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1. Introduction

In this paper we show how to obtain explicit solutions for the problem
of shortfall risk minimization in significant multinomial models with
one or several risky assets. First we solve the problem when the mar-
ket is complete, finding both the minimall shortfall risk as well as the
optimal strategy. Then we indicate how the situation can change in
incomplete markets, by solving (under some technical assumptions)
the problem in the simplest case of an incomplete market, that is the
case of a single risky asset driven by a trinomial model.

In incomplete markets there are several possible criteria for hedg-
ing a risky position. The safest one is the superhedging criterion, that
allows one to eliminate the risk completely, but requires in general
too much initial capital. One may then ask by how much is it possi-
ble to lower the initial capital if one is willing to accept some risk or,
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dually, what is the risk corresponding to an initial capital less than
what is required for superhedging.

The shortfall risk minimization approach allows one to deal with
these issues. Given a market with a riskless asset and K risky assets,
let H be a liability to be hedged at some fixed future time N . Denote
by V ϕ

N the value at time N of a portfolio corresponding to a self-
financing investment strategy ϕ ∈ A (where this set can describe
some additional constraints such as no short selling, no borrowing,
and similar). The problem is to find the so-called minimal shortfall
risk J(0, S0, V0), where J(n, ·, ·) is defined, for n = 0, . . . , N , as

J(n, Sn, Vn) := inf
ϕ∈A

EPSn,Vn
{

[H(SN )− V ϕ
N ]+

}
(1)

for given initial values Sn = (S1
n, . . . , S

K
n ) of the assets in the portfolio

and initial capital Vn. Problems of this type have recently attracted
considerable attention (see e.g. Cvitanić and Karatzas (1999) for a
bibliography). The superreplication capital for the claim H can be
described in terms of J as

V ∗0 (S0) := inf{V0 |J(0, S0, V0) = 0}. (2)

In fact, it follows by definition of J that if V0 > V ∗0 (S0) then there
exists at least one strategy ϕ∗ such that V ϕ∗

N ≥ H a.s.
In the present paper we base ourselves on Runggaldier et al.

(2001), where the authors, by imposing the self-financing requirement
as the only constraint on the investment strategies, give a general de-
scription of this approach and apply it, in particular, to a binomial
model for the risky assets. In this paper we do the same with multino-
mial models. First we analyse the case when the market is complete:
we can obtain this situation if for example we decide to operate in a
homogeneous section of a market (as may be a bond market where all
the assets are driven by a single factor, which is typically the short
rate), or if one of the risky assets is an underlying primary asset and
the others are derivatives of it. Then we analyse the simplest case
of an incomplete market, that is when we have only one risky asset
which is governed by a trinomial model. In both these situations, we
obtain analytic solutions for the minimum value of the shortfall as
well as for the optimal hedging strategy; these solutions turn out to
be a generalisation of those in Runggaldier et al. (2001). The key is-
sue here (as in the paper cited) in obtaining analytic formulae is that
the value function (1) preserves the same form at each time step n.

The paper is organised as follows. In Section 2 we present the gen-
eral multinomial model and formulate the shortfall risk minimization



Explicit solutions for shortfall risk minimization 3

problem. In Section 3 we characterise a minimising admissible strat-
egy and we compute the minimal shortfall risk in the case when the
market is complete. In Section 4 we compute a minimising admissi-
ble strategy and the minimal shortfall risk in the case when the risky
asset is governed by a trinomial tree.

