ESERCIZI ALGEBRA 2

15 ottobre 2008 (14.00-15.30, AULA 1A150)

1. Sia $M_3(\mathbb{R})$ l'anello delle matrici 3×3 a coefficienti in \mathbb{R} , e siano dati i seguenti sottoinsiemi di $M_3(\mathbb{R})$:

$$S = \left\{ \left(\begin{array}{ccc} a & 0 & b \\ c & d & e \\ 0 & 0 & f \end{array} \right) \mid a,b,c,d,e,f \in \mathbb{R} \right\}$$

$$J = \left\{ \left(\begin{array}{ccc} 0 & 0 & r \\ s & 0 & t \\ 0 & 0 & 0 \end{array} \right) \mid r, s, t \in \mathbb{R} \right\}$$

- a) Dimostrare che S è un sottoanello unitario di $M_3(\mathbb{R})$.
- b) Dimostrare che J è un ideale bilatero di S.
- c) Dimostrare che J non è né un ideale destro né un ideale sinistro di M_3 (\mathbb{R}).

2. Sia K un campo; sia K^K l'anello costituito dalle applicazioni di K in sé stesso rispetto alle operazioni di somma e prodotto definite ponendo per $\lambda, \mu \in K^K$

$$\lambda + \mu : k \rightarrow \lambda(k) + \mu(k)$$

$$\lambda \cdot \mu : k \to \lambda(k) \mu(k)$$
.

Si mostri che l'anello $(K^K; +, \cdot)$ possiede unitàe che ogni elemento non nullo e non unitario è un divisore dello zero.

3. Sia $(A; +, \cdot)$ un anello commutativo, dotato di unità. Sia

$$H = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) : a, b \in A \right\}$$

Si verifichi che H è un anello commutativo e dotato di unitàrispetto alla somma e al prodotto (righe per colonne) di matrici.

- I] Si mostri che se l'anello $(H;+,\cdot)$ è privo di divisori dello zero, lo è anche l'anello $(A;+,\cdot)$, ma non viceversa.
- II] Si provi che se $(A; +, \cdot)$ è un campo, ogni elemento di H non nullo e non unitario è un divisore dello zero. Si mostri che $(H; +, \cdot)$ è un campo per $A = \mathbb{R}$ e non lo è per $A = \mathbb{C}$. $(H; +, \cdot)$ è un campo per $A = \mathbb{Z}_3$? Per $A = \mathbb{Z}_5$?.
- **4.** Sia $(A; +, \cdot)$ un anello e sia $(A'; +, \cdot)$ una sua immagine omomorfa; sia $\phi : A \to A'$ un omomorfismo suriettivo. Sia J un ideale dell'anello $(A; +, \cdot)$.
 - I] Si provi che, se J contiene il nucleo $Ker\phi$, gli anelli quoziente $(A/J; +, \cdot)$ e $(A'/\phi(J); +, \cdot)$ sono isomorfi.
 - II] Si mostri che, se J non contiene $Ker\phi$, gli anelli $(A/J; +, \cdot)$ e $(A'/\phi(J); +, \cdot)$ possono non essere isomorfi.
- 5. Sia R l'anello delle matrici 2×2 a coefficienti in $\mathbb{Z}/9\mathbb{Z}$. Definiamo

$$A = \left\{ \left(\begin{array}{cc} a & 8b \\ 5b & a \end{array} \right) \mid a, b \in \mathbb{Z}/9\mathbb{Z} \right\}.$$

- (a) Si provi che A è sottoanello di R. È anche ideale?
- (b) Determinare la caratteristica di A.
- (c) A è dominio d'integrità?
- 6. Sia $(A;+,\cdot)$ un anello commutativo; sia $c\in A,\,c\neq 0_A.$ Si definisca in A un "prodotto" \star ponendo per ogni $a,b\in A$

$$a \star b = a \cdot b \cdot c;$$

si osservi che $(A; +, \star)$ è un anello.

Definita l'applicazione $\phi: A \to A$ ponendo $\phi(a) = ac$ per ogni $a \in A$, si provi quanto segue.

