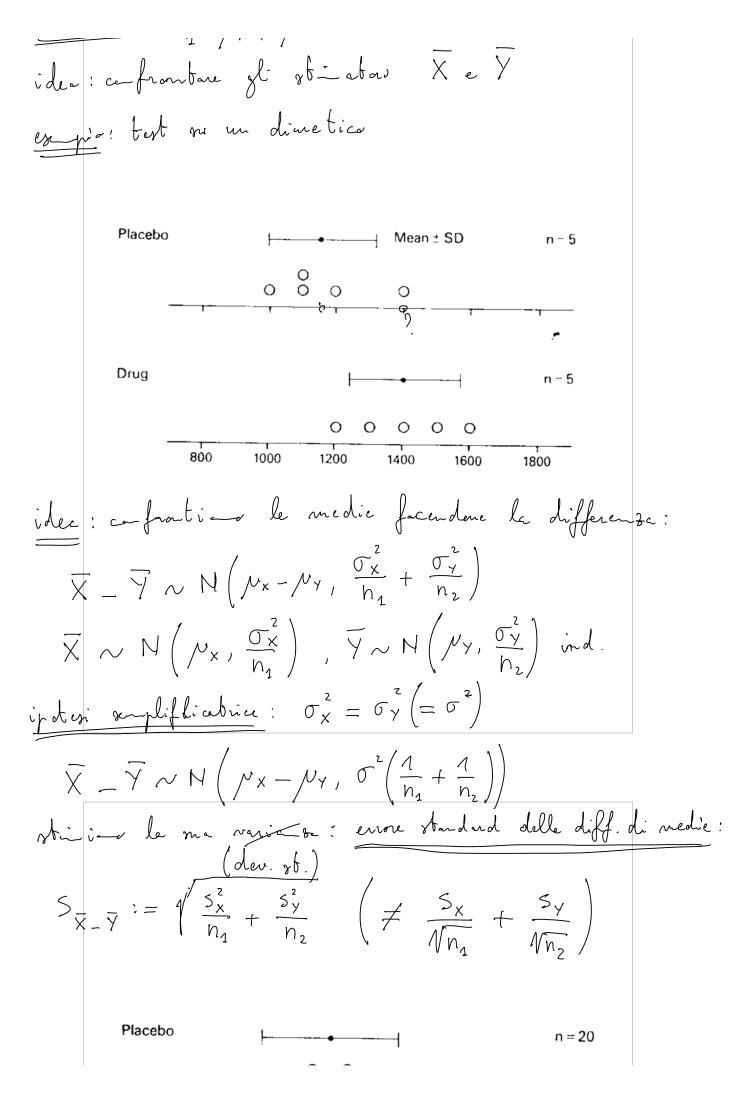
TEST DI STUDENT

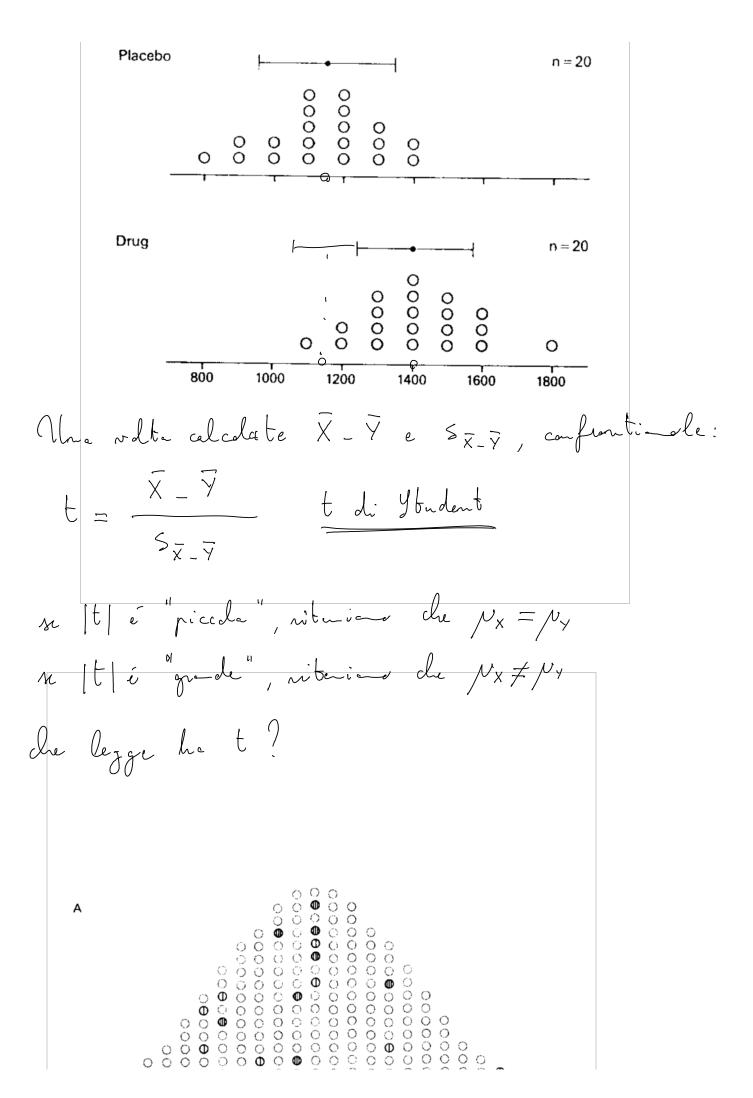
Vedrer pu prima le vituazione in cui si devona confrontare du medie di populationi gaussiane (test sulla differente di medie). (Mbica