2. The model

We consider a discrete time market model with the set of dates
0, . . . , N and with K + 1 primary traded securities: a riskless in-
vestment S0 and K risky assets Si, i = 1, . . . ,K. We assume that
the prices of the risky assets satisfy

Sin+1 = Sinω
i
n, i = 1, . . . ,K, (3)

where, for each i = 1, . . . ,K, {ωin}n=0,... ,N−1 is a sequence of i.i.d.
random variables taking only a finite number M of real values
(aji )j=1,... ,M . For the sake of simplicity, we define the probability space
as the minimal one for our model, by letting Ω = {a1, . . . , aM}N (we
use the notation aj = (aj1, . . . , a

j
K), j = 1, . . . ,M), the σ-algebra

F be composed by all the subsets of Ω, and the probability law be
defined by

pj := P{ωn = aj}, j = 1, . . . ,M,

where ωn = (ω1
n, . . . , ω

K
n ). We are interested in the evaluation of

a future position at time N without intermediate payments, so we
can assume without loss of generality S0

n := 1 by letting Si be the
discounted prices of the i-th risky asset, i = 1, . . . ,K. With this
convention, it is sufficient to know only the prices Si, i = 1, . . . ,K,
of the risky assets. We thus let Sn = (S1

n, . . . , S
K
n ).

We denote by ϕ =
(
(ηn, ψ1

n, . . . , ψ
K
n )
)
n=0,... ,N−1

a portfolio strat-
egy, where ηn stands for the amount invested in the riskless asset and
ψin, 1 ≤ i ≤ K, stands for the number of units of the i-th asset that
are held in the portfolio in period n. The value of the portfolio V ϕ is
then defined by

V ϕ
n := ηn + 〈ψn, Sn〉, n = 0, . . . , N,

where V ϕ
0 = V0 is a given real number, corresponding to the initial

capital, and 〈·, ·〉 is the scalar product in RK . We assume that ϕ is
adapted to the filtration {Fn}n=0,... ,N generated by S, and satisfies
the self-financing property:

ηn + 〈ψn, Sn+1〉 = ηn+1 + 〈ψn+1, Sn+1〉, n = 0, . . . , N − 1.
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If the portfolio is self-financing, then the process ψ is sufficient to
characterise it, since ηn = V ϕ

n − 〈ψn, Sn〉. Using the notation Sn+1 =(
Sn; aj

)
for Sin+1 = Sina

j
i , i = 1, . . . ,K, and 1 = (1, . . . , 1) ∈ RK ,

the self-financing property can be rewritten as

V ϕ
n+1 = V ϕ

n + 〈ψn, (Sn;ωn − 1)〉.

Consider a European contingent claim H(SN ). As mentioned in the
introduction, we are interested in finding the minimal shortfall risk
J(0, S0, V0) for given initial prices of the risky assets S0 and given
initial capital V0 < V ∗0 (S0), where J is defined by Equation (1), V ∗

is defined in Equation (2) and A denotes the set of all adapted and
self-financing strategies.

3. Shortfall risk minimization in a complete market model

Now we consider the case when in our previous model M = K+1, and
the market is complete (see Florio and Runggaldier (1999) for some
motivations and a possible construction of such a model). In com-
plete markets the perfect-hedging criterion allows one to eliminate
the risk completely and there exists a unique equivalent martingale
measure Q. The random variables (ωn)n are i.i.d. under Q, which is
characterised by a vector q = (q1, . . . , qM ), where

qj = Q{ωn = aj}, j = 1, . . . ,M, n = 0, . . . , N,

such that the vector q is the unique solution of the equations

〈q, ai〉 = 1, i = 1, . . . ,K, (4)
〈q,1〉 = 1, (5)

where ai = (a1
i , . . . , a

M
i ) (recall that, by assuming S0

n := 1 we implic-
itly assume that the riskless interest rate is equal to zero). Moreover,
the superreplication capital V ∗n (Sn) is equal to the expectation of
H(SN ) under Q:

V ∗n (Sn) = EQ
{
H(SN )|Fn

}
, n = 0, . . . , N.

