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Abstract

Our aim is to propose an evaluation and a replicating strategy for a currency multiple
option in an international multicurrencies no-arbitrage world with Gaussian interest
rates. An example of application, namely the MAP strategy, is presented.

1 Introduction

In this paper we present a closed formula for the price and for the replicating strategy of
the currency multiple option having the payoff

CT =
(

max
j=2,...,n

KjSj(T )− 1
)+

,

where the Sj are the values Bj(t, T ) of zero-coupon bonds of the foreign country j at time
t, each one having maturity T , converted in domestic currency via the exchange rate X1j(t)
at time t, that is

Sj(t) = X1j(t)Bj(t, T ) for j = 2, 3, . . . , n and t ∈ [0, T ]

This multiple currency option, which is called option on the maximum of several bonds, is
an option on the maximum of n currencies, the domestic one and n− 1 foreign ones. In our
model, besides the assumption of absence of arbitrage opportunities, we make the further
hypotheses that the quantities significant to our analysis (that is the prices Bj(t, T ) in t of
the zero coupon bonds of the j-th country maturing in T , the exchange rates Xij(t) between
the i-th country and the j-th one, and the spot forward rate rj(t, x) in time t with maturity
t+x of the j-th country) satisfy stochastic differential equations driven by a k-dimensional
Wiener process. This leads us to a specific structure for the stochastic differential equations
satisfied by these quantities. If we make the further natural assumption that the quantities
cited above considered as a whole process is Markov, then we are able to linearize the price
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of the multiple option and to get a formula in terms of a linear combination of the assets Sj ,
weighted by the probabilities of suitable exercise sets. In order to arrive to such a formula,
we change the numeraire in each of the elements of the linear combination using in each
country j first the corresponding risk-neutral probability Qj , and then the forward-neutral
probability QTj , introduced in [7] and [16]. With the additional assumptions that the risk
premium and the diffusion term of the forward rates are deterministic in all the countries,
we are able to derive explicit formulae both for the price and for the hedging portfolio of
the multiple option. Finally we present an application of our option, the MAP strategy
(Multiple Asset Performance), presented in [8].

This work uses three different topics in finance: international finance, term structure
of interest rates and options on several assets, focusing much on the third topic. The first
relevant work in international finance is the one of Garman-Kohlagen [9], which is the
seminal paper in the subject in the same sense as the paper of Black-Scholes [3] is in pricing
and hedging of European options. The main idea presented in the Garman-Kohlagen model
is the assumption of absence of arbitrage opportunities between the countries, formalized by
the fact that the foreign prices expressed in terms of the domestic currency by the exchange
rate behaves as a domestic price. Through this approach we may see the exchange rate as a
domestic asset that pays a continous dividend which corresponds to the foreign interest rate.
Term structure of interest rates is a wide topic in finance, but here we don’t concentrate
much on it. We only notice that, since we are dealing with bonds and exchange rates, we
have to suppose that the interest rates in our n countries are stochastic. In order to derive
explicit formulae, though, we suppose that the volatility of the bonds and the risk premiums
in all the n countries are deterministic. A deterministic volatility of the bonds is equivalent
to the hypothesis that the forward rates are Gaussian processes (see for example [1], [15]
and [20]). In particular, we use the Musiela model (see [4], [20] or [22]) for the interest
rates rather than the Heath-Jarrow-Morton (HJM) model (see [15]), because the first easily
allows one to see that the instantaneous forward rates (ri(t, ·))t of the different countries
i = 1, . . . , n are Markov processes. Coming to the third topic involved in this work, the first
work about options on several assets is Margrabe’s paper [19], that analyses the simplest
case of an option to exchange one asset for another. Later, Stulz [21] arrived to price an
option on the maximum of two assets. His work was generalized by Johnson [17], who solved
the same problem for a general number of assets. The first and the last work follow more
or less the same idea, that is to linearize the payoff function and to find closed formulas in
terms of a ponderate sum of different probabilities calculated in different exercise sets in
terms of the multivariate Gaussian distribution function. In particular we follow Johnson’s
technique and find an expression similar to Johnson’s formula. This also allows us to find a
replicating strategy in the n assets: this derives intuitively from Johnson’s formula, even if
Johnson himself doesn’t derive the replication strategy from it. Moreover in this work there
is the further complication of stochastic interest rates. Because of the Gaussian model
we have chosen, though, this complication affects the general structure of the price and
replication formulae only in terms of more complicated coefficients than Johnson’s ones.

