ESERCIZI ALGEBRA 2

12 novembre 2008 (14.00-15.30, AULA 1A150)

- 1. Si consideri il gruppo $G = \left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \mid a,b,c \in \mathbb{R}, \ ac \neq 0 \right\}$ con la moltiplicazione righe per colonne.
 - (a) Si dimostri che $N=\left\{\left(\begin{array}{cc} 1 & b \\ 0 & c \end{array}\right) \mid b,c\in\mathbb{R},\ c\neq 0\right\}$ è un sottogruppo normale di G.
 - (b) Si provi che G/N è isomorfo al gruppo moltiplicativo \mathbb{R}^* dei reali non nulli.
 - (c) Si considerino gli elementi $u = \begin{pmatrix} 7 & 2 \\ 0 & 2 \end{pmatrix}$ e $v = \begin{pmatrix} 7 & 4 \\ 0 & 1 \end{pmatrix}$. È vero che Nu = Nv nel gruppo quoziente G/N?
 - (d) Si verifichi che il sottogruppo $H=\left\{\left(\begin{array}{cc}a&b\\0&a^{-1}\end{array}\right)\mid a,b\in\mathbb{R},\ a\neq 0\right\}$ è un sottogruppo normale di G.
- 2. Nel gruppo simmetrico S_9 si consideri la permutazione

- a) Si decompongano le permutazioni α ed α^{-1} in prodotto di cicli disgiunti e si determini il periodo di α .
- b) Si dica quanti sono i sottogruppi di $\langle \alpha \rangle$, e per ciascuno di essi si individui un generatore.
- c) Qual è il sottogruppo di $\langle \alpha \rangle$ che coincide con $\langle \alpha \rangle \cap A_9$?
- **3.** Verificare che $G = \{(a,b) \mid a,b \in \mathbb{R}, \ a \neq 0\}$ con prodotto (a,b) (c,d) = (ac,ad+b) è un gruppo.
 - I) Si dimostri che $H = \{(a,0) \mid a \in \mathbb{R} \setminus \{0\}\}$ è un sottogruppo di G, e che $K = \{(1,b) \mid b \in \mathbb{R}\}$ è un sottogruppo normale di G.
 - II) Sia $\{e\} \neq N \leq K$; si provi che se $N \triangleleft G$ allora N = K.
- III) È vero che G è il prodotto diretto (interno) di H e K?
- **4.** Nel gruppo moltiplicativo $G = GL_2(\mathbb{R})$ delle matrici 2×2 a coefficienti reali con determinante non nullo si considerino le matrici $u = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ e $v = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

1

- (a) Si determinino i centralizzanti di u e v in G.
- (b) Si verifichi che il centro di G è $Z = \left\{ \left(\begin{array}{cc} k & 0 \\ 0 & k \end{array} \right) \mid k \in \mathbb{R}, \ k \neq 0 \right\}.$
- (c) È vero che $u \in v$ sono conjugate in G?
- **5.** In un gruppo $(G; \cdot)$ esistano due elementi a, b tali che
 - I) $G = \langle a, b \rangle$;
 - II) |a| = |b| = 5 e $\langle a \rangle \neq \langle b \rangle$;
- III) posto $c = a^{-1}b^{-1}ab$ (ovvero $b^{-1}ab = ac$), sia $c \in Z(G)$.

Si provi che

- i) $c^5 = 1_G$;
- ii) se $c = 1_G$, allora | $G = 5^2$;
- iii) se $c \neq 1_G$, allora $|\langle a,c \rangle| = 5^2$, $G = \langle a,c \rangle \langle b \rangle$ e quindi $|G| = 5^3$.
- 6. Nel gruppo moltiplicativo \mathbb{Q}^{\star} dei razionali non nulli si consideri il sottoinsieme

$$D = \{2^x 5^y \mid x, y \in \mathbb{Z}\}.$$

Si verifichi che:

- a) D è un sottogruppo di \mathbb{Q}^* ;
- b) $D = \langle 2 \rangle \times \langle 5 \rangle$ (prodotto diretto interno);
- c) l'applicazione $\eta: D \to \mathbb{Z}$ definita ponendo $\eta(2^x 5^y) = x y$ è un omomorfismo suriettivo di D sul gruppo additivo degli interi.
- d) Si descriva il nucleo di η e si provi che è ciclico.
- 7. Nel gruppo simmetrico S_{10} si considerino le permutazioni

e il sottoinsieme $G = \{ \sigma \in S_{10} \mid \sigma(i) \leq 6 \text{ per ogni } 1 \leq i \leq 6 \}.$

- a) Si verifichi che G è sottogruppo di S_{10} .
- b) Si scrivano α e β come prodotti di cicli disgiunti.
- c) È vero che i laterali destri $G\alpha$ e $G\beta$ coincidono?
- d) Provare che l'ordine di σ è minore o uguale a 20 per ogni $\sigma \in G$.
- **8.** Sia $(G; \cdot)$ un gruppo e sia ϕ un'applicazione di G in G. Si considerino il prodotto diretto $\mathcal{G} = G \times G$ e in esso il sottoinsieme $\mathcal{H} = \{(g, \phi(g)) \mid g \in G\}$.

Si mostri che \mathcal{H} è un sottogruppo di \mathcal{G} se e solo se ϕ è un endomorfismo di G. In tal caso si consideri in \mathcal{G} il sottogruppo $\mathcal{L} = \{(g, 1_G) \mid g \in G\}$ e si provi che

- i) è $\mathcal{H} \cap \mathcal{L} = \langle (1_G, 1_G) \rangle$ se e solo se ϕ è iniettiva;
- ii) è $\mathcal{HL} = \mathcal{G}$ se e solo se ϕ è suriettiva;
- iii) è $\mathcal{G} = \mathcal{H} \times \mathcal{L}$ se e solo se G è abeliano e ϕ è un automorfismo di G.
- 9. Si G il gruppo delle funzioni di \mathbb{R} in \mathbb{R} (rispetto alla composizione) del tipo

$$f_{a,b}: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto ax + b$

con $a, b \in \mathbb{R}, a \neq 0$. Siano

$$T = \{ f_{a,b} \in G \mid a = 1 \} \quad e \quad D = \{ f_{a,b} \in G \mid b = 0 \}$$

2

e sia $\tau = f_{1,1} \in T$. Si dimostri che:

- a) ogni elemento non identico di T è coniugato di τ mediante un elemento di D;
- b) se H è un sottogruppo di G contenente τ e D, allora H=G.