Finance and Stochastics Manuscript-Nr.
(will be inserted by hand later)

Robustness of the Black-Scholes approach
in the case of options on several assets*

Silvia Romagnoli!, Tiziano Vargiolu?

! Istituto di Matematica Generale e Finanziaria, Universitd di Bologna, Piazza Scaravilli 2,
40139 Bologna, Italy (e-mail: sromagnoli@economia.unibo.it)

2 Dipartimento di Matematica Pura ed Applicata, Universit4d di Padova, Via Belzoni 7, 35131
Padova, Italy (email: vargiolu@galileo.math.unipd.it)

Abstract. In this paper we analyse a stochastic volatility model that is an
extension of the traditional Black-Scholes one. We price European options on
several assets by using a superstrategy approach. We characterize the Markov
superstrategies, and show that they are linked to a nonlinear PDE, called the
Black-Scholes-Barenblatt (BSB) equation. This equation is the Hamilton-Jacobi-
Bellman equation of an optimal control problem, which has a nice financial
interpretation. Then we analyse the optimization problem included in the BSB
equation and give some sufficient conditions for reduction of the BSB equation
to a linear Black-Scholes equation. Some examples are given.
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1. Introduction

In this paper we analyse the robustness of the Black-Scholes formula with re-
spect to stochastic volatility in the case of European multiasset derivatives. The
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problem is the following; we have a riskless asset, whose value we suppose con-
stant through time, and n risky assets whose prices S = (S1,...,S7) follow the
dynamic

dSt = StO't th 5

where W is an n-dimensional Brownian motion under the so called forward-
neutral measure Q [5], the matrix process ¢ takes values in a closed bounded
set X C M(n,n,R), and we use the notation 5§ = diag (s) for s € R”. We then
consider an agent who wants to price and hedge a European contingent claim
whose payoff is a continuous deterministic function A(-) with polynomial growth,
calculated in St. Since the market could be incomplete because of the stochastic
volatility ¢ and the agent is not able to hedge the volatility, he chooses to hedge
the option by using the superhedging approach. In order to build a superstrategy,
he fixes the price of the option as C; = C(t,S;) and builds a self-financing

portfolio consisting of a quantity A? = g—g’:(t, S;) of the asset Sii = 1,...,n,
where C(t,S) is a solution of the following nonlinear PDE
ocC 1 9 NI
——(t,8) + - maxtr (D?C(t,s)(57)(57)*) =0, t€[0,T),s R},
(9t 2 yeX (1)
C(T,s) = h(s), seR} ,

called Black-Scholes-Barenblatt (BSB) equation by analogy with [1], where
2 .
DC(t,s) = (g—g(t,s),.. 9C (¢ 5)), and D2C(t,s) = (%(t,s))u. Equation

") Osn
(1) is a Hamilton-Jacobi-Bellman equation, and it is linked to a stochastic con-
trol problem that has a nice financial interpretation. In fact, the agent could

build a “subjective” model
ds] = gg’)’t th ,

where the state variable S7 has to be controlled by the “subjective” volatility v
in order to maximize the payoff function

Eq [T Oh(S]) | 7] ,

corresponding to the no-arbitrage price of the contingent claim at time ¢. In this
way, the agent wants to maximize in  his payoff thus protecting himself against
“the worst possible case”, and Eq. (1) is the HJB equation corresponding to this
optimal control problem. The central result of this paper is Theorem 2, where
we characterize the superstrategies in terms of a quantity R, that could be
interpreted as a consumption rate, and we prove that the price-hedge strategy
above is the cheapest Markov superstrategy in a sufficiently large class. Equation
(1) hides a simple problem, namely the maximum problem which appears in it.
This problem is significant because the agent must solve it in order to implement
the model in the right way. We find some necessary and sufficient conditions for
the existence of a solution to the maximum problem. Our conditions provide
a nice geometrical interpretation of the problem. Moreover we find that under
particular conditions it is possible to reduce the nonlinear BSB equation to a
linear Black-Scholes (BS) equation. We show also that it is possible to obtain
as a particular case the results of [1] and [6]. Finally we analyse some examples:
Margrabe’s exchange option, for which we find that the BSB equation is always
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reduced to a BS equation; a European option on the geometric mean of two
assets, which gives us the feeling of the behaviour of a non-convex payoff, and
last, an example of a possible set X, suggested by a situation of stochastic
correlation between two assets, where we find sufficient conditions in order to
reduce the BSB equation to a BS equation.

