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Abstract

In this paper we consider models of financial markets in discrete
and continuos time case, and we show that under certain assumptions
we can obtain tha weak convergence of various results about shortfall
risk minimisation obtained so far in discrete time to similar ones in
continuous time.

1 Introduction

We consider the paper [2] from which we will recall some results that we
apply for the discrete time case and then find conditions in order to show
the weak convergence of results obtained in discrete time case to results of
continuous time case.

When modeling a financial market, the discounted price process of risky
assets can be described as a semimartingale S = (S(t))t∈[0,T ] on a probability
space (Ω,F ,P) with filtration (Ft)t∈[0,T ]. In this framework, let H be a
liability to be hedged at some future time, which can be put equal to 1
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without loss of generality. If V (1) is the value at time 1 of a portfolio
corresponding to a self-financing investment strategy, given by

V (t) = Ṽ0 +
∫ t

0
ξ(u)dS(u) ∀t ∈ [0, 1],

where ξ is a suitable process and Ṽ0 is the initial capital, the shortfall risk
minimization problem consists in determining the portfolio V ∗(1) which min-
imises the quantity

E

[
l
(
(H − V (1))+

)]
for a suitable “loss function” l, which is classically considered to be increas-
ing, convex and continuously differentiable defined on [0,∞), and such that
`(0) = 0. This problem is introduced for two reasons. First of all, if the
market is incomplete it can be impossible to hedge perfectly H: in this case,
a criterion has to be introduced to “minimise the risk” of having H in one’s
portfolio in some sense, and the shortfall criterion has gained popularity in
the last years. The second reason is that, whether the market is complete
or incomplete, if one starts with an initial capital which is strictly less than
the capital needed to (super)replicate the option, surely will end up at time
1 with a loss H − V (1) which will be greater than zero with positive prob-
ability. The shortfall risk minimisation is then a measure of how much one
is riskying by starting with an insufficient initial capital, even if the market
is complete. We will also assume that

E [l(H)] <∞,

where H := H(S(T )) is a simple contingent claim of European type, where
H is a continuous function.

We will distinguish two cases: the case when the value of our final capital
V (1) is nonnegative, and the case when we do not impose constraints on V ,
apart from being admissible in a sense which we will specify.

Definition 1.1. The shortfall risk is defined as the expectation

E

[
l
(
(H − V (1))+

)]
of the shortfall weighed by the loss function l.

It can be found an admissible strategy which minimizes the shortfall
risk while not using more capital than Ṽ0. The optimization problem to be
solved in this case is the following:{

E [l ((H − V (1)+)]→ min
V0 ≤ Ṽ0
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In [2] the problem is reduced to the search of an element φ̃ in the class

R = {φ : Ω→ [0, 1]| φ FT -measurable}

which solves the following optimization problem:
min
φ∈R

E [l ((1− φ)H)]

sup
P∗∈P

E
∗[φH] ≤ Ṽ0,

(1)

where P is the set of equivalent martingale measures.

1.1 Definition of weak convergence

For a given Polish space E (that is a complete separable metric space)
equipped with its Borel σ-field E , consider the space P(E) of all probability
measures on (E, E). The set P(E) is endowed with the weak topology which
is the coarsest topology for which the mapping µ → µ(f) =

∫
E fdµ is

continuous for all bounded continuous functions f on E. P(E) is itself a
Polish space for this topology.

Definition 1.2. The sequence (µn)n of probability measures converges weakly
to µ if, for every bounded continuous function f on E (µn(f))n converges
to µ(f).

The weak convergence of random variables is defined from the weak
convergence of the probability distributions. Let X be an E-valued random
variable on some probability space (Ω,F ,P). The image of P under X,
denoted by PX or equivalently by L(X) and belonging to P(E) is called the
law or the distribution of X. Consider now a sequence (Xn)n of E-valued
random variables, defined possibly on different spaces (Ωn,Fn,Pn).

Definition 1.3. (Xn)n converges in law if (L(Xn))n converges weakly to

L(X) in P(E). Notation: Xn
L(E)⇒ X.