In order to solve the problem (1) in the present situation, we notice
that if we subtract Equation (5) from each of the K equations in (4),
we obtain the conditions

〈q, ai − 1〉 = 0, i = 1, . . . ,K, (6)

which together with (5) give another characterisation of the martin-
gale measure. This characterisation allows one to obtain a proof of
the following theorem.
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Theorem 1. Consider a European contingent claim HN = H(SN ).
Then

J
(
n, Sn, Vn

)
=
(
pr
qr

)N−n [
V ∗n (Sn)− Vn

]+ (7)

for all n = N − 1, . . . , 0, where r is the index for which the quantity
pj/qj, j = 1, . . . ,M, assumes its minimal value. Moreover, the opti-
mal strategy ψn at time n, n = 0, . . . , N − 1, is the solution of the
system of K linear equations

V ∗n+1((Sn; aj))− Vn − 〈ψn, (Sn; aj − 1)〉 = 0, (8)

j = 1, . . . ,M , j 6= r, which gives a portfolio V ϕ
N such that

H(SN )− V ϕ
N =

(
1
qr

)N
[V ∗0 (S0)− V0]1{ωn=ar ∀n=0,... ,N−1}. (9)

Proof. The proof uses the classical Dynamic Programming algorithm
(see e.g. Bertsekas (1976)). To this end, we define the quantities

j(n, s, v, ψ) = E{J(n, Sn, V ψ
n ) | Sn−1 = s, Vn−1 = v}. (10)

We start from n = N − 1 and we obtain

J
(
N − 1, SN−1, VN−1

)
= inf

ψ
j(N − 1, SN−1, VN−1, ψ).

The function to be minimized in ψN−1 is a linear combination of the
M piecewise affine functions

ψ →
[
H
(
(SN−1; aj)

)
− VN−1 − 〈ψ, (SN−1; aj − 1)〉

]+
, (11)

j = 1, . . . ,M . The epigraph of the function to be minimized is a
convex set with a finite number of extremal points: therefore the
infimum is achieved at one of these points. These extremal points
are obtained by putting equal to zero M − 1 of the M functions in
Equation (11). Thus the k-th extremal point is obtained by imposing
the linear system (8) for n = N − 1, j = 1, . . . ,M , j 6= k, in the
unknown quantity ψ(k) (notice that V ∗(N, ·) = H(·)). For ψN−1 =
ψ(k) we obtain

j(N − 1, SN−1, VN−1, ψ
(k)) =

= pk

[
H
(

(SN−1; ak)
)
− VN−1 − 〈ψ(k), (SN−1; ak − 1)〉

]+
.
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If VN−1 < V ∗(N−1, SN−1), then the quantity above must be positive,
otherwise J

(
N−1, SN−1, VN−1

)
= 0. By summing the left hand sides

of Equations (8), we obtain

pk
qk
· qk
[
H
(
(SN−1; ak)

)
− VN−1 − 〈ψ(k), (SN−1; ak − 1)〉

]+
=

=
pk
qk

M∑
j=1

qj

[
H
(
(SN−1; aj)

)
− VN−1 − 〈ψ(k), (SN−1; aj − 1)〉

]+
=

=
pk
qk

(
EQ
{
H
(
SN
)
|FN−1

}
− VN−1

)+
,

where the last equality follows by reordering terms of the sum and the
scalar product and using Equation (6). Taking the minimum index
r over k = 1, . . . ,M we obtain Equation (7) for n = N − 1, and
also that the minimizing strategy is given by the solution ψ(r) of the
linear system of the equations in (8) for j = 1, . . . ,M , j 6= r.

We now proceed by induction with respect to n. Equations (7)
and (8) can be easily derived by using the Dynamic Programming
algorithm with the same arguments as in the first step (the missing
details are similar to those in Runggaldier et al. (2001)). Finally, in
order to prove Equation (9) one can proceed as in Favero (2001). ut

Remark 1. The previous theorem gives a generalization of the results
in Runggaldier et al. (2001): in fact, the minimum shortfall turns out
to be the difference between the arbitrage free price and the initial
capital, times the minimum (pr/qr)N of the density dP/dQ, and the
optimal strategy turns out to be such that the only state of nature
in which there is a positive shortfall is the one in which the marginal
density pr/qr is minimal. In particular, letting K = 1, we obtain
exactly the same results as in Runggaldier et al. (2001).