The papers in which this kind of approach to stochastic volatility models ap-
pears for the first time are [1] and [6] for the 1-dimensional case, and [13] for the
multidimensional one. In [6] the problem is widely treated in the case of Euro-
pean options having a payoff h convex in the asset price. For this kind of options,
the authors succeed in showing a superstrategy depending on the solution of a
particular BS equation, obtained by dominating the stochastic volatility with a
deterministic function of the price. However, options are traded in the markets
that have genuine non-convex payoffs, such as call-spread options, that are differ-
ence between two calls with different strike prices and same maturity. As noticed
in [1] the approach in [6] is not generalizable to this kind of payoffs. To this end
in [1] the authors introduce the BSB equation in 1 dimension. In their case the
set X is a closed interval [0min, Omax] in the real line, with 0 < omin < Omax < 00.
They prove a result analogous to our Theorem 2 in dimension 1. Since for a long
time options on several assets have a theoretical treatment (see [10], [14] and [15]
for some examples), we treated the case of European options on several assets, as
Lyons did in [13]. While Lyons uses stochastic integration without probability, in
our work we use the theory of stochastic control. We also present some examples
of contingent claims on several assets. For the sake of simplicity, we have not
included the case of interest rate derivatives as caps, floors or swaptions, which
are a typical example of multiasset options, because in the case of interest rate
derivatives other topics would deserve our attention. This case is however being
studied by one of the two authors. Moreover, we choose not to study problems
such as existence, uniqueness and regularity of the solution of Eq. (1) in detail,
but we choose to include a section presenting in a qualitative way the results
obtained in another work by one of the two authors [9]. Finally, we want to point
out that the BSB equation appears also in other related problems, for example
when one has portfolio constraints [4].

The paper is organized as follows: in Sect. 2 we present the problem and
give the characterization theorem; in Sect. 3 we present some results on the
BSB equation; in Sect. 4 we give sufficient conditions to solve the optimization
problem, and we show how it is possible to reduce the BSB equation to a BS
equation when the optimization problem has a constant solution; in Sect. 5 we
obtain as particular cases the results of [1] and [6]; in Sect. 6 we apply our results
to Margrabe’s exchange option, and in Sect. 7 we do the same for a call option on
the geometric mean of two assets; in Sect. 8 we present a stochastic correlation
problem, in which there are explicit solutions for the BSB equation.

We wish to thank Vincent Lacoste for introducing us to the works [1] and
[6], from which we started, Dario Bini and Mauro Nacinovich for their deep
understanding of the geometry of the optimization problem, and Claude Martini
who suggested that we study the stochastic correlation problem in Sect. 8. We
also wish to thank an anonymous referee who pointed out many ambiguities in
the first draft of this manuscript.
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2. The model

We suppose that there exists a riskless asset M and n risky assets S, i =1,...,n
in the market. We make the usual assumptions that there exist a probabil-
ity space (£2,F,P), a filtration (F)scjo, 17, where F; represents the information
available up to time ¢ and that M and S? are stochastic processes adapted to
(Ft)¢. Besides, we assume that there exists a probability measure Q, equivalent
to P, which is called forward-neutral probability [5], such that the value
of the riskless asset M remains constantly equal to 1 through time, and the
dynamics of the assets S? under Q are the following:

ds; = Si{o},dWy) (2)

where (W;); is a n-dimensional Q-Brownian motion adapted to (F%), {-,-) is
the Euclidean scalar product in R® and o' is a n-dimensional process such that
o = (0%); € A(X), where X is a closed bounded set in the space of n x n real
matrices M (n,n,R) and A(X) (which we call set of admissible volatilities) is
the set of X-valued processes progressively measurable with respect to (Fy);-

We can write the dynamics of the risky assets in a more compact vectorial
notation as

dSt = Stat th 5

where for a given s € R", we put § = diag (s), the n x n diagonal matrix having
the i-th element equal to s;. Now we consider an agent in the market who wants
to create and sell a European derivative asset with payoff h(S7) = h(Sk, ..., S%),
where h is a measurable function having polynomial growth.

