ESERCIZI ALGEBRA 2

26 novembre 2008 (16.00-17.30, AULA 1C150)

- 1. Sia $G = S_4 \times \mathbb{Z}/6\mathbb{Z}$.
 - a) Si scriva esplicitamente chi è il prodotto $(\sigma, a + 6\mathbb{Z}) (\tau, b + 6\mathbb{Z})$, chi è l'unità di G e chi è $(\sigma, a + 6\mathbb{Z})^{-1}$.
 - b) Si dica se G è ciclico.
 - c) Scrivere un elemento di G di periodo 12.
 - d) Quali tra i seguenti elementi di G sono coniugati:

$$a = ((123), 2 + 6\mathbb{Z}), b = ((134), 3 + 6\mathbb{Z}), c = ((12), 2 + 6\mathbb{Z}), d = ((134), 2 + 6\mathbb{Z})?$$

- e) Trovare in G il centralizzante di a.
- **2.** Determinare il campo di spezzamento E del polinomio x^6-6x^3+8 su \mathbb{Q} , il grado di E su \mathbb{Q} e una \mathbb{Q} -base di E.
- 3. Siano date le permutazioni di S_5 :

$$\sigma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 3 & 1 & 4 \end{array}\right); \quad \tau = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{array}\right)$$

- (a) Determinare la decomposizione ciclica di σ e di τ ed il prodotto $\sigma\tau$.
- (b) L'elemento σ appartiene ad un sottogruppo di Sylow di S_5 ? In caso affermativo, determinare un tale sottogruppo di Sylow, in caso negativo, motivare la risposta.
- (c) L'elemento τ appartiene ad un sottogruppo di Sylow di S_5 ? In caso affermativo, determinare un tale sottogruppo di Sylow, in caso negativo, motivare la risposta.
- (d) Dimostrare che ogni 2-sottogruppo di Sylow di S_5 contiene un sottogruppo ciclico di ordine 4.
- (e) Determinare il centralizzatore $C_{S_5}(\sigma)$ di σ in S_5 e la cardinalità della classe di coniugio di σ .
- (f) Dire se $\langle \sigma \rangle = C_{S_5}(\sigma)$, motivando la risposta.
- 4. Sia G un gruppo di ordine 39.
 - a) Determinare il numero n_{13} dei 13-sottogruppi di Sylow di G.
 - b) Dimostrare che G possiede un sottogruppo normale H isomorfo a C_{13} ed un sottogruppo K isomorfo a C_3 .
 - c) Dimostrare che G = HK e che $H \cap K = \langle 1 \rangle$.

- 5. In \mathbb{C} si consideri l'elemento $u = \sqrt{1 + \sqrt{2}}$.
 - (a) Si dimostri che u è algebrico su \mathbb{Q} .
 - (b) Si determini il polinomio minimo f di u su \mathbb{Q} ; quante sono le radici reali di f?
 - (c) Si trovi il polinomio minimo di u su $\mathbb{Q}(\sqrt{2})$.
 - (d) Si trovi una base di $\mathbb{Q}(u)$ come spazio vettoriale sul campo $\mathbb{Q}(\sqrt{2})$.
- 6. Sia $G = S_5 \times C_2$ il prodotto diretto del gruppo simmetrico S_5 e del gruppo ciclico di ordine 2 di generatore x. Sia dato l'elemento di S_5

$$\sigma = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 4 & 1 & 3 \end{array}\right)$$

- a) Determinare l'ordine di σ in S_5 e l'ordine dell'elemento $(\sigma, x) \in G$.
- b) L'elemento $(\sigma, 1)$ appartiene ad un sottogruppo di Sylow di G? In caso affermativo, determinare un tale sottogruppo di Sylow, in caso negativo, motivare la risposta.
- c) L'elemento (σ, x) appartiene ad un sottogruppo di Sylow di G? In caso affermativo, determinare un tale sottogruppo di Sylow, in caso negativo, motivare la risposta.
- d) Determinare il centralizzatore $C_{S_5}(\sigma)$ di σ in S_5 e la cardinalità della classe di coniugio di σ in S_5 .
- e) Determinare il centralizzatore $C_G((\sigma, x))$ di (σ, g) in G e la cardinalità della classe di coniugio di (σ, x) in G.
- **7.** a) Determinare il centralizzante in S_6 della permutazione $\sigma = (12346)$;
 - b) Quante classi di coniugio di elementi di ordine 5 ci sono in A_6 ? Per ognuna di queste se ne dia un rappresentante e se ne calcoli l'ordine.
 - c) Si verifichi che $C_{S_6}\left((123)\right) \neq A_6$ e se ne deduca che i 3-cicli formano un'unica classe di coniugio in A_6 .
- **8.** Sia $p(x) = x^3 5 \in \mathbb{Q}[x]$.
 - a) Fattorizzare p(x) su $\mathbb{C}[x]$, $\mathbb{R}[x]$, $\mathbb{Q}[x]$.
 - b) Determinare il campo di spezzamento K di p(x) e il grado di K su \mathbb{Q} .
 - c) È vero che $K = \mathbb{Q}(i\sqrt{3}, \sqrt[3]{5})$?
- 9. Trovare il campo di spezzamento del polinomio $x^4 + 1$ su \mathbb{R} , su \mathbb{Q} e sul campo con 16 elementi.