We will examine the case of rcll (right continuous left limited) processes
which are Rd-valued. Let X be such a process defined on (Ω,F ,P). X may
be considered as a random variable taking its values in the Polish space
E = D(Rd) (also called Shorokhod space) equipped with the Skorokhod
topology (see [4, Theorem 1.2.2,p.66]). Thus the distribution L(X) is an
element of P(D(Rd)).
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We will apply this general framework to two cases. First to a sequence of
discrete time models, which we will extend in continuous time by assuming
that the price paths will be pathwise constant. Then, to continuous time
models driven by Brownian motion, with prices having continuous sample
paths. The final scope is to prove that, if a sequence of discrete time models
converge weakly to a continuous time model driven by a Brownian motion,
then also the optimal portfolios for the shortfall risk converge weakly.

2 Explicit solutions for the shortfall risk minimis-
ing strategies in the complete case

In the following we suppose that the set of equivalent martingale measures
contains a unique element, so the market is complete, and we denote by
ρ∗(t) = dQ

dP

∣∣∣
Ft

the corresponding Radon-Nikodym derivative process. Since

we are more interested in the values of the process ρ∗ at time 1, we will
consider the density ρ∗(1)

Now we distinguish between two cases: the case when we impose that
the self-financing portfolio of the agent remains positive, and the case when
we do not impose constraints on the portfolio. In both these situations,
the shortfall risk minimisation problem has a solution both in discrete as in
continuous time.

We start from the constrained case. The next result, taken from [2], is
valid for a general complete market.

Proposition 2.1. The solution φ̃ ∈ R for Problem (1) under the constraint
0 ≤ VT ≤ H is given by

φ̃ =

{
1−

(
I(cρ∗(1))

H ∧ 1
)

on {H > 0}
1 on {H = 0}

The constant c is determined by the condition

E
∗[φ̃H] = Ṽ0,

Now we pass to the unconstrained case. For this, we consider a result
in [1], which gives us a characterization of the optimal strategies in the
particular case when the loss function is convex.

Definition 2.1. We define the set of the modified contingent claims as

X :=
{
X| X ≤ H(a.s), E∗[X] ≤ Ṽ0

}
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X is the set of all claims less than H which can be replicated with
initial capital (less than or equal to) V0. Consider now the shortfall risk
minimization problem:

min
X∈X

E[l(H(SN )−X)]. (2)

The modified contingent claim that solves Problem (2) coincides with the
payoff of the optimal portfolio for the shortfall risk minimization problem. In
the following we will maintain the assumptions from the previous subsection
made for the function I := (l′)−1 and also the assumptions A1−A5.

Theorem 2.1. Define the modified contingent claim

X∗ := H − I (c∗ρ∗(1))

with c∗ > 0 such that E∗[X∗] = Ṽ0. Then X∗ solves Problem (2).

Considering these results, we start dealing with the discrete time case.
We will apply the previous proposition to a particular sequence of discrete
time models.

2.1 Preliminaries for dicrete time case

In this section we will state the hypothesis in which we will work:

A1 Consider the probability spaces as being of the form Ωn = {0, 1}n; we
denote by ω = (ω1, . . . ωn) an element of Ωn and by ωk = (ω1, . . . ωk)
the first k positions of ω;

A2 Fn,k =
{
An,k × {0, 1}n−k|An,k ⊂ {0, 1}k

}
is the associated families of

σ−algebras.

Since we suppose we have a unique martingale measure then we know
that there are no arbitrage opportunities for our multiperiod model and
so it is possible to construct one-period conditional probabilities that are
compatible with the risk neutrality. The martingale measure Q can be
computed from these conditional probabilities by multiplying them together
in accordance with the information structure of the multiperiod model.