Remark 1. We do not assume that the market is complete. In particular, the
filtration (F;); could be strictly larger than the one generated by W or the one
generated by S. In this case we have a genuine stochastic volatility model and
the market is incomplete. Moreover, the assumption that the interest rate is zero
can be achieved by a so-called change of numeraire, that is, by expressing the
prices of all the assets in the market in units of a zero-coupon bond maturing at
time T (for more details, see [5]).

In order to price and hedge the asset, the agent fixes a price C; for the asset
at time t with the requirement that Cr = h(St) and builds a self-financing
portfolio IT, holding 7; units of the money market account M and A? units of
the asset S* at time t. We indicate with IT; the value of the portfolio at time t,
defined by

Iy = my + (A, St) ()

where A; = (4},...,A?). We say that the portfolio is admissible if IT is a
supermartingale: in this way if the portfolio is admissible and ITy = 0, then we
have E[IIT] < 0, so there are not arbitrage opportunities in the market. We also
say that the portfolio is self-financing if IT follows the dynamic

dﬂt = <At7dst) )
{am=de @

If the portfolio is self-financing, the process A is sufficient to characterize it, and
ne = Iy — (A, St)-
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The market is not complete because of the stochastic volatility o, so the
agent chooses to hedge the claim using the superhedging approach. To this end,
we define the tracking error as

et =1II; — Cy

eo = 0 by definition of II. Intuitively, the tracking error gives the error made by
the agent in estimation, or better, the difference between the hedging portfolio
held by the agent and the option price. If the portfolio is admissible and self-
financing, we say that (C, A) is a

— superhedging strategy, or simply superstrategy if e is a non decreasing
process

— subhedging strategy, or simply substrategy, if e is a non increasing pro-
cess

— hedging strategy if e is identically equal to zero.

The sense of these definitions is the following: if one builds a superstrategy,
one can successfully hedge a short position in the contingent claim Cj. In par-
ticular with a superstrategy we have that ey > 0, that is IT; > Cpr = h(ST),
so the portfolio succeeds in overhedging the contingent claim. We notice that
superstrategies and substrategies are good candidates to be arbitrages: in fact
if we have (say) It > Cr Qa.s. and II; > Cr with positive probability, then
the agent succeeds in making a profit with no initial endowment by selling the
option at price Cy and buying the superreplication portfolio at price Il = Cy
at time 0. This means that the value C; in a superstrategy has to be interpreted
as an arbitrage upper bound for the price of the claim at time ¢. Similarly, the
value C} in a substrategy has to be interpreted as a lower bound.

As already outlined by [1], [6] and [13], in order to have a superstrategy,
a natural procedure is this: the agent fixes the price C; of the option and the
quantities A; of the risky assets in the hedging portfolio IT at time t as

;  0C
Ct = C(tast) ’ Alzf = _(tJSt) )
68,'
where C' is the solution of the following partial differential equation:

ocC 1 2 — NfzoyEy n
E(t,s) + 531635(“ (D*C(t,s)(537)(37)") =0, te[0,T),sc R}, -

C(T,s) = h(s), s€RY

2
where DC(t,s) = (g—g(t,s), e %(t,s)), and D2C(t,s) = (%(t, s))ij-
Equation (5), as in [1], will be called from now on the Black-Scholes-
Barenblatt equation for h. Moreover, in order to have a substrategy it is
sufficient to replace the maximum operator in Eq. (5) with a minimum.

This choice has a stochastic control interpretation: we assume that the agent
does not know the volatility o, but in order to hedge the claim he can use the
model

dS;Y = S;Y’)’t th ; (6)

where the process v € A(X) is another admissible volatility. We can interpret
the v as a control, corresponding to the subjective volatility of the agent, that
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he uses in order to decide his strategy. If the market were complete and the
dynamics were given by Eq. (6), then the arbitrage free price of the European
contingent claim would be

¥ =Eq [h(S7) | S]] . (7)

Since the market is not complete, we are not sure that the contingent claim
defined by h is attainable. In particular, we have two sources of uncertainty,
namely the particular forward-neutral measure Q and the volatility . Since the
agent does not know either of these objects, he associates the price of the claim
with the interval

{Ey [e‘T(T‘t)h(S})‘ft] ‘ Q efm,ve A},

where e.f.m. means that Q' is a generic forward measure such that the fictitious
prices S7 obey an equation of the kind (6) under Q¥ and W is a @ -Brownian
motion. This is an interval in the real line, called the set of admissible prices.
However, since v € A(X), for all the forward measures Q and v € A(X) we have