4. Shortfall risk minimization in a trinomial model

Now we consider the case when K = 1 and M = 3. We assume that
{ωn}n=0,... ,N−1 is a sequence of real i.i.d. random variables taking
only three real values u,m, d satisfying 0 < d < m < u and d < 1 < u,
with probability law

p1 := P{ωn = u}, p2 := P{ωn = m}, p3 := P{ωn = d}.

The market is not complete, so there are infinitely many martingale
measures. Unlike the complete case, here the marginals of each ωn,
n = 0, . . . , N − 1 under a generic martingale measure depend on the
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past (here represented by Fn), possibly in a path-dependent way. If
for a generic marginal of an equivalent martingale measure Q we put
(by omitting for ease of notation the dependence on Fn)

q1 = Q{ωn = u}, q2 = Q{ωn = m}, q3 = Q{ωn = d},

then q1, q2, q3 must satisfy (see Equations (4) and (5)) q1 + q2 + q3 = 1,
q1u+ q2m+ q3d = 1,
q1, q2, q3 > 0.

(12)

The solutions lie in a 1-dimensional affine space, thus we can describe
any marginal law of the (ωn)n under an equivalent martingale mea-
sure as a convex combination of the two extremal measures. These
extremal measures change according to whether m ≥ 1 or m ≤ 1: the
first one is Q0, characterised by

(q0
1, q

0
2, q

0
3) =



(
0,

1− d
m− d

,
m− 1
m− d

)
if m ≥ 1, and

(
1−m
u−m

,
u− 1
u−m

, 0
)

if m ≤ 1.

The second is Q1, characterised by

(q1
1, q

1
2, q

1
3) =

(
1− d
u− d

, 0,
u− 1
u− d

)
.

The measures Q0 and Q1 are absolutely continous with respect to the
marginal laws of the (ωn)n under P, but not equivalent. The set of
all the marginals of a generic equivalent martingale measure is thus
described as

Qt = tQ1 + (1− t)Q0, 0 < t < 1. (13)

One can obtain the generic equivalent martingale measure by pasting
together various single period marginals, each one corresponding to
a non-terminal node of the tree of all the possible evolutions of the
risky asset Sn (see Pliska (1997) for details); since each marginal
depends on a parameter between 0 and 1, it is possible to describe
the generic equivalent martingale measure Qt via a k-dimensional
parameter t = (t1, . . . , tk), 0 < ti < 1, k = 3N−1. If one relaxes the
constraints to 0 ≤ ti ≤ 1, k = 3N−1, one obtains a so-called linear
pricing measure (see Pliska (1997)). Under such a measure (which in
general is not equivalent to P), S is a martingale, as is V ϕ for any
self-financing strategy ϕ.
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We finally notice that the solution of the two equations in (12)
that we obtain by imposing that the third parameter (q3 if m ≥ 1, q1

if m ≤ 1) be zero gives a measure Q∗ which is not the marginal of a
probability measure, because we have

q∗1 =
1−m
u−m

< 0, q∗2 =
u− 1
u−m

> 1, q∗3 = 0 if m ≥ 1, and

q∗1 = 0, q∗2 =
1− d
m− d

> 1, q3 =
m− 1
m− d

< 0 if m ≤ 1.

This is a signed measure that will be used later, and corresponds to
a negative t∗ in Equation (13).

Now we consider a European contingent claim H(SN ). We denote
by V ∗n (Sn) the superreplication capital defined by Equation (2). One
can easily prove (Pliska (1997)) that

V ∗0 (S0) = sup
t∈(0,1)k

EQt{H(SN )|Fn} = max
t∈{0,1}k

EQt{H(SN )|Fn}.

The maximiser t∗ gives the superreplication capital in this way:

V ∗n (Sn) = EQt∗{H(SN )|Fn}. (14)

One can easily find t∗ by backward recursion. Moreover, if H is convex
then t∗ = (1, . . . , 1) (see Tessitore and Zabczyk (1996)).