The paper is organized as follows: in section 2 we present the model we used; in section
3 we derive the pricing formula for the multiple exchange option; in section 4 we derive the
hedging strategy from the pricing formula we have found, and in section 5 we present an
example of application of our option, namely Fong-Vasicek’s MAP strategy [8].

We thank Nicole El Karoui for her useful course and advice, to which we owe very much
in terms of intuitive ideas and operative tools, and the Laboratory of Probability of the
University of Paris VI, which hosted us during the writing of this work.
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2 The model

We consider n countries, each one having a different currency. We assume that country 1
is our domestic country and that the countries indicated with the numbers 2, 3, . . . , n are
foreign ones. We consider a probability space (Ω,F ,P) and we represent the information at
time t ∈ [0, T ] with a filtration (Ft)t, which for technical purposes we assume to be complete
and right continuous. We also suppose that all the processes are adapted to the filtration
(Ft)t. We name:

ri(t, θ) the instantaneous forward rate prevailing at time t for the maturity t + θ = T in
the i-th country,

Bi(t, T ) the price at time t of a zero coupon bond with maturity T in the i-th country,

Xij(t) the exchange rate from the i-th country to the j-th country, that is the price of 1
unity of the j-th currency expressed in i-th currency.

We suppose that the dynamic of the processes under the historic probability P are:

dBi(t, T ) = Bi(t, T )(µi(t, T ) dt+ Γi(t, T ) dŴ (t))
dri(t, θ) = αi(t, θ) dt+ τi(t, θ) dŴ (t)
dXij(t) = Xij(t)(m(t) dt+ σXij (t) dŴ (t))

(1)

where (Ŵ (t))t is a k-dimensional Brownian motion which represent the sources of risk which
affect the different economies, and where we suppose that all the quantities we introduced
satisfy the technical regularity conditions for the integrals to be defined.

We suppose there are no arbitrage opportunities in the domestic market; we shall see
in the next theorem that this implies the existence of a probability measure Q1 equivalent
to P, under which the actualized prices of all the domestic assets are martingales, and that
there are several contraints on the quantities introduced before.

Theorem 1 If there are no arbitrage opportunities in the domestic country, and Bi(t, T ),
ri(t, x) and Xij(t) are solutions of Equations (1), then there exists a probability Q1 equivalent
to P under which the processes(

e−
∫ T
t r1(u,0) duB1(t, T )

)
t

and
(
e−
∫ T
t r1(u,0) duX1i(t)Bi(t, T )

)
t

are martingales. Moreover, under P we have:

µi(t, T ) = ri(t, 0) + 〈Γi(t, T ), λi(t)〉 (2)

Γi(t, T ) = −
∫ T−t

0
τi(t, u) du (3)

αi(t, θ) =
∂ri(t, θ)
∂θ

− τi(t, θ)Γi(t, t+ x) + λi(t) (4)

mij(t) = ri(t, 0)− rj(t, 0) + σXij (t)λi(t) (5)

σXij (t) = λi(t)− λj(t) (6)

where (λi(t)) are the risk premium of the i-th economy. The probability Q1 is defined by the
following Radon-Nikodym derivative with respect to P:

dQ1

dP
= exp

(∫ T

0
λ1(u) dŴ (u)− 1

2

∫ T

0
‖λ1(u)‖2 du

)
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and the process

W1(t) = Ŵ (t)−
∫ t

0
λ1(u) du

is a Brownian motion under Q1. Finally the dynamics of the previous processes under Q1

can be rewritten as follows: ∀i, j = 1, . . . , n

dBi(t, T ) = Bi(t, T )
((
ri(t, 0) + 〈Γi(t, T ), σXi1 (t)〉

)
dt+ Γi(t, T ) dW1(t)