Cq(t,87) < ¥ <cd(,s)) ,

where
Cglt.s) = inf o [h(S})|S] = ®
and
CE(t,s) = sup Eo[h(SP)|ST = o] (9)
YEA(X)

are the value functions of two optimal control problems, having as payoff function
the right-hand side of Eq. (7). In particular, under our assumptions, C(Eg is the
unique viscosity solution of Eq. (5) (see Sect. 3) and does not depend on the
particular choice of the measure Q (so we can drop the subscript in Q). So
we have that [C~(t,S;),C* (¢, S;)] defines the interval of admissible arbitrage
prices for the claim at time ¢, in the sense that if the price of the claim lies
outside this interval, then it is possible to build an arbitrage in the market. This
can be interpreted as follows: when the agent decides the price of the claim, he
wishes to protect himself against the worst possible outcome, and he chooses the
corresponding price.

We notice that the substrategy case is in some sense symmetric to that of
the superstrategy. This has a simple mathematical explanation: in fact, if C' is
the solution of the BSB equation with final condition h, then —C' is the solution
of the BSB equation with min instead of max, and final condition —h. In other
words, if C' defines a superstrategy for the claim defined by h, then —C' defines
a substrategy for the claim defined by —h. This allows us to analyse only one
of the two cases, and to obtain results for the other one automatically. For this
reason, in the rest of the paper we will analyse only the superstrategy case, it
being implicit that analogous results hold also for substrategies.

We now exhibit a superstrategy. We indicate with C}*((0,7) x R ) the space
of functions C' that are continuous and with polynomial growth on (0,77) x R}
together with their first derivative in ¢ and first and second derivatives in s.
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Theorem 2. If we restrict ourselves to the case Cy = C(t,S;), with C €
C2([0,T) x R%), then:

i) (C,A) is a superstrategy if and only if Ay = DC(t,S;) and

oC 1 _ _
Rt = —E(t, St) - §tr DQC(t, St)(StO't)(St(ft)*

is a.s. non negative for all t € [0,T];

i) if C is the solution of Eq. (5) and Ay = DC(t,S;), then (C,A) is a super-
strategy. Moreover there does not exist another superstrategy (C', A') such
that C} < C(t,S}) with positive probability for some t and for all v € A(Y).

Proof. The evolution of (e;); is the following;:

oC
det = (At,dSt) - E(t, St) dt — (DC(t, St),dSt) -

1 _ _
—§tr (D2C(t, St)(StO't)(StO't)*) dt =
= R;dt+ (A, — DC(t,S:),dS:) -
Now, in order for the process e to be increasing, it must have finite variation, so
we must have Ay = DC(t, S¢). Furthermore, if this condition holds then e will be
increasing if and only if R; > 0 Q-a.s. Vt. Conversely, if these two conditions are

satisfied, then e is increasing. Finally, A is admissible. In fact, since C € C}?,
we have that

T
E l/ lloFSeAd? dt] <ME
0

T
/ ISHPC (L + [1SH]™)? dt]
0

for some C and m, where M = sup{A | |[|[v*z|| < A||z]|| Vz € R,y € X'}. Since
for all m > 2 we have E[||S;||™] < Bm(1 + ||So||™) for a suitable B,, (see [11]),
we have E[[. [|o78;A[? dt] < +00, 50 IT; = [3(Au,dSu) = [o{05SuAu, dW,,)
is a martingale.

In order to prove (ii), we notice that under its assumptions we have that

R, = % (If?ea%tr (DC(t, S¢)(Si)(Sey)*) — tr (D*C(t, St)(gtat)(gtat)*)) =0

Moreover, C' is a classical solution of Eq. (5), so it is equal to the value function
(9). Now we assume that there exists another superstrategy (C', A’) such that
Co = IIy < C(0,8p). We put € = C(0,Sp) — Co; then IT is a supermartingale,
so IIp > E[IIT]. On the other hand, we also have that

C(0,50) = max Eh(S)] -

We take 4 such that ]E[_h(S?)] > C(0,80) — € = IIy; then E[h(S])] > E[II7].
This means that P{h(S}-) > IIr} > 0, and we have the result. O
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We have now obtained a characterization theorem for superstrategies. In fact,
provided the value function C' € C}?, the theorem gives the minimal super-
strategy, in the sense that there does not exist a cheaper strategy that succeeds
in giving an increasing tracking error for all v € A(X). Since the agent does
not know the true volatility o, he must protect himself against all the possible
volatilities v € A(X) and this is the best result he can expect.