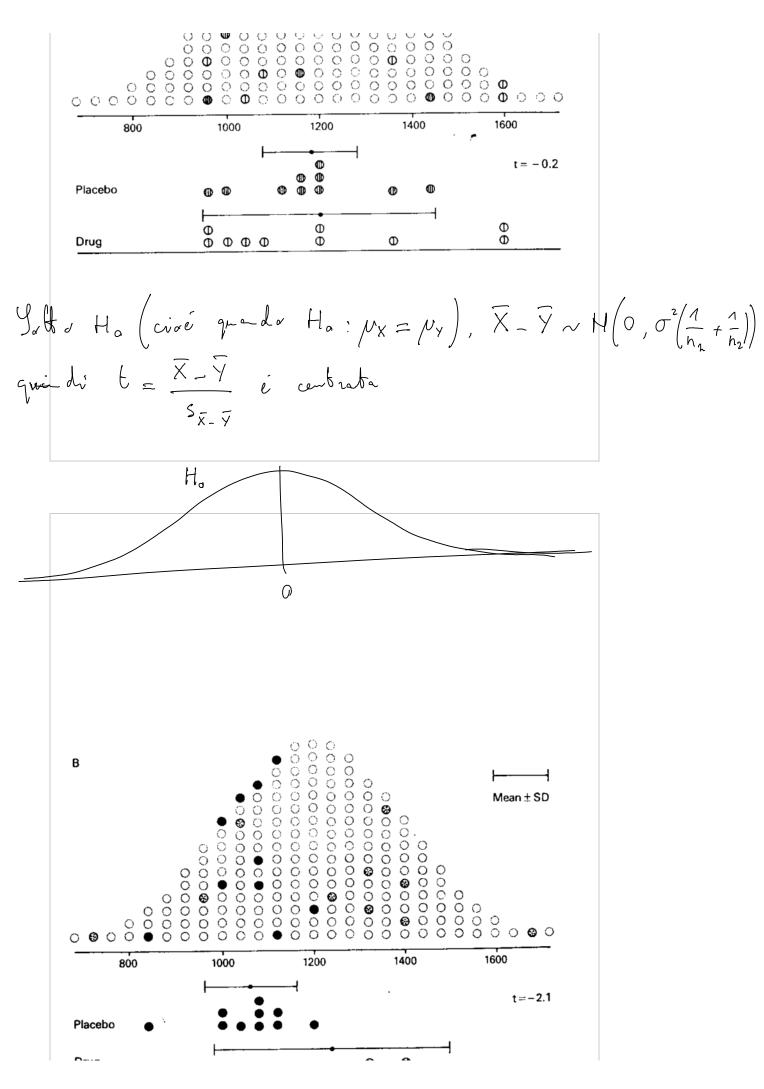
 X_1, \ldots, X_{n_1} i.i.d. $\sim N(p_x, \sigma_x^2)$ $Y_{1}, \dots, Y_{n_2} \dots \dots \dots \times N(N_Y, \sigma_Y^2)$

suppoier anche de (Xi); e (Yi); riar indipedati for las. Modella statistica: (Po)o∈⊕ t.c., sotta Po, i due campi-i abbier la distribusione sopra, con $\theta = (p_X, p_Y, \sigma_X^2, \sigma_Y^2) \in$ $\in \mathbb{H} = \mathbb{R}^2 \times (0, +\infty)^2$

