change
the notation and suppose that S1 is the money market account and S2, . . . , Sn are risky
assets without qualitative differences between them. Finally, the assets evolve according to
equations having deterministic time-independent coefficients: σi(t) ≡ σi. We notice that

dQS
i

dQ1
= exp

(∫ T

0
〈σi, dW1(t)〉〉 −

1
2

∫ T

0
‖σi‖2 dt

)
= exp

(
〈σi,W1(T )〉〉 − 1

2
‖σi‖2T

)
The cash flow at maturity T of the option on the maximum of the assets S1, . . . , Sn with
maturity T and strike price K is:

CT = (Smax(T )−K)+

where
Smax(t) = max

j=2,...,n
Sj(t)

We can linearize the payoff of the option, by introducing the following exercise sets, in a
slightly different way than the ones of the general option;

Ei = {Si(T ) ≥ Sj(T ) ∀j 6= i} ∀i = 2, . . . , n

E1 =
{

max
2≤j≤n

Sj(T ) ≥ K

}
These sets have an appealing intuitive meaning: in fact, the set E0 represents the possibility
to exercise the option, and the sets Ei, i = 2, . . . , n, represent the choice of the i-th asset

10



for the payment. We notice that the sets Ei, i = 2, . . . , n are mutually disjoint, so we can
write the option on the maximum in this way:

CT = (Smax(T )−K)+ =
(

max
i

Si(T )−K

)
1E1 =

=

(
n∑

i=2

Si(T )1Ei −K

)
1E1 =

n∑
i=2

Si(T )1Ei∩E1 −K1E1

Proposition 7 (Johnson’s formula) Under the assumptions above, the price of the option on
the maximum of several assets is given by

C(t) =
n∑

i=2

Si(t)Nn−1(di, R̄i)−Ke−r(T−t)(1−Nn−1(d0, R̄0))

where the vectors di are given by eq. (17), the matrixes R̄i are given by eq. (16), and Nn−1

is the cumulative distribution function of a (n− 1)-dimensional gaussian law:

Nn−1(d, R̄) =
1√

(2π)n−1 det R

∫
Rn−1

n−1∏
i=1

1{xi≤di}e
− 1

2
〈R̄−1x,x〉 dx (15)

The hedging portfolio is given by{
H0(t) = 1−Nn−1(d1, R̄1)
Hk(t) = Nn−1(di, R̄i) ∀k = 1, . . . , n

Proof. The law of the vector
(
log
(

Si(T )/Si(t)
Sj(T )/Sj(t)

))
j 6=i

under QS
i is:

(
log
(

Si(T )/Si(t)
Sj(T )/Sj(t)

))
j 6=i

∼ N(mi(t), Ri(t))

where mi(t) is a (n− 1)-dimensional vector with the following j-th component:

mj
i (t) = −1

2

∫ T

t
‖σi − σj‖2 du = −1

2
‖σi − σj‖2(T − t)

and where the (j, k)-component of the matrix Ri(t) is:

Rjk
i (t) =

∫ T

t
〈σi − σj , σi − σk 〉 du = 〈σi − σj , σi − σk〉 (T − t)

So we can write the exercise probability of the i-th asset:

QS
i (Ei ∩ E1) = QS

i

{
log
(

Si(T )/Si(t)
Sj(T )/Sj(t)

)
≥ log

(
Sj(t)
Si(t)

)
∀j 6= i,

log
(

Si(T ) /Si(t)
e−r(T−t)

)
≥ log

(
Ke−r(T−t)

Si(t)

)}
=

= QS
i

 log
(

Si(T )/Si(t)
Sj(T )/Sj(t)

)
−mj

i (t)√
Rjj

i (t)
≥

log
(

Sj(t)
Si(t)

)
−mj

i (t)√
Rjj

i (t)
∀j 6= i,

11



log
(

Si(T )/Si(t)

e−r(T−t)

)
−m1

i (t)√
R11

i (t)
≥

log
(

Ke−r(T−t)

Si(t)

)
−m1

i (t)√
R11

i (t)

 =

= Nn−1
0,R̄i

x ∈ Rn−1

∣∣∣∣∣∣ xj ≤
log
(

Si(t)
Sj(t)

)
+ mj

i (t)√
Rjj

i (t)
∀j 6= i, x1 ≤

log
(

Si(t)

Ke−r(T−t)

)
+ m1

i (t)√
R11

i (t)


where

R̄jk
i (t) =

Rjk
i (t)√

Rjj
i (t)Rkk

i (t)
(16)

This leads to the following:
QS

i (Ei ∩ E0) = Nn−1(di, R̄i)

where di is a (n− 1)-dimensional vector with components

dj
i =

log
(

Si(t)
Sj(t)

