Lezione di Algebra 2 del 12 novembre 2008 (2 ore)

B. Bruno

1

Completamento della dimostrazione dei Teoremi di Sylow 5.12.6

Esercizio 2

- (i) Si provi che in un gruppo G di ordine 20, il 5-sottogruppo di Sylow è normale in G.
- (ii) Si provi che se un gruppo finito G contiene un p-sottogruppo di Sylow normale S, allora S è l'unico p-sottogruppo di Sylow di G.

Esercizio 3 (assegnato e non svolto in classe)

- (i) Sia G un gruppo e sia $|G| = p_1^{m_1} p_2^{m_2} \dots p_r^{m_r}$ dove i p_i sono tutti i primi distinti che dividono |G|. Supponiamo che, per $i = 1, 2, \dots r$ un (il!!) p_i -sottogruppo di Sylow S_i di G sia normale in G. Si dimostri che allora $G = S_1 \times S_2 \times \dots S_r$, ossia G è il prodotto diretto (interno) dei gruppi S_i .
- (ii) Si provi che, nelle ipotesi del punto (i), $Z(G) \neq \{1_G\}$.

Esercizio 4

Si provi che il gruppo alterno A_4 non contiene un sottogruppo di ordine 6.

Esercizio 5

Si provi che un gruppo G di ordine 65 è ciclico.