¿From [3, Section 3.4, pp. 96] we have the following result:

Lemma 2.1. If the multiperiod model does not have any arbitrage oppor-
tunities, then none of the underlying single period models has any arbitrage
opportunities in the single period sense.
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At this point we state the following:

A3 ∀k, ωk−1, ωk, we denote by Pωk−1

n,k (ωk) > 0 the probabilities conditioned
to ωk−1 of the intermediate single period markets so Pn,k(ωk will de-
note the unconditional probability for the corresponding markets and

by Pn(ω) =
n∏
k=1

P
ωk−1

n,k (ωk) the probability measure corresponding to

the space Ωn;

Now consider the probability spaces (Ωn,Fn,Pn) and consider a partition
{t1, . . . , tn} for the time interval [0, 1]. The price processes (Bn,k;Sn,k)k are
defined in discrete time in the following way: Bn,k denotes the riskless bond
price at time tk and Sn,k denotes the stock prices at tk. Consider the fol-
lowing dynamic for the price process:{

Bn,k = Bn,k−1(1 + Y B
n,k)

Sn,k = Sn,k−1(1 + Y S
n,k)

where Y B
n,k, Y

S
n,k denote the returns of the corresponding assets.

A4 ∀k, ωk−1, Y
S
n,k(ωk−1, 0) < Y B

n,k < Y S
n,k(ωk−1, 1) where

(
Y S
n,k

)
is a se-

quence of independently identically distributed random variables such
that

∀k, ωk−1, ωk, P
ωk−1

n,k (ωk) = Pn,k(ωk) =
1
2
.

A5 We define:

Y B
n,k =

1
n
αB
(
k

n

)
Y S
n,k =

1
n
αS
(
k

n

)
+ βS

(
k

n

)
∆n,k

where ∆n,k is a sequence of i.i.d. random variables defined as:

∆n,k =

{ −1√
n

if ωk = 0,
1√
n

if ωk = 1

so that:

Pn

[
∆n,k = − 1√

n

]
= Pn

[
∆n,k =

1√
n

]
=

1
2

and αB, αS , βS are nonnegative continuous functions on [0, 1], αS >
αB.
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2.2 Preliminaries for the continuous time case

The model for the continuous time financial market that we will use is the
following: B(t) = B0 exp

{∫ t
0 α

B(u)du
}

S(t) = S0 exp
{∫ t

0

(
αS(u)− 1

2

(
βS
)2 (u)

)
du+

∫ t
0 β

S(u)dW (u)
}
,
t < 1.

We have chosen this model because it represents the limit under the weak
convergence of the discrete time models built in the previous section. The
main tool in our work is the joint convergence of the sequences of stock
prices and Radon-Nykodim processes. How do we pass from the discrete
time model to this continuous time model? We have considered the prob-
ability spaces (Ωn,Fn,Pn)n and a time interval equal to [0, 1]. For this
interval we chose some intermediate time points tk for which we will have
the corresponding price processes (Bn,k;Sn,k)k. Now in order to be able to
pass to the limit we will make the following notation:

Sn(t) := Sn,[nt]

same kind of notation being valid for all processes in discrete time.

3 Results of weak convergence

3.1 Optimization problem with constraints

¿From Proposition 2.1 we obtain a sequence (φn)n of solutions for each of
the optimization problems in discrete time and a sequence of constants (cn)n
each of which is determined by the condition E∗n[φnH] = Ṽ0.

Proposition 3.1. Under the assumptions A1-A5 and that ∃α < 0, ∃c0 > 0
s.t. I(x) ≤ c0x

α for all x ∈ R+ we have that cn → c.

Proof. Define

∆n := E
∗
n[H(Sn(1))]− Ṽ0 = E

∗
n

[
I(cnρ∗n(1)) ∧H(Sn(1))

]
∆ := E

∗[H(S(1))]− Ṽ0 = E
∗ [I(cρ(1)) ∧H(S(1))] = E

∗[S(1)]− Ṽ0

¿From [4, Section 2.1, pp. 169,178] we have that:

(ρ∗n, Sn)
L(D1)⇒ (ρ∗, S).
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For a given x > 0, denote by f : D(R2)→ R the function defined as

f(ρ∗n, Sn) := I(xρ∗n(1)) ∧H(Sn(1)).