)
+ mj

i (t)√
Rjj

i (t)
∀j 6= 1, i, d1

i =
log
(

Si(t)

Ke−r(T−t)

)
+ m1

i (t)√
R11

i (t)
(17)

We can find the last exercise probability:

QT
1 (E1) = 1−QT

1 {Sj(T ) ≤ K ∀j 6= 1} =

= 1−QT
1

{
Sj(T )/Sj(t)

e−r(T−t)
≤ Ke−r(T−t)

Sj(t)
∀j 6= 1

}
=

= 1−QT
1

 log
(

e−r(T−t)

Sj(T )/Sj(t)

)
−mj

1(t)√
Rjj

1 (t)
≥

log
(

Sj(t)

Ke−r(T−t)

)
−mj

1(t)√
Rjj

1 (t)
∀j 6= 1

 =

= 1−Nn−1
0,R̄1

x ∈ Rn−1

∣∣∣∣∣∣ xi ≤
log
(

Ke−r(T−t)

Sj(t)

)
+ mj

1(t)√
Rjj

1 (t)
∀j 6= 1

 =

= 1−Nn−1(d1, R̄1)

where R̄1 is given by equation (16), and d1 is a (n−1)-dimensional vector with components

dj
1 =

log
(

Ke−r(T−t)

Sj(t)

)
+ mj

1(t)√
Rjj

1 (t)
, j 6= 1

The composition of the hedging strategy follows immediately from theorem 6.

We notice that we have obtained Johnson’s formula for the evaluation of the option;
this formula is already present in Johnson (1987), and so the hedging strategy is implicit
in his work, though it is presented without a rigorous proof.
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6 The MAP strategy

Here we present another example of application of our derivative asset, namely Fong-
Vasicek’s MAP (Multiple Asset Performance) strategy Fong and Vasicek (1989). This
strategy allows us to obtain the best performance of stock indexes Si of several countries,
provided a certain price (that is the price of the option on the maximum) is paid. Hence
this strategy has the final payoff:

MAP(T ) = · max
i=1,...,n

(
X1i(T )Si(T )
X1i(0)Si(0)

)
= max

i=1,...,n
(KiX1i(T )Si(T )) (18)

where X11 ≡ 1 and the Ki are fixed at the beginning of the contract in this way:

Ki =
1

X1i(0)Si(0)

The choice of the Ki is motivated by the fact that the percentage performance of the i-th
asset over the period [0, T ] is X1i(T )Si(T )

X1i(0)Si(0) .
In this section, we do not suppose that S1(·) = B1(·, T ); this is because the final payoff

is a function only of the values of n assets compared between them, and does not depend
on a fixed quota (like for example in the option on the maximum), so as we will see, B(·, T )
will not appear neither in the pricing formula nor in the hedging strategy.

The sets Ei in this case are:

Ei = {KiX1i(T )Si(T ) ≥ KjX1j(T )Sj(T ) ∀j 6= i} ∀i = 1, . . . , n

These sets have an appealing intuitive meaning: in fact, the set Ei, i = 1, . . . , n, represent
the choice of the i-th asset. We notice that the sets Ei, i = 1, . . . , n are mutually disjoint,
so we can write the MAP as

CT = Smax(T ) =
n∑

i=1

KiX1i(T )Si(T )1Ei

So we get the result:

Proposition 8 Under the same assumptions of theorem 4, the price of the MAP strategy is
given by

C(t) = C
n∑

i=1

X1i(t)Si(t)
X1i(0)Si(0)

Nn−1(di, R̄i) (19)

where di are given by eq. (20, R̄i are given by eq. (16), and Nn−1 is given by (15); it can
be hedged by a portfolio (H1(t), . . . ,Hn(t))t in the assets S̄1, . . . , S̄n, given by:

Hi(t) = KiNn−1(di, R̄i)

Proof. We can write the exercise risk neutral probability of i-th country:

QS
i (Ei) = QS

i

{
KiS̄i(T )
KjS̄j(T )

≥ 1, j 6= i

}
=

= QS
i

{
log
(

S̄i(T )/S̄i(t)
S̄j(T )/S̄j(t)

)
≥ log

(
KjS̄j(t)
KiS̄i(t)

)
∀j 6= i

}
=

13



= QS
i

 log
(

S̄i(T )/S̄i(t)
S̄j(T )/S̄j(t)

)
−mj

i (t)√
Rjj

i (t)
≥

log
(

Kj S̄j(t)

KiS̄i(t)

)
−mj

i (t)√
Rjj

i (t)
∀j 6= i

 =

= Nn−1
0,R̄i

x ∈ Rn−1

∣∣∣∣∣∣ xj ≤
log
(

KiS̄i(t)
Kj S̄j(t)

)
+ mj

i (t)√
Rjj

i (t)
∀j 6= i


So if we define the (n− 1)-dimensional vector di as

dj
i =

log
(

KiS̄i(t)
Kj S̄j(t)

)
+ mj

i (t)√
Rjj

i (t)
∀j 6= i (20)

then we have the first part of the proposition. The composition of the hedging strategy
follows immediately from theorem 6.

