Lezione di Algebra 2 del 4 novembre 2008 (1 ora)

B. Bruno

1

Definizione di permutazioni coniugate in S_n : due permutazioni σ e σ' si dicono coniugate in S_n se esiste $\tau \in S_n$, tale che $\sigma' = \tau \sigma \tau^{-1}$

2

Dimostrazione della seguente Proposizione. (5.3.2 del testo)

- (a) Sia $\sigma \in S_n$ e sia $\sigma = \gamma_1 \gamma_2 \dots \gamma_r$ la decomposizione di σ in cicli disgiunti. Allora $\sigma' = \tau \sigma \tau^{-1}$ ha la stessa struttura ciclica di σ (ossia si può scrivere la seguente decomposizione in cicli disgiunti $\sigma' = \gamma'_1 \gamma'_2 \dots \gamma'_r$, con γ_i e γ'_i cicli della stessa lunghezza, $\forall i = 1, 2, \dots r$). Inoltre i cicli di σ' si ottengono da quelli di σ applicando τ agli elementi di ciascun γ_i .
- (b)Se σ e σ' sono due permutazioni di S_n che hanno la stessa struttura ciclica, allora esse sono coniugate in S_n .

Dunque, in particolare, due permutazioni di S_n sono coniugate se e solo se hanno la stessa struttura ciclica.

Esercizio 3

- (i) Siano σ e $\tau \in S_7$, $\sigma = (1\ 3\ 5\ 4)(2\ 6\ 7)$ e $\tau = (1\ 4\ 3)(1\ 6)$. Si calcoli $\sigma' = \tau \sigma \tau^{-1}$, senza effettuare i prodotti, utilizzando (a) del punto precedente.
- (ii) Siano $\sigma = (1\ 2\ 4\ 6)(5\ 3\ 8)$ e $\sigma' = (3\ 1\ 4)(6\ 7\ 2\ 8)$, in S_8 . Si dica se sono coniugate e si trovi, se esiste, $\tau \in S_8$ tale che $\sigma' = \tau \sigma \tau^{-1}$.

Esercizio 4

Si provi che la relazione ρ in S_n (o in un qualunque gruppo G), così definita: siano x ed $y \in S_n$ $x \rho y$ se x ed y sono elementi coniugati in S_n (oppure in G) è una relazione di equivalenza in S_n (in G).

Le classi di equivalenza rispetto a questa relazione si chiamano classi coniugate in S_n (in G):

Esercizio 5. Si provi che $S_n = <(1\ 2)\ (2\ 3) \dots (n-1\ n)>.$