Compitino di Probabil Matematica, Università					2005	(Corso	di	Laurea	Triennale in
Cognome			No	me					Matricola
	Es. 1	Es. 2	Es. 3	Somma	Vot	o finale]		

Attenzione: si consegnano SOLO i fogli di questo fascicolo.

Esercizio 1. Vi siete persi nel parco nazionale di Bandrika. I turisti sono i 2/3 dei visitatori del parco, e ad una richiesta di direzioni danno una risposta esatta con probabilità 3/4 (le risposte a richieste successive sono indipendenti, anche se fornite dalla stessa persona!). Gli abitanti del parco, invece, rispondono sempre il falso.

- a) Chiedi ad un passante dove è l'uscita dal parco, e ti risponde che è ad est. Qual è la probabilità che sia corretta?
- b) Chiedi allo stesso passante, e la risposta è la stessa. Dimostrare che la probabilità che sia corretta è 1/2.
- c) Chiedi allo stesso passante per la terza volta, e la risposta è la stessa. Qual è la probabilità che sia corretta?
- d) Chiedi per la quarta volta, e la risposta è sempre est. Mostrare che la probabilità che sia corretta è 27/70.
- e) Mostrare che, se la risposta alla quarta domanda è diversa da est, la probabilità che est sia comunque corretta è di 9/10.

Suggerimento: definiamo gli eventi

 $S_r := \{ \text{si ricevono } r \text{ risposte simili} \}$

 $T := \{ \text{sono corrette} \}$

 $V := \{l'interlocutore è un turista\}$

Dimostrare prima che

$$P(T|S_r) = \frac{P(T \cap S_r|V)P(V)}{P(S_r)}$$

Esercizio 2. In alcuni telefilm polizieschi, si sente dire "il criminale ha questa inusuale caratteristica . . . trovare questa persona e avrete il vostro uomo". Supponiamo che ogni dato individuo abbia questa inusuale caratteristica con probabilità 10^{-7} indipendentemente dagli altri individui, e che la città in questione abbia 10^7 abitanti.

- a) Calcolare il numero medio di tali individui nella città.
- b) Supponendo che l'ispettore trovi una tale persona, calcolare la probabilità che ce ne sia almeno un'altra.
- c) Supponendo che l'ispettore ne trovi due, calcolare la probabilità che ce ne sia almeno un'altra ancora.

Esercizio 3. Siano X_1, \ldots, X_n variabili aleatorie indipendenti di Bernoulli, rispettivamente di parametro p_k . Definiamo poi

$$Y := \sum_{k=1}^{n} X_n$$

- a) Calcolare media e varianza di Y.
- b) Mostrare che, fissata E[Y] = np, la varianza è massima quando $p_k \equiv p$ per ogni $k = 1, \ldots, n$.

Suggerimento: esprimere p_n in funzione di p_1, \ldots, p_{n-1} .

Soluzioni

Esercizio 1. Innanzitutto scriviamo le probabilità date nel testo. Innanzitutto abbiamo $P(V) = \frac{2}{3}$, $P(V^c) = \frac{1}{3}$. Inoltre, l'indipendenza delle risposte dei turisti dà le relazioni:

$$P(S_r \cap T|V) = (P(S_1 \cap T|V))^r = \left(\frac{3}{4}\right)^r, \qquad P(S_r \cap T^c|V) = \left(\frac{1}{4}\right)^r$$

mentre il fatto che gli abitanti rispondono sempre il falso si traduce in

$$P(S_r \cap T|V^c) = 0, \qquad P(S_r \cap T^c|V^c) = 1$$

Dimostriamo ora il suggerimento. Per la formula della probabilità totale abbiamo

$$P(T|S_r) = \frac{P(T \cap S_r)}{P(S_r)} = \frac{P(T \cap S_r|V)P(V) + P(T \cap S_r|V^c)P(V^c)}{P(S_r)}$$

e la formula finale segue da $P(S_r \cap T|V^c) = 0$. Per risolvere i primi 4 punti ci manca infine

$$P(S_r) = P(S_r|V)P(V) + P(S_r|V^c)P(V^c) = (P(S_r \cap T|V) + P(S_r \cap T^c|V))P(V) + P(V^c)$$