7 Options on the arithmetic mean

Here we present a third example of application, that is a call option on the arithmetic mean
of n − 1 assets. This example appears when we have options on a stock index that is an
arithmetic mean of the most significative assets in the market (for example, MIB30 in Italy,
CAC40 in France, S&P500 in the U.S.A.), even if, in the case n is too big, calculation
difficulties can arise.

The final payoff is:

CT =

 n∑
j=2

ajSj(T )−K

+

=

 n∑
j=2

ajSj(T )−K

1E1

where

E1 =


n∑

j=2

ajSj(T )−K ≥ 0


The main difficulty in this case is that in general a sum of lognormal random variables is

not lognormal, so it is not possible to express the price of the option using simple functions
(for example, via a one-dimensional gaussian distribution); anyway we can express it via a
cumulative (n− 1)-dimensional gaussian distribution.

Proposition 9 Under the same assumptions of theorem 3, the price of the call option on the
arithmetic mean is

C(t) =
n∑

j=2

ajSj(t)Nn−1
mi(t),Ri(t)

x ∈ Rn−1

∣∣∣∣∣∣
n∑

j=1,j 6=i

ajSj(t)exj ≥ Ke−xi

+

−KB1(t, T )Nn−1
m1(t),R1(t)

x ∈ Rn−1

∣∣∣∣∣∣
n∑

j=2

ajSj(t)exj ≥ KB1(t, T )


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and the hedging strategy is given by a portfolio (H1(t), . . . ,Hn(t))t in the assets S1, . . . , Sn

so that

Hj(t) = ajNn−1
mi(t),Ri(t)

x ∈ Rn−1

∣∣∣∣∣∣
n∑

j=1,j 6=i

ajSj(t)exj ≥ Ke−xi


H0(t) = −KNn−1

m1(t),R1(t)

x ∈ Rn−1

∣∣∣∣∣∣
n∑

j=2

ajSj(t)exj ≥ KB1(t, T )


Proof. We can write the exercise probability under the measure QS

i :

QS
i (Ei) = QS

i


n∑

j=2

ajSj(T ) ≥ K

 = QS
i


n∑

j=2

ajSj(t)
Sj(T )
Sj(t)

≥ K

 =

= Nn−1
mi(t),Ri(t)

x ∈ Rn−1

∣∣∣∣∣∣
n∑

j=1,j 6=i

ajSj(t)exj ≥ Ke−xi


where mi(t) and Ri(t) are given by (12) and (13); besides the last exercise probability is

QT
1 (E1) = QT

1


n∑

j=2

ajSj(T ) ≥ K

 = QT
1


n∑

j=2

ajSj(t)
Sj(T )
Sj(t)

≥ KB1(t, T )

 =

= Nn−1
m1(t),R1(t)

x ∈ Rn−1

∣∣∣∣∣∣
n∑

j=2

ajSj(t)exj ≥ KB1(t, T )


where m1 (t) is given by (14). The composition of the hedging portfolio follows from
theorem 5.

Istituto di Matematica Generale e Finanziaria SILVIA ROMAGNOLI
Universitá degli Studi di Bologna
Piazza Scaravilli 2 - 40139 Bologna (Italy)
email: sromagnoli@economia.unibo.it

Dipartimento di Matematica Pura ed Applicata TIZIANO VARGIOLU
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RIASSUNTO IN ITALIANO

Il nostro scopo é proporre una strategia di valutazione e di replicazione per un tipo generale
di opzione su piú titoli in un mondo internazionale multidivisa senza arbitraggi con tassi di
interesse gaussiani. Come caso particolare viene derivata la formula di Johnson per l’opzione
sul massimo di piú titoli, e vengono presentati due esempi di applicazione, in particolare la
strategia MAP e l’opzione sulla media aritmetica di diversi titoli.

RIASSUNTO IN INGLESE

Our aim is to propose an evaluation and a replicating strategy for a general kind of
multiasset option in an international multicurrencies no-arbitrage world with Gaussian
interest rates. Johnson’s formula for the option on the maximum of several assets is derived
as a particular case of ours, and two examples of application, namely the MAP strategy
and the option on the arithmetic mean of several assets, are presented.

Prezzaggio ed “hedging” di un tipo generale di opzione su piú
titoli
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