)
dri(t, θ) =

(
∂ri
∂θ

(t, θ)− τi(t, θ)Γi(t, t+ θ) + 〈τi(t, θ), σXi1 (t)〉
)
dt+ τi(t, θ) dW1(t)

dXij(t) = Xij(t)
(
ri(t, 0)− rj(t, 0) + 〈σXij (t), σXi1 (t)〉

)
+ σXij (t) dW1(t)

Proof. The existence of Q1 follows from Novikov’s condition and from Girsanov’s
theorem, as does the fact that W (t) is a Brownian motion under Q1. The existence
of the risk premiums λi can be proved by standard absence of arbitrage arguments
(see [6], [7]), so relation (2) is justified. Relation (3) can be derived by standard
Itô calculus. Relation (4) can be derived by absence of arbitrage arguments (see the
Musiela model in [20] ). Relation (5) and (6) are derived by arbitrage multicurrency
arguments and are a straightforward generalization of the Garman-Kohlagen model in [9]. �

We notice that if τi(·) is a deterministic function, then (ri(t, ·))t is a Markov process
having values in the space AC(R+,R), which can be identified with the Sobolev space W 1,1

loc ;
in the mathematical literature, to treat the problem more easily, it is preferred to suppose
that (ri(t, ·))t takes values in a separable Hilbert space H contained in W 1,1

loc (for some
possible examples, see [10] and [22]). From this it follows that, if the Γi, λi and τi are
deterministic functions of the time for all i = 1, . . . , n, then, for each choice of the maturity
T , the process (Bi(t, T ), Xij(t), ri(t, ·), i, j = 1, . . . , n)t is a Markov process having values in
R
n × Rn×n ×Hn.

3 The currency multiple option price

Now we want to evaluate a currency multiple option on the maximum of several bonds, all
having the same maturity T . This asset gives the right to exchange at the maturity T of all
the bonds the (unitary) payoff of a domestic bond with the payoff of Ki shares of a foreign
(unitary) bond of the country i converted in the domestic currency, for i = 2, . . . , n; here
the number Ki is fixed at the beginning of the contract, and represents the ratio between
the desired final payoff from the i-th country and the exchange rate in T expected in 0.
These Ki are fixed in the contract at time 0. For a possible specific choice, corresponding
to the MAP strategy, we send the reader to section 5.

The cash flow at maturity T of a currency multiple option with maturity T and strike
price K on the maximum of n currencies is:

CT = (Smax(T )− 1)+

where

Sj(t) = X1j(t)Bj(t, T ) for j = 2, 3, . . . , n and t ∈ [0, T ]
Smax(t) = max(KiSj(t), j = 2, . . . , n)
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Theorem 2 . If the Novikov conditions
E

[
exp

(
1
2

∫ T

0
‖σX1i (t)‖2 dt

)]
< +∞

E

[
exp

(
1
2

∫ T

0
‖Γi(t, T )‖2 dt

)]
< +∞

∀i = 1, . . . , n (7)

are satisfied and the process (Bi(t, T ), Xij(t), ri(t, ·), i, j = 1, . . . , n)t is Markov, then the
price of the option having payoff CT is given by

C(t) =
n∑
i=2

KiX1i(t)Bi(t, T )QTi

{
X1i(T )
X1j(T )

≥ 1, j 6= 1, i, KiX1i(T ) ≥ 1
}
−

−B1(t, T )QT1

{
max
j
KjX1j(T )Bj(T, T ) ≥ 1

}
(8)

where Qi and QTi are respectively the risk neutral probabilities and the forward neutral
probabilities of the i-th country, defined by the following Radon-Nikodym derivatives:

dQi
dQ1

= exp
(∫ T

0
σX1i (t) dW1(t)− 1

2

∫ T

0
‖σX1i (t)‖2 dt

)
dQTi
dQi

=
e−
∫ T
0 ri(u,0)du

Bi(0, T )
= exp

(∫ T

0
Γi(t, T ) dWi(t)−

1
2

∫ T

0
‖Γi(t, T )‖2 dt

)
Proof. Under the risk neutral probability Q1 the value in t of our multiple option is:

