Lezione di Algebra 2 del 6 ottobre 2008 (2 ore)

B. Bruno

Esercizio 1

Determinare i divisori di 0 e gli elementi invertibili in \mathbb{Z}_n provando che ogni elemento $\neq 0$ di \mathbb{Z}_n è invertibile oppure è divisore di 0.

Esercizio 2

Sia R un anello commutativo unitario e finito; si provi che ogni elemento $\neq 0$ di R è invertibile oppure è divisore di 0.

Esercizio 3

Sia R un anello finito e commutativo che contiene un elemento $a \neq 0$ tale che a non è divisore di 0. Si provi che R è un anello unitario.

Definizione

Siano R ed R' due anelli; sia $\phi: R \longrightarrow R'$ un omomorfismo di anelli. Allora il "nucleo di ϕ " = $Ker \phi = \{x \in R : \phi(x) = 0\}$

Esercizio 4

Si provi che Ker ϕ è un sottoanello di R e che $\forall x \in R$ e $\forall a \in \text{Ker}\phi$, ax ed xa appartengono a $\text{Ker}\phi$.

Esercizio 5 Sia
$$T = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\}.$$

Si provi che $T \subset M_2(\mathbb{R})$ è un sottoanello di $M_2(\mathbb{R})$ e che l'applicazione $\phi: T \longrightarrow \mathbb{R}$, definita da $\phi\left(\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}\right) = c$ è un epimorfismo di anelli.

Si calcoli Ker ϕ .

Esercizio 6

Si provi che $\phi_n: \mathbb{Z} \longrightarrow \mathbb{Z}_n$, tale che $\phi_n(x) = \overline{x}$ =classe resto resto di $x \pmod{n}$ è un epimorfismo e si calcoli Ker ϕ .

Definizione

Sia R un anello e sia $I \subseteq R$. I si chiama ideale destro (sinistro) di R se I è un sottoanello di R e $\forall x \in I \in \forall r \in R, xr \in I \ (rx \in I).$ I si chiama ideale bilatero se è sia ideale destro che sinistro.

Esercizio 7 Se $\phi: R \longrightarrow R'$ è un omomorfismo di anelli, Ker ϕ è un ideale di R. Sia $\operatorname{Im} \phi = \{ y \in R' : \exists x \in R \text{ con } \phi(x) = y \}$; allora $\operatorname{Im} \phi$ è un sottoanello di R'.

Esercizio 8 (Vedi definizione di elementi nilpotenti di un anello R, in eserc. 8, pag 161) Se R è commutativo ed N è l'insieme di tutti gli elementi nilpotenti di R, allora N è un ideale di R (solo enunciato). Provare, con un esempio, che questo non vale se R non è commutativo.

1