Lezione di Algebra 2 del 20 ottobre 2008 (2 ore)

B. Bruno

Esercizio 1

Nell'anello degli interi di Gauss $\mathbb{Z}[i]$, si determinino tutti gli elementi invertibili.

Esercizio 2

Si provi che:

- (2.a) Un elemento $a+ib \in \mathbb{Z}[i]: a,b \in \mathbb{Z} \setminus \{0\}$ è primo in $\mathbb{Z}[i]$, se e solo se $N(a+ib)=a^2+b^2=p$ primo di \mathbb{Z} .
- (2.b) Un elemento p, primo in \mathbb{Z} è primo in $\mathbb{Z}[i]$ se e solo se p = 3 + 4n per un $n \in \mathbb{Z}$ (ossia p è congruo a 3 modulo 4).
- Si deduca che a (oppure ib) è primo in $\mathbb{Z}[i]$ se e solo se, per un primo $p \in \mathbb{Z}$, è a = p = 3 + 4n (b = p = 3 + 4n) per un $n \in \mathbb{Z}$.

Esercizio 3

Si provi il seguente Teorema (di Fermat): Un primo $p \in \mathbb{Z}$ è somma di quadrati in \mathbb{Z} , (ossia è del tipo $p = a^2 + b^2$ per $a, b \in \mathbb{Z}$) se e solo se p = 2 oppure p = 1 + 4n per un $n \in \mathbb{Z}$.

Esercizio 4

Siano $z_1 = 5 + 3i$ e $z_2 = 3 + i$.

- (4.a) Si trovi un MCD, (z_1, z_2) tra $z_1 = 5 + 3i$ e $z_2 = 3 + i$ che stia sul primo quadrante.
- (4.b) Si provi che 1 + 2i è invertibile in $\mathbb{Z}[i]/J$, dove $J = (z_1)$ (=ideale generato da z_1) e se ne trovi l'inverso.