Now we present a theorem in the case when H is a convex function:
in fact, this case is much easier than the general case, because under
the superreplicating measure Qt∗ the price process S is still Markov,
and also t∗ = (1, . . . , 1). This allows us to obtain analytic formulae
also in this particular case of an incomplete market. In the general
case the mathematical tools are slightly different and the notation
becomes considerably heavier, so that it is very difficult to write down
analytic formulae, which vary from case to case. In the proof of the
next theorem we will also use the quantities V −n (Sn), n = N−1, . . . , 0,
defined by

V −n (Sn) = inf
t∈(0,1)k

EQt{H(SN )|Fn},

which correspond to the lower bound for the arbitrage free prices for
H, while the quantities V ∗n (Sn), n = N − 1, . . . , 0, correspond to the
upper bound.

Theorem 2. Consider a European contingent claim defined by a con-
vex function H. Let V ∗n (Sn), n = N−1, . . . , 0, be the superreplication
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capital at time n in Equation (14). If

V0 > V ∗0 (S0)− (15)

− max
n=0,... ,N−1


(q1

1)n[V ∗n (S0u
n)− V −n (S0u

n)] if
p1

q1
1

≤ p3

q1
3

,

(q1
3)n[V ∗n (S0d

n)− V −n (S0d
n)] if

p1

q1
1

≥ p3

q1
3

.

then, for n = N − 1, . . . , 0,

J(n, Sn, Vn) =
[
min

(
p1

q1
1

,
p3

q1
3

)]N−n [
V ∗n (Sn)− Vn

]+
. (16)

Moreover, the strategy corresponding to the risk in (16) is given by

ψ̂n =


ψ3
n :=

V ∗n (Snd)− Vn
Sn(d− 1)

if
p1

q1
1

≤ p3

q1
3

,

ψ1
n :=

V ∗n (Snu)− Vn
Sn(u− 1)

if
p1

q1
1

≥ p3

q1
3

,

(17)

which gives a final portfolio value V ψ̂
N such that

[H(SN )− V ψ̂
N ]+ = (18)

=



(
1
q1

1

)N
[V ∗0 (S0)− V0]1{ωn=u ∀n=0,... ,N−1} if

p1

q1
1

≤ p3

q1
3

,

(
1
q1

3

)N
[V ∗0 (S0)− V0]1{ωn=d ∀n=0,... ,N−1} if

p1

q1
1

≥ p3

q1
3

.

Proof. In order to proceed with the proof, we make the assumption
that m ≥ 1 (for the case m ≤ 1, the proof is similar). We also make
the assumption (to be checked later on) that the optimal strategy ψ̂
is such that

V ψ̂
n ≥ V −n (Sn) ∀n = 0, . . . , N − 1. (19)

We proceed by induction starting from n = N − 1. As in the proof
of Theorem 1, the function to be minimized is a linear combination
of three affine functions, and the infimum is achieved at one of the
three points ψ1

N−1, ψ3
N−1 (defined by Equation (17)) and

ψ2
N−1 =

H(SN−1m)− VN−1

SN−1(m− 1)
.
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It is not difficult to check that the inequality

VN−1 > EQ0{H(SN )|FN−1}, (20)

which is true by assumption (19), is equivalent to the condi-
tion ψ3

N−1 > ψ2
N−1 and furthermore, if VN−1 < V ∗N−1 (that is,

JN−1(SN−1, VN−1) > 0), then one must have ψ2
N−1 < ψ3

N−1 < ψ1
N−1.

In fact, if ψ3
N−1 < ψ1

N−1 did not hold, then we would have that
J(N − 1, SN−1, VN−1) = 0. In order to establish the infimum, we cal-
culate the value of the function j (defined as in Equation (10)) at
the three points ψiN−1, i = 1, 2, 3. In all these calculations, one term
in the sum is equal to zero by definition of ψiN−1, i = 1, 2, 3 and an-
other one is the positive part of a negative quantity (therefore equal
to zero). We then easily obtain

j(N − 1, SN−1, VN−1, ψ
1
N−1) =

p3

q3
1

[
EQ1

{
H(SN )|FN−1

}
− VN−1

]
,

j(N − 1, SN−1, VN−1, ψ
2
N−1) =

p1

q∗1

[
EQ∗

{
H(SN )|FN−1

}
− VN−1

]
,

j(N − 1, SN−1, VN−1, ψ
3
N−1) =

p1

q1
1

[
EQ1

{
H(SN )|FN−1

}
− VN−1

]
.

