Lezione di Algebra 2 del 3 dicembre 2008 (2 ore)

B. Bruno

Esercizio 1 Si provi che se per un elemento $u \in \mathbb{C}$, il numero complesso $v = a + ib \in \mathbb{Q}(u)$ e se $a^2 + b^2 \in \mathbb{Q}(u)$, allora anche $a \in \mathbb{Q}(u)$ ed $ib \in \mathbb{Q}(u)$.

Esercizio 2 Chiarimenti sui campi di riducibilità completa di polinomi irriducibili in un anello K[x] dove $K = F_{p^k}$ è il campo finito con p^k elementi: si provi che se f(x) è un polinomio irriducibile in K[x] e se $\alpha = x + (f(x)) \in K[x]/(f(x))$, allora $K(\alpha) = K[x]/(f(x))$ è il campo di riducibilità completa di f(x) su $K = F_{p^k}$.

Esercizio 3 Siano p e q due numeri primi positivi distinti di \mathbb{Z} . Si provi che allora non esiste nessun isomorfismo di campi tra $\mathbb{Q}(\sqrt{p})$ e $\mathbb{Q}(\sqrt{q})$.

Esercizio 4 Sia S_n il gruppo simmetrico su n oggetti.

- (a) Si provi che $H = \{ \sigma \in S_n : \sigma(1) = 1 \}$ è un sottogruppo di S_n isomorfo ad S_{n-1} .
- (b) Sia $\nu \in S_n$. Si descrivano gli elementi di $\nu H \nu^{-1}$.
- (c) È vero che $\bigcap_{\nu \in S_n} \nu H \nu^{-1} = 1_{S_n}$?

Esercizio 5 Sia G un gruppo abeliano finito e sia α un endomorfismo di G tale che $\alpha \circ \alpha = \alpha$

- (a) Si provi che $\operatorname{Im}(\alpha) \cap \operatorname{Ker}(\alpha) = \{1_G\}.$
- (b) Si provi che $|G/\ker(\alpha)| = |\operatorname{Im}(\alpha)|$.
- (c) Si provi che G è il prodotto diretto di $\operatorname{Im}(\alpha)$ e $\operatorname{Ker}(\alpha)$.
- *(d) Si provi che (a) e (c) valgono anche nel caso in cui G non sia finito.

Esercizio 6 Sia $G = GL_2(\mathbb{C})$ il gruppo delle matrici invertibili 2×2 .

- (a) Sia $H = \{A \in G : \text{Det} A \in \mathbb{R}\}$; si provi che H è un sottogruppo di G e che H è normale in G.
- (b) Sia $\overline{x} = \begin{pmatrix} 1 & -1 \\ i & 1 \end{pmatrix} H \in G/H$. Si trovi $|\overline{x}|$.
- (c) G/H ha elementi di periodo infinito?
- (d) G/H è commutativo?