The quantity R; can be seen as an instantaneous rate of consumption ob-
tained by the superstrategy of the agent. A discussion of the financial interpre-
tation of R can be found in [13].

An analogous of Theorem 2 holds for the case of a substrategy, provided we
reverse the inequalities and substitute the max operator in Eq. (5) with a min.

3. The BSB equation

We have seen that in order to have a Markov superstrategy, we need a C12
solution of Eq. (5). To this end, we make a brief survey of the results existing
in the literature about nonlinear parabolic equations. We do not wish to give
rigorous proofs of our assertions, but only to offer some ideas of how things can
be done. A rigorous treatment of the problem is the topic of a forthcoming work
[9] by one of the two authors.

The first step is to notice that the value function is a solution of Eq. (5) in
a weaker sense, namely in the sense of the theory of viscosity solutions. This
theory, developed by Crandall and Lions in a series of papers in the early ’80s,
allows for powerful existence and uniqueness theorems, whose proofs are much
easier than the corresponding ones in the classical theory (see [3] for a sur-
vey). Moreover, there are interesting links between optimal control problems
and viscosity solutions of the corresponding HJB equations: in particular, under
technical assumptions, the value function is the unique viscosity solution of the
HJB equation (see [8]). In our situation, we have the following result, whose
proof can be found in [9)].

Theorem 3. If h has polynomial growth, then the value function C defined by
Eq. (9) is a viscosity solution of Eq. (5) in [0,T] x R} . Moreover, it is the unique
viscosity solution having polynomial growth that satisfies the boundary condition
C(T,s) = h(s) for all s € R} .

However, a priori viscosity solutions are only continuous, so if we want to use
Theorem 2 with a viscosity solution, we also need to prove that the solution is
smooth enough to apply Ité’s formula. The main reference in this topic is Wang’s
work [16]. In order to use his results, we have to make a change of variable. We
put y; = logs;. Then the BSB equation becomes:

66 ]. 2 A . ~ *\ __
g(t, y) + 5 maxtr (D*C(t,y) — diag (DC(t,y)))Y*) =0,

tel0,T), yeR",

C(Ty)=hly), yeRr",
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where C(t,y) = C(t,(e¥);) = C(t,s). We then say that Eq. (10) is uniformly
parabolic if there exist real numbers M > m > 0 such that for all v € X and

£eR", ,
mlléll* < (vy*€, ) < MIIEN1* .

Since (yy*€,€) = (v*€,7*€) = ||v*€||%, the definition can be rewritten in this
way: there exist real numbers M' > m/ > 0 such that for all v € ¥ and £ € R”,

m[|€]] < [Ivéll < M€l -

This implies that if there exists a v € X which is not invertible, then Eq. (6) is
not uniformly parabolic. In fact if we take £ € ker v*, then [|v*£|| = 0. We show
that also the converse is true.

Lemma 4. If X is closed and bounded in M (n,n,R), then Eq. (10) is uniformly
parabolic if and only if ¥ C GL(n,R), where

GL(n,R) = {y € M(n,n,R) | dety #0}.

Proof. As seen above, if 3y € X such that v ¢ GL(n,R), then Eq. (10) is not
uniformly parabolic. Conversely, if ¥ C M (n,n, R), then yy* is positive definite
for all v € X. Moreover, the function that goes from ~ to the least eigenvalue of
~7v* is continuous, so it has a minimum m' > 0 in the compact set X; also the
function going from 7 to the greater eigenvalue of yv* is continuous, so it has a
maximum M’ > 0 in X. Thus the result follows. d

This allows us to state the following theorem.

Theorem 5. If Eq. (10) is uniformly pambojic, and we call C its viscosity so-
lution, then there ezists o € (0,1] such that C' € C**(R").

This is a particular case of a general result in [16], and means that C' has
second derivatives in s that are a-Holder continuous. This means that also
C(t,s1,...,8,) = C(t,logsi,...,logs,) is C?, so we can apply Itd’s formula.
The final conclusion is that if the set of volatilities X' is a closed bounded set
in GL(n,R), then there exists a Markov superstrategy, and it is given by the
solution of Eq. (5).