C(t) = EQ1

[
e−
∫ T
t r1(u,0) du(Smax(T )−K)+|Ft

]
We can linearize the payoff of the option, by introducing the following exercise sets:

Ei = {KiX1i(T )Bi(T, T ) ≥ KjX1j(T )Bj(T, T ) ∀j 6= 1, i} ∀i = 2, 3, ..., n

E1 =
{

max
1≤j≤n

KjX1j(T )Bj(T, T ) ≥ B1(T, T )
}

These sets have an appealing intuitive meaning: in fact, the set E1 represents the possibility
to exercise the option, and the sets Ei, i = 2, 3, . . . , n, represent the choice of the i-th
currency for the payment. We notice that the sets Ei, i = 2, 3, . . . , n are mutually disjoint,
so we can write the exchange option as

CT = (Smax(T )−K)+ =
(

max
i

(KiX1i(T )Bi(T, T ))− 1
)

1E1 =

=

(
n∑
i=2

KiX1i(T )Bi(T, T )1Ei − 1

)
1 E1 =

n∑
i=2

KiX1i(T )Bi(T, T )1Ei∩E1 − 1E1

This gives us a formula for the price:

EQ1

[
e−
∫ T
t r1(u,0) duCT |Ft

]
=

= EQ1

[
n∑
i=2

e−
∫ T
t r1(u,0) duKiX1i(T )Bi(T, T ) 1Ei∩E1 |Ft

]
− EQ1

[
e−
∫ T
t r1(u,0) du1E1 |Ft

]
=
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= EQ1

[
n∑
i=2

KiX1i(t) exp
(
−
∫ T

t
ri(u, 0) du−

∫ T

t
σX1i dW1(u)+

+
1
2

∫ T

t
|σX1i (u)| du

)
1Ei∩E1 |Ft

]
− EQ1

[
e−
∫ T
t r1(u,0) du1E1 |Ft

]
=

=
n∑
i=2

KiX1i(t)EQi
[
e−
∫ T
t ri(u,0) du1Ei∩E1 |Ft

]
− EQ1

[
e−
∫ T
t r1(u,0) du 1E1 |Ft

]
=

=
n∑
i=2

KiX1i(t)Bi(t, T )E
Q
T
i

[1Ei∩E1 |Ft]−B1(t, T )E
Q
T
1

[1E1 |Ft] =

=
n∑
i=2

KiX1i(t)Bi(t, T )QTi {Ei ∩ E1} −B1(t, T )QT1 {E1}

where we have removed the conditioning because (Bi(t, T ), Xij(t), ri(t, ·), i, j = 1, . . . , n)t is
Markov. The last member of the equality gives us the thesis. �

We have found a rather explicit formula for the price, which depends of the value of
the traded assets X1i(t)Bi(t, T ) at time T and of the exercise probabilities QTi {Ei ∩E1} and
Q
T
1 {E1}. Furthermore these probabilities depend on the particular dynamics of the forward

rates in the n countries.
Now we show that, under the assumption that the forward rates processes are Gaussian

and the risk premiums λi of the n countries are deterministic, we are able to derive a closed
formula for the price of the option. To have Gaussian forward rates processes is equivalent
to have deterministic bond volatilities Γi(t, T ). In this case it is rather easy to prove, under
technical conditions, existence and uniqueness of the solution (in a weaker sense than the
usual, namely in the mild sense, see [5]) of the Musiela equation (as it is shown in [22]).