Then f is continuous, since is is the minimum of two continuous func-
tions. ¿From [4, p. 172] we have that (ραn)n is uniformly integrable and
so {I(xρ∗n(1))}n is uniformly integrable. But f(ρ∗n, Sn) ≤ I(xnρ∗n(1)) for all
n. hence we obtain also that {f(ρ∗n, Sn)}n is uniformly integrable.

Consider now some bounded and continuous function g : Rd+1 → R.
Then g ◦ f is a bounded continuous function and together with the weak
convergence of the pair (ρ∗n, Sn) we have the following convergence

E
∗
n

[
g ◦ f(ρ∗n, Sn)

]
→ E

∗ [g ◦ f(ρ∗, S)]

which written in another way yields:

E
∗
n

[
g
(
f(ρ∗n, Sn)

)]
→ E

∗ [g(f(ρ∗, S))]

and remembering that this holds for all bounded continuous function g we
have that:

f(ρ∗n, Sn)
L(R)⇒ f(ρ∗, S).

Since f(ρ∗n, Sn)n is uniformly integrable we obtain:

E
∗
n

[
I(xρ∗n(1)) ∧H(Sn(1)))

]
→ E

∗ [I(xρ∗(1)) ∧H(S(1))]

Now the functions φn that associate E∗n
[
I(xρ∗n) ∧H(Sn))

]
to x are con-

tinuous, strictly increasing and converge pointwise to the function φ(·) =
E
∗ [I(·ρ∗(1)) ∧H(S(1))] . Then also φ−1

n → φ−1 pointwise. The functions
φ−1
n , φ−1 are also continuous so by applying Dini’s theorem we get that φ−1

n

converge uniformly on compact sets to φ−1. But ∆n,∆ belong to a compact
set in R+ since from the convergence of the expected values of the contingent
claims we have that ∆n → ∆, so:

cn = φ−1
n (∆n)→ φ−1(∆) = c =⇒ cn → c.

Proposition 3.2. Under the same assumptions as in Proposition 3.1, φ̃nH
L(R)⇒

φ̃H, where φ̃ is defined as in Proposition 3.1.
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Proof. Recall that

φ̃n = 1−
(
I(cnρ∗n(1))

H
∧ 1
)

on {H > 0}

φ̃ = 1−
(
I(cρ∗(1))

H
∧ 1
)

on {H = 0}

Consider the following notation f(ρ∗n, Sn) := H(Sn(1))−
(
I(xρ∗n) ∧H(Sn(1))

)
so f : D(R2) → R is a continuous function. Then for all bounded continu-
ous function g defined on R2, g ◦ f is a bounded continuous function. This
together with the weak convergence of the pair (ρ∗n, Sn) yield the following
convergence:

E
∗
n

[
g
(
H(Sn(1))−

(
I(xρ∗n(1)) ∧H(Sn(1))

))]
→ E

∗ [g (H(S(1))− (I(xρ∗(1)) ∧H(S(1))))]

The functions ψn that associate E∗n
[
g
(
H(Sn(1))−

(
I(xρ∗n) ∧H(Sn(1))

))]
to x are continuous and converge pointwise to the function

ψ(·) := E
∗ [g (H(S(1))− (I(·ρ∗) ∧H(S(1))))]

which is also continuous. By Dini’s theorem we have that φn converge
uniformly to ψ on compact sets.

At this point we use Proposition 3.1 that tells us that cn → c. So cn, c
belong to some compact set in R+. But this means that ψn(cn) → ψ(c).
Recalling the definitions of ψn, ψ this can be written in the following way:

E
∗
n

[
g
(
H(Sn(1))−

(
I(cnρ∗n(1)) ∧H(Sn(1))

))]
→ E

∗ [g (H(S(1))− (I(cρ∗(1)) ∧H(S(1))))]

But this relation holds for all bounded continuous functions g and so we
obtain the weak convergence of the modified claims φ̃nH:

φ̃nH(Sn(1)) = (H(Sn(1))−
(
I(cnρ∗n) ∧H(Sn(1))

)
L(R)
=⇒ H(S(1))− (I(cρ∗) ∧H(S(1))) = φ̃H(S(1))
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3.2 Optimization problem without constraints

Proposition 3.3. Under the assumptions of Proposition 3.1 we have the
weak convergence of the modified contingent claims given by Theorem 2.1.