Remark 6. Uniform parabolicity of Eq. (10) is not always needed to have regu-
larity of solutions. In fact there are significant cases (for example, the one treated
in Sect. 7) in which Eq. (10) is not uniformly parabolic, but it still has C*? so-
lutions. A work [9] on this topic has been carried out by one of the authors.

4. The optimization problem

We notice that Eq. (5) contains an optimization problem. The agent has to solve
this problem if he wants to solve the BSB equation numerically, and if he wants
to have a view of what could be the “worst case” against him. Moreover, it turns
out that in some cases the problem gives a simple way to pass from the BSB
equation to a Black-Scholes equation, which is simpler both from a theoretical
point of view as well as from the numerical side. In any case, this problem is
significant only if C' € C12, so in the following we will make that assumption.



10 S. Romagnoli, T. Vargiolu

The problem can be seen as an optimization problem of a bilinear form in
the spaces of n x n real matrices, so we can characterize the solution and if X' is
smooth enough we can solve the problem explicitly.

The optimization problem is

F, ,(v), 11
max Fy, () (11)

where F; s : X' — R is defined by
Fis(y) = tr (8D*C(t,5)5vy") =tr (A7) , (12)

where A; s = 8D?C(t,s)5 and C is the solution of Eq. (5). We will often write
F and A instead of F} ; and Ay ; if there is no risk of ambiguity. This is an opti-
mization problem of a bilinear form in the closed bounded set ¥ C M (n,n,R).
This allows us to make a first statement.

Lemma 7. If0 ¢ X, then F' assumes the mazimum on 0X.

Proof. Since F' is continuous and X is a compact set, then F’ has a maximum %

in ¥. Let us suppose that F(J) > 0 and 7 is in 5. Then there exists an & > 0
such that (1+¢)y € X, and

F(1+¢)y) =1+¢e)?’F(®) > F®),

80 7 is not maximum, which is a contradiction. In an analogous way, if F(¥) < 0

and ¥ is in 2’, then we can repeat the above argument with (1 — €) ¥, reaching
a contradiction. Finally if FI(}) = 0 we can find a v* € 90X such that F(y*) =0,
so we have the result. |

Luckily, it would be unrealistic to include 0 in X, because if 0 € X, then
there is the possibility of a null volatility in all the assets. If 0 ¢ X, we can
reformulate the problem in this way:

361%}5 EF(y). (13)

Now we present a first-order condition, that has to be satisfied if the set X

has smooth boundary, whose proof follows immediately from an application of
the Lagrange multiplier method.

Proposition 8. If 0% is a smooth (C') curve defined by G(v) =0 and 7 is a
mazimum for F, then I\ € R such that 2A5—ADG () = 0, where DG indicates
the gradient with respect to .

Remark 9. We have seen that if 90X is defined by G (y) = 0, with G €
CY(M(n,n,R),R), then 7 is a solution of the system:

{ 2Ay — ADG(y) =0,
G(v)=0.

In particular, ¥ depends continuously on A. Viceversa, if 0X is not regular, the
dependence of 4 on A may not necessarily be continuous.
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An important case is when the optimization problem has a constant solution.
In this case, we can reduce the non linear BSB equation to a standard Black-
Scholes equation.

Proposition 10. If C € C*2([0,T) x R*) is a solution of the Black-Scholes
equation

3 69+ 3t (DCEIEHE)) =0, teDIsemr,
C(Ta 8) = h(S), S € ]Ri s

with 7 € X, such that the problem (11) attains its mazximum in 5 for all (t,s) €
[0,T) x R}, then C is also a solution of Eq. (5).

Proof. The maximum problem (11) has solution

tr (D*C(t,5)(s7)(s9)") = max tr (D*C(t,5)(37)(3)%)

so the conclusion follows. O

This proposition is very useful for reducing the BSB equation, for which
explicit solutions are very rare, to a BS equation, for which explicit solutions are
common. We will see an example of this case in the next sections.

5. The one-dimensional case

Now we analyse in more detail the case in which n = 1. This was the first case
studied in the literature. The main references are [1] and [6]. The first thing to
notice is that the typical example of X' in this case is ¥ = [0min, Omax], With
0 < Omin < Tmax < 00. For this reason, throughout this section we will assume
that n =1 and ¥ = [0min, Omax]-

We obtain the following results, which are already present in [1].