Theorem 3 . If Γi(t, T ) and σXij (t) are deterministic functions belonging to L2([0, T ])
∀i, j = 1, . . . , n, then the price of the currency multiple option is given by

C(T ) =
n∑
i=1

KiX1i(t)Bi(t, T )Nn−1(di, R̄i)−B1(t, T )(1−Nn−1(d1, R̄1)) (9)

where the vectors di and the matrixes R̄i will be given later, and Nn−1 is the cumulative
distribution function of a (n− 1)-dimensional Gaussian law:

Nn−1(d, R̄) =
1

(
√

2π)n−1

∫
Rn−1

n−1∏
i=1

1{xi≤di}e
− 1

2
<R̄−1x,x> dx

Proof. If Γi and σXij are L2([0, T ]) functions, then the Novikov conditions (7) are satisfied.
Besides, since Γi and σXij are deterministic, the the process (Bi(t, T ), Xij(t), ri(t, ·), i, j =
1, . . . , n)t is Markov, so the formula (8) holds. In order to know the exercise probabilities,
we write the dynamics of the assets sj under the probabilities QTi ∀i, j = 1, . . . , n.

Under the domestic risk neutral probability the process Sj has the dynamics

dSj(t) = X1j(t) dBj(t, T ) +Bj(t, T ) dX1j(t) + d〈Bj(·, T ), X1j(·)〉t

then we have:
dSj(t)
Sj(t)

= r1(t, 0) dt+
(
Γj(t, T ) + σX1j(t)

)
dW1(t)
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Under the risk neutral probability of the i-th country Qi, the process Wi(t) = W1(t) −∫ t
0 σ

X
1i (u) du is a Brownian motion, and the process Sj has the dynamics

dSj(t)
Sj(t)

= r1(t, 0) dt+
(
Γj(t, T ) + σX1j(t)

)
(dWi(t) + σ1i(t) dt) =

=
(
r1(t, 0) + σX1j(t)σ

X
1i (t) + Γj(t, T )σ1i(t)

)
dt+

(
Γj(t, T ) + σX1j(t)

)
dWi(t)

Under the forward neutral probability of i-th country QTi , the process W T
i (t) = Wi(t) −∫ t

0 Γi(u, T ) du is a Brownian motion, and the process Sj has the dynamics

dSj(t)
Sj(t)

=
(
r1(t, 0) + σX1j(t)σ

X
1i (t) + Γj(t, T )σ1i(t)

)
dt+

+
(
Γj(t, T ) + σX1j(t)

) (
dW T

i (t) + Γi(t, T ) dt
)

=

=
(
r1(t, 0) + (σX1j(t) + Γj(t, T ))(σX1i (t) + Γi(t, T ))

)
dt+

+
(
Γj(t, T ) + σX1j(t)

)
dW T

i (t)

We can write explicitely Sj(T ) under the probability QTi :

Sj(T ) = Sj(t) exp
(∫ T

t

(
r1(t, 0) + (σX1j(t) + Γj(t, T ))(σX1i (t) + Γi(t, T ))

)
dt+

+
∫ T

t

(
Γj(t, T ) + σX1j(t)

)
dW T

i (t)− 1
2

∫ T

t

∥∥Γj(t, T ) + σX1j(t)
∥∥2

dt

)
Then we have:

Si(T )
Sj(T )

=
Si(t)
Sj(t)

exp
(∫ T

t

1
2

(∥∥Γj(t, T ) + σX1j(t)
∥∥2

+
∥∥Γj(t, T ) + σX1j(t)

∥∥2
)
−

−(σX1j(t) + Γj(t, T ))(σX1i (t) + Γi(t, T )) du+

+
∫ T

t
(Γi(u, T )− Γj(u, T )− σXji (u)) dW T

i (u)
)

Then we have found that the law of the vector
(

log
(
Si(T )/Si(t)
Sj(T )/Sj(t)

))
j

under QTi is:

(
log
(
Si(T )/Si(t)
Sj(T )/Sj(t)

))
j=1,...,n

∼ N(mi(t), Ri(t))

where mi(t) is a (n− 1)-dimensional vector with the j-th component given by

mj
i (t) =

∫ T

t

(
1
2

(∥∥Γj(t, T ) + σX1j(t)
∥∥2

+
∥∥Γj(t, T ) + σX1j(t)

∥∥2
)
−

−(σX1j(t) + Γj(t, T ))(σX1i (t) + Γi(t, T ))
)
du

and where the (j, k)-component of the matrix Ri(t) is:

Rjki (t) =
∫ T

t
(Γi(u, T )− Γj(u, T )− σXji (u))(Γi(u, T )− Γk(u, T )− σXki(u)) du
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So we can write the exercise forward neutral probability of i-th country:

Q
T
i (Ei ∩ E1) = Q

T
i

{
KiSi(T )
KjSj(T )

≥ 1, j 6= 1, i, KiSi(T ) ≥ S1(T )
}

=

= Q
T
i

{
log
(
Si(T )/Si(t)
Sj(T )/Sj(t)

)
≥ log

(
KjSj(t)
KiSi(t)

)
∀j 6= 1, i,

log
(
Si(T )/Si(t)
Sj(T )/Sj(t)

)
≥ log

(
S1(t)
KiSi(t)

)}
=

= Q
T
i

 log
(
Si(T )/Si(t)
Sj(T )/Sj(t)

)
−mij(t)√

Rjji (t)
≥

log
(
KjSj(t)
KiSi(t)

)
−mij(t)√

Rjji (t)
∀j 6= 1, i,

log
(
Si(T )/Si(t)
Sj(T )/Sj(t)

)
−mi1(t)√

R11
i (t)

≥
log
(

S1(t)
KiSi(t)

)
−mi1(t)√

R11
i (t)

 =

= Nn−1(0, R̄i)

xj ≤ log
(
KiSi(t)
KjSj(t)

)
+mij(t)√

Rjji (t)
∀j 6= 1, i,

x1 ≤
log
(
KiSi(t)
KS1(t)

)
+mi1(t)√

R11
i (t)


where

R̄jki (t) =
Rjki (t)√

Rjji (t)Rkki (t)
(10)

and Nn−1(0, R̄i) is an (n−1)-dimensional Gaussian law with mean 0 and covariance matrix
R̄i. This leads to

Q
T
i (Ei ∩ E1) = Nn−1(di, R̄i) ,

where Nn−1 is the cumulative distribution function of a (n− 1)-dimensional Gaussian law:

Nn−1(d, R̄) =
1

(
√

2π)n−1

∫
Rn−1

n−1∏
i=1

1{xi≤di}e
− 1

2
<R̄−1x,x> dx

and di is a (n− 1)-dimensional vector with components

dij =
log
(
KiX1i(t)Bi(t,T )
KjX1j(t)Bj(t,T )

)
+mij(t)√

Rjji (t)
∀j 6= 1, i

diK =
log
(
KiX1i(t)Bi(t,T )

B1(t,T )

)
+mi1(t)√

R11
i (t)

We can find the last exercise probability:

Q
T
1 (E1) = 1−QT1 {KjSj(T ) ≤ KS1(T ) ∀j 6= 1} =
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= 1−QT1
{
Sj(T )/Sj(t)
S1(T )/S1(t)

≤ S1(t)
KjSj(t)

∀j 6= 1
}

=

= 1−QT1

 log
(
S1(T )/S1(t)
Sj(T )/Sj(t)

)
−m1j(t)√

Rjj1

≥
log
(
KjSj(t)
S1(t)

)
−m1j(t)√

Rjj1

∀j 6= 1

 =

= 1−Nn−1(0, R̄1)

xi ≤ log
(

S1(t)
KjSj(t)

)
+m1j(t)√

Rjj1

∀j 6= 1

 =

= 1−Nn−1(d1, R̄1)

where R̄1 is given by equation (10), and d1 is a (n−1)-dimensional vector with components

d1j =
log
(

B1(t,T )
KjX1j(t)Bj(t,T )

)
+m1j(t)√

Rjj1 (t)

�

4 The hedging strategy

We have found the price of the currency multiple option of the form:

C(t) = EQ1

[
e−
∫ T
t r1(u,0) du

(
n∑
i=2

KiX1i(T )Bi(T, T )1Ei − 1

)
1E1 |Ft

]
=

=
n∑
i=2

E
Q
T
i

[KiX1i(t)Bi(t, T )1Ei∩E1 ]− E
Q
T
1

[B1(t, T )1E1 ]

Now we want to find a hedging portfolio in terms of the assets Si(t) = X1i(t)Bi(t, T ),
i = 1, . . . , n, that is we want to build a self-financing portfolio

V (t) =
n∑
i=1

Hi(t)X1i(t)Bi(t, T )

such that V (t) = C(t) ∀t ≤ T Q-a.s.

