ESERCIZI ALGEBRA 2

29 ottobre 2008 (14.00-15.30, AULA 1C150)

1. Sia $\mathbb R$ il campo dei reali. Sia

$$G = \left\{ \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right) \mid a, b, c \in \mathbb{R} \right\};$$

si verifichi che G è un gruppo rispetto al prodotto righe per colonne. Si considerino i seguenti sottoinsiemi di G:

$$H = \left\{ \left(\begin{array}{ccc} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \mid a \in \mathbb{R} \right\}; \ K = \left\{ \left(\begin{array}{ccc} 1 & a & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array} \right) \mid a, c \in \mathbb{R} \right\}; \ L = \left\{ \left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) \mid a, b \in \mathbb{R} \right\}.$$

Si dica, giustificando la risposta, quali di questi sono sottogruppi di G, e quali sono sottogruppi normali di G.

- **2.** Sia $F = \mathbb{Z}_5 = \mathbb{Z}/5\mathbb{Z}$ e siano dati i polinomi $a(x) = x^3 + 2x^2 + x + 2$ e $b(x) = x^2 + x + 2 \in F[x]$.
 - (a) Determinare la scomposizione in irriducibili di a(x) e di b(x) in F[x] motivando la risposta.
 - (b) Sia I = (b(x)). Dire, motivando la risposta, se a(x) + I è invertibile in F[x]/I ed in caso affermativo determinare l'inverso.
 - (c) Dire, motivando la risposta, se 2x + 1 + I è invertibile in F[x]/I ed in caso affermativo determinare l'inverso.
- **3.** Sia R l'anello $\mathbb{Z}/p^2\mathbb{Z}$, dove p è un primo. Sia G il gruppo

$$G = \left\{ \left(\begin{array}{cc} 1 + pa & b \\ 0 & 1 \end{array} \right) \mid a, b \in R \right\}$$

(è sottogruppo del gruppo degli invertibili dell'anello delle matrici 2×2 a coefficienti in R).

- a) Si scriva esplicitamente l'inverso di $\begin{pmatrix} 1+pa & b \\ 0 & 1 \end{pmatrix}$.
- b) Qual è l'ordine di G?
- c) Si provi che il sottoinsieme

$$H = \left\{ \left(\begin{array}{cc} 1 + pb & b \\ 0 & 1 \end{array} \right) \mid b \in R \right\}$$

è un sottogruppo di G.

- d) H è ciclico? È normale in G?
- 4. Sia $G = U(\mathbb{Z}/25\mathbb{Z})$ il gruppo moltiplicativo degli elementi invertibili di $\mathbb{Z}/25\mathbb{Z}$.
 - a) Qual è l'ordine del gruppo G?
 - b) Si verifichi che $6 + 25\mathbb{Z}$ e $7 + 25\mathbb{Z}$ appartengono a G, e se ne determinino i periodi.
 - c) È vero che G è un gruppo ciclico?
- **5.** Sia dato l'anello $\mathbb{Z}_2[x]$ dei polinomi a coefficienti in $\mathbb{Z}_2 \cong \mathbb{Z}/2\mathbb{Z}$ e siano I l'ideale generato da $x^3 + 1$ ed $R = \mathbb{Z}_2[x]/I$.
 - (a) Si determinino l'ordine e la caratteristica di R e si elenchino i suoi elementi.
 - (b) Si determinino in R i divisori dello zero e gli elementi invertibili con i relativi inversi.
 - (c) Si dimostri che

$$\varphi: \mathbb{Z}_4 \to R$$

$$q \mapsto \bar{q} + \bar{q}x + \bar{q}x^2 + I$$

dove \bar{a} denota la classe di a modulo 2, è un morfismo di anelli

- (d) Si determinino il nucleo e l'immagine di φ .
- **6.** Sia $\mathbb{Z}[i]$ l'anello degli interi di Gauss e siano dati gli elementi $z_1 = 1 + 3i$ e $z_2 = 5i$.
 - (a) Determinare il massimo comun divisore di z_1 e z_2 appartenente al primo quadrante del piano di Gauss.
 - (b) L'ideale I generato da z_1 e z_2 è principale? In caso affermativo, determinare un generatore per I.
 - (c) Sia J l'ideale generato da z_1 . Si dica se $z_2 + J$ è invertibile nell'anello $\mathbb{Z}[i]/J$ ed in caso affermativo, determinarne l'inverso.
 - (d) Si dica se $z_2 + J$ è un divisore dello zero in $\mathbb{Z}[i]/J$ ed in caso affermativo, determinare un elemento $c + J \neq J$ tale che $(z_2 + J)(c + J) = J$.
 - (e) Si scrivano tutti gli ideali non banali di $\mathbb{Z}[i]/J$. Quali di questi sono massimali?