Lemma 11. The problem (11) has solution

2
Omax if E(t,s) >0

9*C 0s®
0'+ (W(t,S)) =

.. 0°C
Omin if W(t, S) <0

so the BSB equation becomes

2 2 2
ac(t,s) + 10* (8 C(t,s)) szaTg(t,s) =0, t€0,7),se R}

ot 27\ 9s? d
C(T,s) = h(s), se Ry
Proof. In this case, F 4(v) = s? %1(27 (t,5)72, so the conclusion follows. O
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A consequence is that in dimension 1 a suitable BS equation in some cases
can provide a solution of the BSB equation, as we shall now see.

Theorem 12. If n = 1 and h is convex, then the solution to the BS equation
(14) with volatility omax is also solution of the BSB equation (5), thus giving a
superstrategy.

Proof. The solution C of Eq. (14) with volatility op,ay is convex, so if we calculate
F in problem (12), then the problem has solution identically equal to omax; this
means that C is also solution of Eq. (5). d

6. Margrabe’s exchange option

In the next two sections we consider two examples of claims depending on two
primary assets, in order to have an idea of how things change when one deals
with multiasset payoffs.

First we consider Margrabe’s exchange option (see [14]), whose final payoff
is

h(s) = (s1 — As2)T .

We try to apply the results of Sect. 4 to this option. To this end, for a generic
v € X we calculate the Black-Scholes price C(t, s1, s2) of the exchange option,
which is the solution of Eq. (14) when we substitute 7 with

Y11 V12
= . ].5
Y < Y21 Y22 ) ( )

By Proposition 10, if the Black-Scholes price is such that the optimization prob-
lem (11) attains its maximum at v for all ¢ € [0,T), s € B3, then C(t,s1, s2) is
also a solution of the BSB equation (5).

The Black-Scholes price of this option is:

C(t,s1,82) = s1N(d1) — As2N(dz) , (16)
where
1 S1 1
di=———In|— | +=IVT—-t, do=d —-I'VT -1,
S, e (,\32> 2 .

I'=+/(11—721)% + (112 — 722)?
and N is the cumulative distribution function of a centered reduced Gaussian

random variable: .
1 22
N(d) = — e~ 2 dx

(for a proof, see [14]). In order to apply Proposition 10, we calculate the matrix
Ay s. The first derivatives are

oC oC
8—:N(d1), —:—)\N(d2)
S1

682
The second derivatives are
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0?C  od, 1

—— =_—=-N'(dj) = ————-=N'(d
ds?  0s1 (1) s1 VT —t (@),

8’C Ods 1

——— = A=——=N'(d)) =A\—————+=N'(d

ds3 Oso (d2) so VT — 1t ().

because
8di: 1 6d,~= 1 i=12.

ds1 s, INT—t  0sy  soI\JT -1

We have two ways to calculate the cross derivative:

0%*C ody Odo N'(dy) AN'(dy)
= —N'(dy) = =A=—N'(dy) = - =— .
05108y  0ss (d) 0s1 (d2) sol/T —t so'VT —t

Since C' € C12, from this we get that s; N'(d;) = AsaN'(d2). Thus we have that

s 0’°C s 0°C

1 2 192 !

-2 _ 3] 03159 s1N'(dy) 1 -1

Ay s =5D*C(t,s)-5 = . 6210 ,5°C Fo— -1 1
172 8s, 2 953

We notice that A, is proportional V(t,s) € [0,T) x R} to the constant

matrix
1 -1
-1 1 ’

This means that the solution to the problem (11) is constant. Hence we easily
obtain the following proposition.

Proposition 13. If 7 is the mazimum of ||y1 — Y2||gz on X, where y1, 2 are
the rows of vy, then (16) is solution of Eq. (5).

Proof. We have that Va,b,c € R,

!
tr (A [ b _ sV (d) (dl)(a—2b+c).
P\b ¢ VT —t

so by easy calculations we obtain that

o siN'(d ;
tr (Ar,s77") = ;T/(—_li Im —7ellze -

The result follows then from Proposition 10. O
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7. An example of a non-convex payoff: option on the geometric mean

We consider an option whose final payoff is the following:

h(s) = (y/s152 — K)*t.