I] L'applicazione ϕ è iniettiva se e solo se l'elemento c non è un divisore dello zero in $(A; +, \cdot)$;

- II] Sono tra loro equivalenti le seguenti condizioni:
 - i) l'applicazione ϕ è biiettiva;
 - ii) l'anello $(A; +, \cdot)$ possiede unitàe l'elemento c è unitario in $(A; +, \cdot)$;
 - iii) l'anello $(A; +, \star)$ possiede unità.
- III] $I = \{i \in A \mid ic = 0_A\}$ è un ideale dell'anello $(A; +, \star);$ $J = Im \phi = \{ac \mid a \in A\}$ è un ideale dell'anello $(A; +, \cdot).$
- IV] L'anello quoziente $(A/I; +, \star)$ è isomorfo all'anello $(J; +, \cdot)$.

NOTA Siano R_1 e R_2 due anelli. Nell'insieme $R_1 \times R_2$ costituito dalle coppie (a, b), con $a \in R_1$ e $b \in R_2$, si definiscano le seguenti operazioni:

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

 $(a_1, a_2) \cdot (b_1, b_2) = (a_1b_1, a_2b_2).$

L'insieme $R_1 \times R_2$ con queste due operazioni è un anello che prende il nome di prodotto cartesiano (o somma diretta) di R_1 e R_2 , spesso indicato nel modo seguente:

$$R_1 \oplus R_2$$
.

7. Sia n > 1 un intero e si consideri l'anello

$$R = \left\{ \left(\begin{array}{cc} a & 0 \\ b & c \end{array} \right) \mid a,b,c \in \mathbb{Z}/n\mathbb{Z} \right\}.$$

a) Si verifichi che le due applicazioni

$$f: R \to \mathbb{Z}/n\mathbb{Z}, \quad \left(\begin{array}{cc} a & 0 \\ b & c \end{array} \right) \mapsto a$$

$$g: R \to \mathbb{Z}/n\mathbb{Z}, \quad \left(\begin{array}{cc} a & 0 \\ b & c \end{array} \right) \mapsto c$$

sono omomorfismi suriettivi d'anello.

- b) Si descrivano gli ideali I = Ker(f) e J = Ker(g).
- c) Si costruisca un isomorfismo $R/(I \cap J) \cong \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$.
- d) Sia n=5. Si dica, per ciascuno degli anelli $R, R/I, R/(I \cap J)$, se si tratta eventualmente di un anello commutativo, di un dominio d'integrità, di un campo.
- 8. Siano X e Y due anelli commutativi e sia A la loro somma diretta $(A = X \oplus Y)$. Se I è un ideale di A, si ponga

$$I_X = \{ v \in X \mid (v, y) \in I \text{ per qualche } y \in Y \}$$

$$I_Y = \{ w \in Y \mid (x, w) \in I \text{ per qualche } x \in X \}$$

$$J = \{(v, w) \in A \mid v \in I_X, w \in I_Y\}$$

- i] Si osservi che I_X, I_Y e J sono ideali rispettivamente di X, Y e A e che $I \subseteq J$.
- ii] Si provi che
 - a) una condizione sufficiente affinché sia I=J è che l'anello X (o l'anello Y) possieda unità,
 - b) una condizione sufficiente affinché sia I=J è che l'anello quoziente A/I sia privo di divisori dello zero.
- iii] Siano $X = Y = \{2k \mid k \in \mathbb{Z}\}$ sottoanelli di \mathbb{Z} .
 - a) Si mostri che nessuna delle due condizioni date in ii] è necessaria affinché sia I=J, considerando $I=\{(4r,4s)\mid r,s\in\mathbb{Z}\}.$
 - b) Si mostri che può essere $I \neq J$, considerando $I = \{(2r, 4s) \mid r, s \in \mathbb{Z}, r \equiv s \pmod{2}\}$.

Suggerimento:

$$ii[a]$$
 Se $(v, w) \in J$ e $(x, w) \in I$, allora $(x, 0) = (x, w) (1_X, 0) \in I$, $(0, w) \in I$...

$$ii[b]$$
 Se $(x,y) \in I$ allora $I = [(x,0)+I] + [(0,y)+I] = [(x,0)+I][(0,y)+I]$.