Theorem 4 . The hedging portfolio is given by:{
H1(t) = −QT1 (E1) = 1−Nn−1(d1, R̄1)
Hi(t) = KiQ

T
i (Ei ∩ E1) = KiNn−1(di, R̄i) ∀i = 2, . . . , n

Proof. We may write the price of the option as a deterministic function of s1 = S1(t, T ) =
B1(t, T ) and si = Si(t, T ) = X1i(t, T )Bi(t, T ) ∀i = 2, . . . , n as follows:

F (s1, . . . , sn) =
n∑
i=2

E
Q
T
i

[
Kisi1Ei(s)∩E1(s)

]
− E

Q
T
i

[
s11E1(s)

]
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The proportion of the i-th asset Si in the replicating self financing portfolio is, as it is well
known (see for example [18]), the derivative of the function F (s1, . . . , sn) with respect to
si, so we have:

∂F

∂si
=

n∑
i=2

E
Q
T
j

[
∂

∂si
Kjsj1Ei(s)∩E1(s)

]
− E

Q
T
1

[
∂

∂sj
s11Ei(s)

]
so:

∂F

∂s1
= −E

Q
T
1

[1E1 ] = −QT1 (E1)

∂F

∂si
= KiEQTi

[
1Ei(s)∩E1(s)

]
= KiQ

T
i (Ei(s) ∩ E1(s)) ∀i = 2, . . . , n

where we have taken the derivative under the expectation sign and where the terms with
i 6= j in the sum and the last one are null because their integrands are 0 almost everywhere
(with respect to the different QTi ). �

5 An example of application: the MAP strategy

Here we present an example of application of the option on the maximum, namely Fong-
Vasicek’s [8] MAP (Multiple Asset Performance) strategy. This strategy allows us to obtain
the best performance of several assets, which in our case are bonds of different countries,
provided a certain price (that is the price of the option on the maximum) is paid. Hence
this strategy has the final payoff:

MAP (T ) = max
i=1,...,n

(X1i(T )Bi(T, T )Ki) (11)

where X11 ≡ 1, K1 = 1 and Ki are fixed at the beginning of the contract in this way:

Ki =
B1(0, T )

X1i(0)Bi(0, T )

To see that this is the right choice of the Ki, we present the following argument: we can place
an amount of money B1(0, T ) in the domestic economy by buying a bond with maturity
T , obtaining the payoff 1 at the maturity; else we can invest the same amount of money,
which is equal to B1(0, T )Xi1(0) shares of the i-th currency, in the i-th country by buying
a bond with maturity T , obtaining the payoff B1(0, T )Xi1(0)/Bi(0, T ) shares of the i-th
currency at the maturity, that is X1i(T )B1(0, T )/(X1i(0)Bi(0, T )); so we can see that the
MAP strategy has the final payoff given by Eq. (11). We notice that we may decompose
this payoff in this way:

MAP (T ) = B1(T, T ) +
(

max
i=1,2,...,n

Ki(X1i(T )Bi(T, T )−B1(T, T )
)+

(12)

so we can write MAP (T ) = B1(T, T ) + C(T ), where C(T ) is our option on the maximum.
So we get the result:

Proposition 5 . The price in t of the MAP strategy is given by:

MAP (t) = B1(t, T ) + C(t)

10



portfolio (H1(t), . . . ,Hn(t))t in the assets S1, . . . , Sn, given by:

H1(t) = 1 + 1−Nn−1(d1, R̄1) = 2−Nn−1(di, R̄i)
Hi(t) = KiNn−1(di, R̄i) ∀i = 2, . . . , n

Proof. It follows immediately from the decomposition (12). �
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