As in the previous section, we try to apply the results of Sect. 4 to this option.
To this end, we first calculate the Black-Scholes price in the case in which the
dynamics is given by

dSy = Syy dW; (17)

where v is deterministic and given by Eq. (15).
The dynamics of /515> is

d\/51 (t)S2(t) = \/51(7?)52(15) (%('Yl + 72, dW (t)) + p dt) ,

where p = —z[l71 — 72/|>. We can interpret /515> as an asset having instanta-
neous rate of return equal to u, so we can apply the Black-Scholes formula and
obtain the price of the option as

B |(VEDED - £)'| - | (VEDRD - £)'| -
= eMT-1) < S1()S2 ()N (dy) — Ke_‘u(T_t)N(dQ)) :

where

1 S1(¢)S2(t) 1. N N 1
d1=%lnm 5%, do=di — %, ’Yt:§||'71+’72||VT_t-

The price of the option is then:
C(t,s1,52) = A (VarsaN(dy) — Ke “TIN(dy)) (18)
where A = e#T=%) Now we calculate At 5. The first derivatives of C' are

oC A% aC A
— N, go =5 N )

681 2\/5

The second derivatives of the price are:

0°C A (N’(dl) _N(d1)> 20 _A/m (N'(dl) _N(d1)> ,

9si 4sf/2 Ve ds3 433/2 "t
82C A N(dy)
= N
681882 4‘/8182 ( ’7,5 + (dl)) ’
because Py 1
1 .
= =1,2.
dsi  2%s; T

We have that
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N'(d1) N'(dy)
A = §D20(t S) .5 = A\/m ~t _N(dl) ﬁlt +N(d1) _
t,s ) 4 N’(dl) +N(d1) N’(dl) _N(dl)
% )

- (1) 1)

We notice that this time the linear form is proportional to a linear combination
of two constant matrices. In particular, we have that

_[a=-p a+p
At’s_<a+ﬁ a—ﬂ)’

NI
"34182 édl) >0, A= V84132N(d1) >0.
t

where

o =

If 0¥ is regular, then the solution ¥ of the maximization problem (11) is typically
not constant, because it depends continuously on A, so on s1, s and t; but if
0X is not regular, it can happen that things change, as we shall see in the next
section.

8. Stochastic correlation

Now we assume that

= {7€R2X2

“(im i ) e}
'Y— p0_2 1_p20.2 ;p I I

where o; > g5 > (0. This corresponds to the case when the volatilities o, 05 of
the two assets S; and Sy are known, but the correlation is not. In particular we
allow S; and Sy to be in all the states between perfectly positively correlated
(p = 1) and perfectly negatively correlated (p = —1), passing through a null
correlation (p = 0). We indicate with S; the asset having higher volatility o7 .
Then we have that

2
* o1 po102
7= (i 052 )

We represent A; s = A as

Lemma 14. If |bo1| > |cos|, then:

— if b > 0, then the optimum is p =1
— if b <0, then the optimum is p = —1
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Proof. The function to maximize becomes:
f(p) = tr (Ayy*) = ao? + co2 + 2bpoios — coap® .
We have that, if ¢ # 0, then f is a parabola, so
f'(p) = 2bo10y — 2coap .

The vertex of f is p* = %; if |%| > 1, then p* ¢ [—1,1], so the maximum is
on the boundary of [-1,1], that is p € {—1,1} . We suppose that b > 0; if ¢ > 0,
then p* > 1, is the maximum of the parabola, so f is increasing in [—1,1] and
p=1;if ¢ <0, then p* < —1 is the minimum of the parabola, so f is increasing
in [-1,1] and again p = 1; at last if ¢ = 0, f is a line with slope 2bo102 > 0, so
p = 1. The case b < 0 is obtained with similar arguments. O

Corollary 15 (Margrabe’s exchange option). If C (¢,s1,$2) is given by
Eq. (16), then the optimal p is p = —1, and the BSB equation becomes a BS
equation with volatility
g1 0
(% 0)

Proof. Since boy [(cos) = —01 /02 < —1 and b < 0, we can apply Lemma 14 and
Proposition 10. O

Corollary 16 (option on the geometrical mean). If C (t,s1,52) is given
by Eq. (18), then the optimal p is p = 1, and the BSB equation becomes a
BS equation with volatility

g1 0

g2 0

Proof. We have b = a+ ( and ¢ = oo — . Since a, 3 > 0, then |a + §]| > |a — f]
and 7+ > 1. Since b = a + 3, we may apply Lemma 14 and Proposition 10. O
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