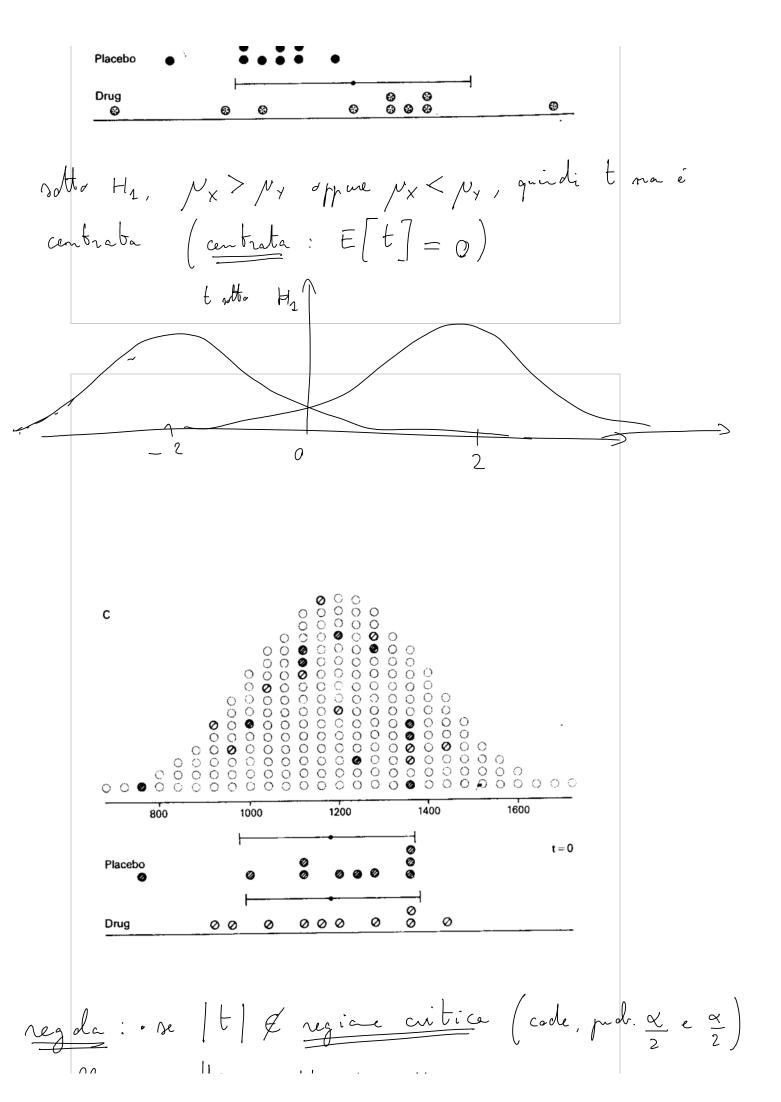
Aloglier testere un 'ipotesi del tipe px = py, contro un ipotesi alternativa px 7 py. Questo ni scrive


intesi: $\Theta_0 = \left\{ \vartheta = \left(p_x, p_y, \sigma_x^2, \sigma_y^2 \right) \middle| p_x = p_y \right\} = \left\{ p_x = p_y \right\}$


alternature (1) = { & E (H) / x 7 / y} = { / x 7 / y}


o più seplice ete

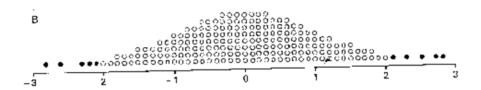
iroberi: Ha: Nx = Ny alternative: H1: Nx 7 NY

