Lezione di Algebra 2 dell'1 dicembre 2008 (2 ore)

B. Bruno

Esercizio 1

Completamento dell'Esercizio 5 del 28/11: dimostrare che se L è un campo finito di ordine p^n e se m divide n, allora esiste un sottocampo F di L tale che $|F| = p^m$.

Esercizio 2

Completamento Esercizio 4 del 28/11 (punti (c), (d), (e)).

Esercizio 3

- (a) Si dica se $f(x) = x^3 + x^2 + 1$ è irriducibile su \mathbb{Z}_2 .
- (b) Sia α uno zero di f(x). Si scrivano tutti gli elementi di $\mathbb{Z}_2(\alpha)$ e si provi poi che $\mathbb{Z}_2(\alpha)$ è campo di spezzamento per f(x) (trovando in $\mathbb{Z}_2(\alpha)$ tutti gli zeri di f(x)).
- (c) Si calcoli, in $\mathbb{Z}_2(\alpha)$, $(1+\alpha)^{-1}$.

Esercizio 4 Sia ϵ una radice primitiva sesta di 1 in \mathbb{C} .

- (a) Si determini il polinomio minimo di ϵ su \mathbb{Q}
- (b) Si provi che $\mathbb{Q}(\sqrt{3}) \subset \mathbb{Q}(\epsilon\sqrt{3})$.
- (c) Si determini il polinomio minimo, p(x), di $\epsilon\sqrt{3}$ su \mathbb{Q} .
- (d) $\mathbb{Q}(\epsilon\sqrt{3})$ è campo di spezzamento di p(x) su \mathbb{Q} ?

Esercizio 5 Sia $F_7 = \mathbb{Z}/7\mathbb{Z}$, il campo con 7 elementi e sia $f(x) = x^3 + 2 \in F_7[x]$.

- (a) Si dica se f(x) è irriducibile su F_7 .
- (b) Si costruisca un' estensione $F_7(\alpha)$ che contiene uno zero, α di f(x).
- (c) Si calcoli $|F_7(\alpha)|$.
- (d) Si dica se f(x) divide $h(x) = x^{7^{24}} x$ in $F_7[x]$.

Esercizio 6 Sia $\alpha = \sqrt{7} + i$ nel campo complesso \mathbb{C} .

- (a) α è algebrico su \mathbb{Q} ?
- (b) È vero che $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{7}, i)$?
- (c) Si trovi il polinomio minimo, g(x), di α su \mathbb{Q} .
- (d) Si dica se è vero che $\mathbb{Q}(\alpha)$ coincide con il campo di spezzamento, E di g(x) su \mathbb{Q} .
- (e) Quanto vale $|E:\mathbb{Q}|$?