Lezione di Algebra 2 del 22 ottobre 2008 (1 ora)

B. Bruno

Esercizio 1

Si provi che se J è un ideale nell'anello degli interi di Gauss $\mathbb{Z}[i]$, e $0 \neq a+ib \in J$, allora $k = N(a+ib) = a^2 + b^2 \in J$ e, se r ed s sono i resti delle divisioni di a e, rispettivamente, b, per k, allora (a+ib) + J = (r+is) + J. Se ne deduca che l'anello quoziente $\mathbb{Z}[i]/J$ è finito, per ogni ideale J non nullo di $\mathbb{Z}[i]$.

Esercizio 2

Sia $I = ((x^2 - 2)^2)$ in $\mathbb{Q}[x]$ e sia $A = \mathbb{Q}[x]/I$.

- (i) Si provi che A non è un campo.
- (ii) Sia $a = f(x) + I \in A$: si dica come si può scegliere un rappresentante f(x) della classe a.
- (iii) Si provi che (x+1)+I è invertibile in A e se ne calcoli l'inverso.
- (iv) Sia $M = \{$ elementi non invertibili di $A \}$. Si provi che M è un ideale di A.
- (v) Si provi che A/M è un campo.

Definizione Sia R un anello: si è visto il significato di nr, $\forall n \in \mathbb{Z}$ ed $r \in R$. Supponiamo che ci sia un n > 0, $\in \mathbb{N}$ tale che nr = 0, $\forall r \in R$. Sia $k = \min\{n \in \mathbb{N} : n > 0 \text{ ed } nr = 0, \forall r \in R\}$. Allora k si chiama caratteristica di R e si dice che R è un anello di caratteristica k > 0. Se non esiste nessun n > 0 per cui si abbia nr = 0, $\forall r \in R$: allora si dice che R ha caratteristica 0.

Notiamo che un anello R ha caratteristica k = 1 se e solo se $R = \{0_R\}$.

Esercizio 3

Sia R un dominio di integrità (quindi $R \neq \{0_R\}$) e sia $m > 0, \in \mathbb{N}$ tale che, per un elemento $0 \neq a \in R$ si abbia $ma = 0_R$. Si dimostri che allora, $\forall b \in R$, si ha $mb = 0_R$ (e quindi R ha caratteristica k > 0 e $k \leq m$).

Esercizio 4

Sia R un dominio di integrità e sia k la caratteristica di R. Si provi che allora k = p, p un primo di \mathbb{N} .

Esercizio

Sia R un anello commutativo unitario, di caratteristica $k \geq 0$ e sia 1_R l'unità di R.

Sia $\phi: \mathbb{Z} \longrightarrow R$ l'applicazione definita da: $\phi(n) = n \cdot 1_R, \forall n \in \mathbb{Z}$. Si dimostri che:

- (i) se k=0 allora ϕ è iniettiva e quindi $\phi(\mathbb{Z})=\mathrm{Im}\mathbb{Z}$ è un sottoanello di R isomorfo a \mathbb{Z} .
- (ii) se k > 0 Ker $\phi = k\mathbb{Z}$ e quindi $\phi(\mathbb{Z}) = \text{Im}\mathbb{Z}$ è un sottoanello di R isomorfo a \mathbb{Z}_k .

In entrambi i casi $\phi(\mathbb{Z})$ si chiama sottoanello fondamentale di R.