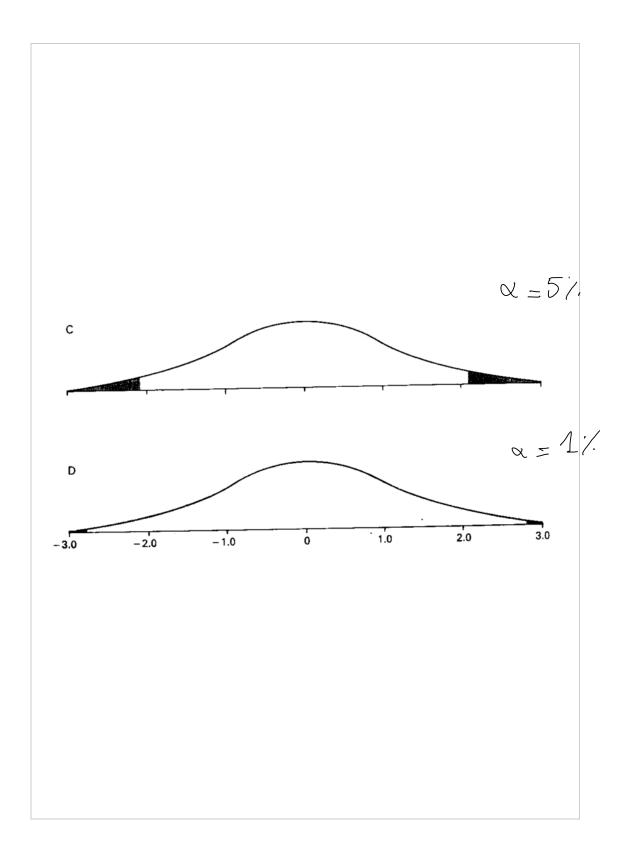

X e Y idea: contrare de stinstar

Test di Student Pagina 4

regala. . ise IVIX regional allow accettiand Ho: NX = Ny . se Itl E region critice, nification Ho e acceltico H1: Nx FNY regione critica: { | t| > t_{1-\alpha} (\bu) } t_{1-x}(v) = value critica $\alpha =$ livella del test (picceda, $\alpha = 5\%$, 1%) V = gradi di libert à delle t di Yonde t in questo ceso $V = N_1 + N_2 - 2$ $\alpha = 5\%$ La regime critica é individuel - della proprieté I dans Pré une probabilité che rende Ho verificaba, ciré

(dove
$$P_0$$
 é une probabilité de rende H_0 verifice b_n , ciré P_0)


2 metro rignifice $1-\alpha=P_0\{|t|\leqslant n\}=|P_0\}-n\leqslant t\leqslant n\}=$


$$= F_{t}(n) - F_{t}(-n)$$

$$= F_{t}(n) - F_{t}(-n)$$

$$= f_{t}(n) - F_{t}(n)$$

$$= f_{t}(n) - f_{t}(n) - f_{t}(n)$$

4.7 Quantili della distribuzione t(n) di Student

 $\mathbb{P}\{t \leq x\} = \alpha, \quad t \sim t(\nu)$

Nella tabella sono riportati vari ν significativi e $\alpha=0.95,~0.975,~0.99$ e 0.995. Nell'intersezione tra α e ν si legge $x=t_{\alpha}(\nu).$

			$\overline{}$			
α	0.95	0.975	(0.99)	(0.995)	0.9975	0.999
ν	0.010	12.706	01.000	00.055	105 001	318.309
1 2	6.313	4.302	31.820 6.964	63.657 9.924	127.321 14.089	22.327
3	2.919	3.182	4.540	5.840	7.453	10.215
4 5	2.131	2.776 2.570	3.747	4.604 4.032	5.598	7.173 5.893
6		2.446			4.773	
	1.943		3.142	3.707	4.317	5.208
7	1.894	2.364	2.998	3.499	4.029	4.785
8	1.859	2.306	2.896	3.355	3.833	4.501
9	1.833	2.262	2.821	3.249	3.690	4.297
10	1.812	2.228	2.763	3.169	3.581	4.144
11	1.795	2.201	2.718	3.105	3.497	4.025
12	1.782	2.178	2.681	3.054	3.428	3.930
13	1.770	2.160	2.650	3.012	3.372	3.852
14	1.761	2.144	2.624	2.976	3.326	3.787
15	1.753	2.131	2.602	2.946	3.286	3.733
16	1.745	2.119	2.583	2.920	3.252	3.686
17	1.739	2.109	2.566	2.898	3.222	3.646
18	1.734	2.100	2.552	2.878	3.197	3.610
19	1.729	2.093	2.539	2.861	3.174	3.579
20	1.724	2.086	2.528	2.845	3.153	3.552
21	1.720	2.079	2.517	2.831	3.135	3.527
22	1.717	2.073	2.508	2.818	3.119	3.505
23	1.713	2.068	2.499	2.807	3.104	3.485
24	1.710	2.063	2.492	2.796	3.091	3.467
25	1.708	2.059	2.485	2.787	3.078	3.450
26	1.705	2.055	2.478	2.778	3.067	3.435
27	1.703	2.051	2.472	2.770	3.057	3.421
28	1.701	2.048	2.467	2.763	3.047	3.408
29	1.699	2.045	2.462	2.756	3.038	3.396
30	1.697	2.042	2.457	2.750	3.030	3.385
40	1.683	2.021	2.423	2.704	2.971	3.307
50	1.676	2.009	2.403	2.678	2.937	3.261
60	1.670	2.000	2.390	2.660	2.915	3.232
70	1.667	1.994	2.381	2.648	2.899	3.211
80	1.664	1.990	2.373	2.638	2.887	3.195
90	1.662	1.987	2.368	2.632	2.878	3.183
100	1.660	1.984	2.364	2.626	2.871	3.174
120	1.657	1.979	2.357	\rightarrow 2.617	2.860	3.160
200	1.653	1.972	2.345	2.601	2.839	3.131
∞	1.644	1.960	2.326	2.575	2.807	3.090