Lezione di Algebra 2 del 26 novembre 2008 (2 ore)

B. Bruno

Esercizio 1 Sia $u \in \mathbb{R}$, $u = \sqrt{5 - \sqrt{5}}$.

- (a) Si provi che u è algebrico su \mathbb{Q} , si trovi il polinomio minimo di u su \mathbb{Q} , si dica quanto vale $|\mathbb{Q}(u):\mathbb{Q}|$, e si dia una base di $\mathbb{Q}(u)$ su \mathbb{Q} .
- (b) Si dica se $\sqrt{5} \in \mathbb{Q}(u)$.
- (c) Si trovi il polinomio minimo di u su $\mathbb{Q}(\sqrt{5})$.
- (d) Si scriva $\frac{1}{u}$ come combinazione lineare a coefficienti in \mathbb{Q} , di opportune potenze di u.

Esercizio 2 Sia $u \in \mathbb{C}$, $u = i(2 - \sqrt{3})$.

- (a) Si provi che $\sqrt{3} \in \mathbb{Q}(u)$; si provi che anche $i \in \mathbb{Q}(u)$ e si calcoli $|\mathbb{Q}(u):\mathbb{Q}|$.
- (b) Si trovi il polinomio minimo di u su \mathbb{Q} .
- (c) Si trovi il polinomio minimo di u su \mathbb{R} .

Esercizio 3 Sia $u \in \mathbb{C}$, $u = i\sqrt[3]{2} - 1$.

- (a) Si provi che $\sqrt[3]{2} \in \mathbb{Q}(u)$ e che $\mathbb{Q}(u) = \mathbb{Q}(\sqrt[3]{2}, i)$.
- (b) Si calcoli $|\mathbb{Q}(\sqrt[3]{2}, i) : \mathbb{Q}|$ e si scriva una base di $\mathbb{Q}(\sqrt[3]{2}, i)$ su \mathbb{Q} .
- (c) Si trovi il polinomio minimo di u su \mathbb{Q} .
- (d) Si trovi il polinomio minimo di u su $\mathbb{Q}(\sqrt[3]{2})$.
- (e) Si trovi il polinomio minimo di u su $\mathbb{Q}(i)$.

Esercizio 4

- (a) $x^2 11$ è riducibile in $\mathbb{Q}(\sqrt{5})$?
- (b) Si calcoli $|\mathbb{Q}(\sqrt{5}, \sqrt{11}) : \mathbb{Q}|$ e si scriva una base di $\mathbb{Q}(\sqrt{5}, \sqrt{11})$ su \mathbb{Q} .
- (c) Sia $u = \sqrt{5} + \sqrt{11}$. È vero che $\mathbb{Q}(u) = \mathbb{Q}(\sqrt{5}, \sqrt{11})$?
- (d) Si provi che $\mathbb{Q}(u)$ è campo di spezzamento per il polinomio minimo g(x) di u su \mathbb{Q} .