Now we prove that j(N − 1, SN−1, VN−1, ψ
2
N−1) > j(N −

1, SN−1, VN−1, ψ
3
N−1). In fact, using (13), one can easily check that

this is equivalent to (20), which is true by assumption. This shows
that Equations (16) and (17) are true for n = N − 1.

We now proceed by induction with respect to n. By arguments
similar to those of Theorem 1, we can easily prove Equations (16),
(17) and (18). Now we only have to check the initial assumption, that

is V ψ̂
n ≥ V −n (Sn) for all n = 0, . . . , N −1. This is equivalent to saying

that qn(V ∗n (Sn)−V ψ̂
n ) ≤ qn(V ∗n (Sn)−V −n (Sn)) for all n = 0, . . . , N−1.

In order to fix the ideas, let us suppose that p1/q
1
1 ≤ p3/q

1
3 (the

opposite case follows by a similar argument). Since ψ̂ is the optimal
strategy, we have

J(0, S0, V0) =
(
p1

q1
1

)N
(V ∗0 (S0)− V0)+ = E[J(n, Sn, V ψ̂

n )]. (21)

Since by Equation (18) Vn < V ∗n (Sn) only in the event {ωi = u ∀i =
0, . . . , n− 1}, we have

J(0, S0, V0) = 0 + pn1J(n, Sn, V ψ̂
n )|ωi=u ∀i=0,... ,n−1 = (22)

= pn1

(
p1

q1
1

)N−n
(V ∗n (Sn)− V ψ̂

n )|ωi=u ∀i=0,... ,n−1.
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By comparing Equations (21) and (22), it follows that (q1
1)n(V ∗n (Sn)−

V ψ̂
n ) = V ∗0 (S0) − V0. So we have to check that V ∗0 (S0) − V0 ≤

(q1
1)n(V ∗n (Ŝn) − V −n (Ŝn)) for all n = 0, . . . , N − 1, which is equiv-

alent to Equation (15). ut

Remark 2. We notice that in order to have an explicit formula one
of our assumptions is that the initial capital V0 is not too small. In
particular, we saw that this assumption corresponds to the fact that,
at each time step n = 0, . . . , N , the capital V ψ̂

n along the optimal
strategy ψ̂ is always greater than V −n (Sn). In order for this to be
verified, it is sufficient to check it only on the worst path of the risky
asset, namely the only one in which the shortfall is positive.

Remark 3. Like Theorem 1, Theorem 2 also leads to a generalisation
of the results in Runggaldier et al. (2001): in fact, the solution (both
in the minimal shortfall as in the optimal strategy) turns out to be
equal to the solution in the case of a binomial model which is obtained
by setting equal to zero the probability of one of the three possible
states of nature at each step. This state of nature is such that the
expectation of the contingent claim under the resulting probability is
equal to the superreplication capital needed at each step.

Remark 4. When H is convex we find a nice parallel between this
case and superreplication in stochastic volatility models in continuous
time (see Avellaneda et al. (1995), El Karoui et al. (1998)). In fact, in
both cases the superreplication capital is equal to the expectation of
the claim under a measure which is not equivalent to the real world
probability, and this measure is extremal in different senses: in the
stochastic volatility case, it is obtained by taking the supremum of
the admissible volatilities in an interval [σmin, σmax] (see El Karoui et
al. (1998)), while here it is obtained by taking the supremum of the
weights at the extremal points of the support {d,m, u}. This comes
as no surprise, because a trinomial tree can be used to approximate
a stochastic volatility model (see Avellaneda et al. (1995)).
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