Lezione di Algebra 2 del 15 ottobre 2008 (1 ora)

B. Bruno

Esercizio 1

Siano A e B ideali di un anello R e sia $\phi: R \longrightarrow R/A \times R/B$ l'applicazione definita da: $\phi(x) = (x+A, x+B), \forall x \in R$.

- (i) Si provi che ϕ è un omomorfismo di anelli.
- (ii) Si provi che $\operatorname{Ker} \phi = A \cap B$.
- (iii) si provi che ϕ è suriettiva se e solo se R = A + B.

Si osservi che se $R = \mathbb{Z}$, $A = r\mathbb{Z}$ e $B = s\mathbb{Z}$, nell'ipotesi che sia (r, s) = 1 (ossia che r ed s siano coprimi, allora quanto ottenuto sopra, costituisce il "Teorema cinese del resto".

Esercizio 2

Si provi che se m ed n sono numeri naturali, allora $m\mathbb{Z}$ ed $n\mathbb{Z}$ sono isomorfi se e solo se m=n.

Esercizio 3

Si provi, mediante un esempio, che non è generalmente vero che il quoziente di un anello commutativo su un ideale massimale è un campo. (L'affermazione è vera se l'anello è anche unitario).

Esercizio 4

Sia D un dominio di integrità commutativo ed unitario e sia p un elemento primo di D. Sia poi $I \supseteq (p)$ un ideale di D.

Si provi che se I è un ideale principale, allora o I = (p) oppure I = D.