Mettendo tutto insieme, si ottiene la formula

$$P(T|S_r) = \frac{\left(\frac{3}{4}\right)^r \cdot \frac{2}{3}}{\left(\left(\frac{3}{4}\right)^r + \left(\frac{1}{4}\right)^r\right) \cdot \frac{2}{3} + \frac{1}{3}}$$

a,b,c,d) Usando l'ultima formula, le probabilità cercate sono rispettivamente

$$P(T|S_1) = \frac{1}{2}, \qquad P(T|S_2) = \frac{1}{2}, \qquad P(T|S_3) = \frac{9}{20}, \qquad P(T|S_4) = \frac{27}{70}$$

e) In questo caso si è sicuri che si sia in presenza di un turista! Possiamo tradurre questo dicendo che $P(S_3 \cap \tilde{S}_1 | V^c) = 0$, dove chiamiamo $S_3 \cap \tilde{S}_1$ l'evento "riceviamo 3 risposte uguali e 1 diversa". Abbiamo allora che

$$P(T|S_3 \cap \tilde{S}_1) = \frac{P(T \cap S_3 \cap \tilde{S}_1)}{P(S_3 \cap \tilde{S}_1)} = \frac{P(T \cap S_3 \cap \tilde{S}_1|V)P(V)}{P(S_3 \cap \tilde{S}_1|V)P(V)} =$$

$$= \frac{P(T \cap S_3 \cap \tilde{S}_1|V)}{P(S_3 \cap \tilde{S}_1|V)} = \frac{P(T \cap S_3 \cap \tilde{S}_1|V)}{P(T \cap S_3 \cap \tilde{S}_1|V) + P(T^c \cap S_3 \cap \tilde{S}_1|V)} =$$

$$= \frac{\left(\frac{3}{4}\right)^3 \cdot \frac{1}{4}}{\left(\frac{3}{4}\right)^3 \cdot \frac{1}{4} + \left(\frac{1}{4}\right)^3 \cdot \frac{3}{4}} = \frac{9}{10}$$

Esercizio 2. Per ogni persona della città, definiamo la variabile aleatoria

$$X_i = \left\{ \begin{array}{ll} 1 & \text{se l'} i\text{-esima persona presenta la caratteristica} \\ 0 & \text{altrimenti} \end{array} \right.$$

Allora $X_i \sim Be(p)$, con $p=10^{-7}$. Definiamo poi $S=\sum_{i=1}^{10^7} X_i=n$. di persone della città con la caratteristica sotto esame. Allora $S \sim B(10^7,10^{-7})$. Se applichiamo l'approssimazione di Poisson, possiamo dire che $S \approx Po(\lambda)$, con $\lambda=10^7 \cdot 10^{-7}=1$ (2 punti).

a) Per le proprietà delle variabili aleatorie binomiali si ha

$$\mathbb{E}[S] = 10^7 \cdot 10^{-7} = 1$$
 (2 punti)

Anche l'approssimazione di Poisson ci dà:

$$\mathbb{E}[S] = \lambda = 1$$

b) Questo punto e il seguente, se svolti con la distribuzione esatta $B(10^7, 10^{-7})$ danno luogo a calcoli complessi. Conviene quindi utilizzare l'approssimazione di Poisson. Calcoliamo:

$$\mathbb{P}\{S \ge 2 \mid S \ge 1\} = \frac{\mathbb{P}\{S \ge 2\}}{\mathbb{P}\{S \ge 1\}} = \frac{1 - \mathbb{P}\{S < 2\}}{1 - \mathbb{P}\{S < 1\}} = \frac{1 - \mathbb{P}\{S = 0\} - \mathbb{P}\{S = 1\}}{1 - \mathbb{P}\{S = 0\}} = \frac{1 - e^{-1} - e^{-1}\frac{1}{1}}{1 - e^{-1}} = 0,418 \quad (3 \text{ punti})$$

c) Calcoliamo:

$$\mathbb{P}\{S \ge 3 \mid S \ge 2\} = \frac{\mathbb{P}\{S \ge 3\}}{\mathbb{P}\{S \ge 2\}} = \frac{1 - \mathbb{P}\{S < 3\}}{1 - \mathbb{P}\{S < 2\}} = \frac{1 - e^{-1} - e^{-1} \frac{1}{1} - e^{-1} \frac{1}{2}}{1 - 2e^{-1}} = 0,303 \quad (3 \text{ punti})$$

Esercizio 3.

a) Le X_k , k = 1, ..., n sono di Bernoulli e indipendenti, ma non hanno lo stesso parametro, quindi Y potrebbe non essere binomiale. In particolare si ha:

$$E[Y] = E\left[\sum_{k=1}^{n} X_{k}\right] = \sum_{k=1}^{n} E[X_{k}] = \sum_{k=1}^{n} p_{k}$$

$$Var[Y] = Var\left[\sum_{k=1}^{n} X_{k}\right] = \sum_{k=1}^{n} Var[X_{k}] = \sum_{k=1}^{n} p_{k}(1 - p_{k})$$

b) Seguendo il suggerimento, si ha che

$$p_n = np - \sum_{k=1}^{n-1} p_k$$

Bisogna allora minimizzare la funzione

$$f(p_1, \dots, p_{n-1}) := \text{Var}[Y] = \sum_{k=1}^n p_k - \sum_{k=1}^n p_k^2 = np - \sum_{k=1}^{n-1} p_k^2 - \left(np - \sum_{k=1}^{n-1} p_k\right)^2$$

Dato che f è un polinomio di secondo grado con la parte di grado massimo definita negativa, avrà solo punti di massimo relativo dove il gradiente è nullo. Calcoliamo quindi le derivate parziali di f:

$$\frac{\partial f}{\partial p_i} = -2p_i + 2\left(np - \sum_{k=1}^{n-1} p_k\right)$$

e imponendo che il gradiente sia nullo si trova

$$np = p_i + \sum_{k=1}^{n-1} p_k \quad \forall i = 1, \dots, n-1$$

Sommando queste n-1 equazioni si ottiene

$$n(n-1)p = \sum_{i=1}^{n-1} p_i + (n-1)\sum_{k=1}^{n-1} p_k = n\sum_{k=1}^{n-1} p_k$$

cioè $(n-1)p = \sum_{k=1}^{n-1} p_k$. Sottraendo questa equazione dalle precedenti si trova

$$np = p_i + (n-1)p$$

che dà $p_i = p$ per ogni i = 1, ..., n - 1. Infine si ha

$$p_n = np - \sum_{k=1}^{n-1} p_k = np - (n-1)p = p$$

Allo stesso risultato si poteva arrivare usando il metodo dei moltiplicatori di Lagrange.

Compitino di Probabilità e Statistica del 17 febbraio 2005 (Corso di Laurea Triennale in Matematica, Universitá degli Studi di Padova) (docente: Tiziano Vargiolu)

Hanno superato la prova:

Alessio Davide	18
Barichello Marica	18
Bettin Sandro	27
Bortoletto Giulio	16
Corsi Lara	20
De Rossi Giulia	22
Garonzi Martino	16
Gonzato Francesco	18
Maino Paola	27
Marigo Raffaele	21
Rebellato Marta	18
Trevisan Marco	22
Valente Giulia Erica	20

Visione compiti corretti: martedì 22 febbraio ore 13.00 aula P200