Proof. Recall that

X∗n = H(Sn(1))− I(c∗nρ
∗
n(1))

X∗ = H(S(1))− I(c∗ρn(1))

when c∗(n) is given by E∗(n)[X
∗
(n)] = Ṽ0. Define now

∆n := = E
∗
n[H(Sn(1))]− Ṽ0 = E

∗
n [I (c∗nρ

∗
n(1))]

∆ := E
∗[H(S(1))]− Ṽ0 = E

∗[I(c∗ρ∗(1))]

In the first part of our proof we show that c∗n → c∗. If we consider the
functions φn(x) := I (c∗nρ

∗
n(1)) and φ := I(c∗ρ∗(1)) then by the same argu-

ments used in the proof of Proposition 3.1 we obtain that φn
L(R)⇒ φ which

together with the assumption on I that yields the uniform integrability of
φn, φ, leads to the convergence:

E
∗
n [I (xρ∗n(1))]→ E

∗[I(xρ∗(1))].

The functions

ψn(x) := E
∗
n[I(xρ∗n(1))]

ψ(x) := E
∗[I(xρ∗(1))]

are continuous and increasing. Then also the inverse functions are continu-
ous and convergent so that by Dini’s theorem we obtain that this functions
converge uniformly on compact sets. But ∆n → ∆ since we have the con-
vergence of the underlying assets and H is continuous and this yields the
convergence

c∗n = ψ−1
n (∆n)→ ψ−1 = c∗.

Now we proceed in proving the convergence of the modified claims. X∗n, X
∗

are continuous functions of two variables. Since we have the joint conver-

gence (ρ∗n, Sn)
L(Dd+1)⇒ (ρ∗, S) we obtain that

φn(ρ∗n, Sn) := H(Sn(1))− I (xρ∗n(1))
L(R)⇒ H(S(1))− I(xρ∗) = φ(ρ∗, S)
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since for all bounded continuous functions g we have that E∗n[g(φn)] →
E
∗[g(φ)]. Now the functions

fn(x) = E
∗
n[g(H(Sn(1))− I(xρ∗n(1)))]

are continuous and convergent to the function f(x) = E
∗[g(H(S(1)) −

I(xρ∗(1)))]. Since we have that c∗n → c∗, then f(c∗n) → f(c∗) which means
that

X∗n = H(Sn(1))− I(c∗nρ
∗
n(1))

L(R)
=⇒ H(S(1))− I(c∗ρ∗) = X∗

which is what we wanted to prove.

4 Final remarks

For the discrete time model for which we showed the weak convergence of
the modified claims we can take Sn,k to be a d-dimensional system of stock
prices at time tk and consider a more general type of returns. That will
mantain the weak convergence of the pair:

(ρ∗n, Sn)
L(Dd+1)⇒ (ρ∗, S).

Consider for example the following construction of returns:{
Y B
n,k = 1

nα
B
(
k
n

)
Y S
n,k = 1

nα
S (Sn,k−1) + βS (Sn,k−1) ∆n,k

where:

• for each value x ∈ Rd, βS(x) is a (d+ 1)× (d+ 1) invertible matrix;

• ∆n,k = (∆(1)
n,k, . . . ,∆

(d)
n,k)
′ is a random vector satisfying

E[∆n,k] = 0 and E[∆n,k∆′n,k] = Id

where Id is the unitary matrix.

To get uncorrelated (∆(i)
n,k)i≤d and a discrete complete market, we can con-

struct d random variables taking d + 1 values. Then considering the con-
struction presended in [4, pp. 176-178] we have:

(ρ∗n, Sn)
L(D1)⇒ (ρ∗, S).

For proof see [4, pp. 178].
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