ESERCIZI ALGEBRA 2

22 ottobre 2008 (14.00-16.00, AULA 1C150)

- **1.** Siano $A, A_1, \ldots, A_n, n > 1$, anelli e siano $\phi_i : A \to A_i, 1 \le i \le n$, omomorfismi d'anello. Si consideri l'omomorfismo $\phi : A \to A_1 \times A_2 \times \cdots \times A_n$ definito da $\phi(a) = (\phi_1(a), \phi_2(a), \ldots, \phi_n(a))$ per ogni $a \in A$. Si verifichi che:
 - (a) $Ker(\phi) = \bigcap_{i=1}^{n} Ker(\phi_i);$
 - (b) se ϕ_i è iniettiva per qualche i $(1 \le i \le n)$, allora ϕ è iniettiva;
 - (c) se ogni ϕ_i è suriettiva, si può concludere che ϕ è suriettiva?
- **2.** Si consideri l'applicazione $\varphi : \mathbb{Z}[x] \to \mathbb{Z}/11\mathbb{Z}$ definita ponendo $\varphi(f) = f(0) + 11\mathbb{Z}$.
 - (a) dimostrare che φ è omomorfismo d'anelli;
 - (b) dimostrare che $Ker\left(\varphi\right)=\left\{ 11f+xg:f,g\in\mathbb{Z}\left[x\right]\right\}$ e che non è principale;
 - (c) dimostrare che $Ker\left(\varphi\right)$ è ideale massimale.
- 3. Sia Z[i]l'anello degli interi di Gauss e sia data l'applicazione

$$\begin{array}{cccc} F: & \mathbb{Z}[i] & \to & \mathbb{Z}/13\mathbb{Z} \\ & a+ib & \mapsto & a+5b+13\mathbb{Z} \end{array}$$

- a) Dimostrare che F è un omomorfismo di anelli.
- b) Dire se F è suriettivo.
- c) Dire, motivando la risposta, se Ker(F) è un ideale massimale.
- d) Determinare un generatore del nucleo Ker(F) di F.
- e) Dimostrare che se $p \in \mathbb{Z}$ è un numero primo con $p \equiv 1 \pmod{4}$ esistono esattamente due distinti omomorfismi di anelli $\mathbb{Z}[i] \to \mathbb{Z}/p\mathbb{Z}$.
- **4.** Si consideri $\mathbb{Z}[i]$.
 - (a) L'ideale I generato da (2-4i) in $\mathbb{Z}[i]$ è primo?
 - (b) Provare che l'ideale J generato da (1-i) è massimale e contiene I.
 - (c) Provare che gli ideali generati da (1-i) e da (1+i) coincidono.
- **5.** Sia $A = \mathbb{Z}\left[\sqrt{-6}\right] = \left\{a + ib\sqrt{6} \mid a, b \in \mathbb{Z}\right\}$ con norma $N : \mathbb{Z}\left[\sqrt{-6}\right] \to \mathbb{Z}$ definita da $N\left(a + ib\sqrt{6}\right) = a^2 + 6b^2$.
 - (a) Provare che non esistono elementi di A di norma 2 o 5.
 - (b) Provare che gli elementi 2, 5, $2 i\sqrt{6}$ sono irriducibili ma non primi.
 - (c) Trovare due fattorizzazioni di 10 nel prodotto di due elementi irriducibili non associati.
 - (d) Provare che l'ideale generato da 2 e $\sqrt{-6}$ non contiene l'elemento 1.

6. Si consideri nel campo complesso il sottoanello

$$A = \left\{ a + ib\sqrt{7} \mid a, b \in \mathbb{Z} \right\}$$

- I] Si determinino
 - i) un isomorfismo α dell'anello quoziente $(\mathbb{Z}[x]/\langle x^2+7\rangle;+,\cdot)$ sull'anello $(A;+,\cdot)$,
 - ii) un omomorfismo suriettivo $\phi : \mathbb{Z}[x] \to A$ tale che $Ker(\phi) = \langle x^2 + 7 \rangle$.
- II] Si considerino nell'anello ($\mathbb{Z}\left[x\right];+,\cdot$) gli ideali I=< x> e J=< x,7>; si mostri che
 - i) $I \neq J$, ma $\phi(I) = \phi(J)$;
 - ii) $\phi^{-1}(\phi(J)) = J$ mentre $\phi^{-1}(\phi(I)) \neq I$.
- 7. Sia $\mathbb{Z}[i]$ l'anello degli interi di Gauss e siano dati gli elementi $\alpha = -2 + 10i$ e $\beta = 9 + 7i$.
 - (a) Determinare il massimo comun divisore di α e β appartenente al primo quadrante del piano di Gauss.
 - (b) L'ideale I generato da α e β è principale? In caso affermativo, determinare un generatore per I.
 - (c) Sia J l'ideale generato da α e sia $\gamma = -1 + 2i$. Dire se $\gamma + J$ è un elemento invertibile di $\mathbb{Z}[i]/J$ ed in caso affermativo, determinarne l'inverso.
- 8. Siano $K = \mathbb{Z}/5\mathbb{Z}$ e $f = x^3 x + 1 \in K[x]$. Si consideri l'anello quoziente A = K[x]/(f).
 - a) È vero che A è un campo?
 - b) Quanti sono gli elementi di A?
 - c) Si dica se $x^2 x + 3 + (f)$ è un elemento invertibile di A, ed in caso affermativo se ne calcoli l'inverso.
- **9.** Si consideri l'anello $\mathbb{Z}_4[x]$ dei polinomi a coefficienti nell'anello \mathbb{Z}_4 . Sia I l'ideale di $\mathbb{Z}_4[x]$ generato dal polinomio $x-1 \in \mathbb{Z}_4[x]$. Si provi che
 - I] $I = \{ f(x) \in \mathbb{Z}_4 [x] \mid f(1) = 0 \} \text{ (con } 1, 0 \in \mathbb{Z}_4);$
 - II] I non è massimale ed esiste uno ed un solo ideale proprio J di $\mathbb{Z}_4[x]$ che contiene propriamente I;
 - III] J è finitamente generato, ma non è principale.
- **10.** Sia $f = x^3 3x + 2 \in \mathbb{Q}[x]$, e sia $A = \mathbb{Q}[x]/(f)$.
 - (a) Si fattorizzi f in prodotto di irriducibili in $\mathbb{Q}[x]$.
 - (b) Si determini un divisore di zero non nullo in A.
 - (c) Si calcoli l'inverso di $3 x^2 + (f)$ in A.
- **11.** Determinare il MCD monico tra i polinomi $f = x^4 + 4x^3 + 5x^2 + 8x + 6$, $g = x^3 + x^2 + 3x + 3$ di $\mathbb{R}[x]$. Scrivere tale MCD come combinazione lineare a coefficienti in $\mathbb{R}[x]$. Nell'anello $\mathbb{R}[x]/(f)$, si trovi un elemento non nullo h + (f) tale che (g + (f))(h + (f)) = 0.
- **12.** Siano $f(x) = x^3 3x^2 + 2x 6$ e $g(x) = x^4 + x^3 + 3x^2 + 2x + 2$ appartenenti a $\mathbb{Q}[x]$.
 - i) Determinare il MCD in $\mathbb{Q}[x]$ di f(x) e g(x), ed esprimerlo nella forma r(x) f(x) + s(x) g(x), con r(x) e s(x) in $\mathbb{Q}[x]$.
 - ii) Sia I = (f(x)) e sia A l'anello quoziente $\mathbb{Q}[x]/I$. È vero che g(x) + I è invertibile in A? È vero che g(x) + I è divisore dello zero in A?

2