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Abstract—Client-side data deduplication enables cloud storage
services (e.g., Dropbox) to achieve both storage and bandwidth
savings, resulting in reduced operating cost and high level of
user satisfaction. However, the deduplication checks (i.e., the
corresponding essential message exchange) create a side channel,
exposing the privacy of file existence status to the attacker. In
particular, the binary response from the deduplication check
reveals the information about the existence of a copy of the file
in the cloud storage. This behavior can be exploited to launch
further attacks such as learning the sensitive file content and
establishing a covert channel. While current solutions provide
only weaker privacy or rely on unreasonable assumptions,
we propose RAndom REsponse (RARE) approach to achieve
stronger privacy. The idea behind our proposed RARE solution
is that the uploading user sends the deduplication request for two
chunks at once. The cloud receiving the deduplication request
returns the randomized deduplication response with the careful
design so as to preserve the deduplication gain and at the same
time minimize the privacy leakage. Our analytical results confirm
privacy guarantee and results show that both deduplication
benefit and privacy of RARE can be preserved.

Index Terms—Cloud Storage, Data Deduplication, Data Pri-
vacy, Side Channel.

I. INTRODUCTION

Cloud storage services such as Dropbox and Google Drive
have been very popular, offering the virtually unlimited
amount of storage promise and enabling service users to easily
backup and synchronize their data among devices. However,
despite the cloud storage’s huge storage space, since the same
or different users could by chance upload duplicated data,
this kind of duplication wastes network resources, consumes
excess power, and complicates data management. Thus, data
deduplication technique has been widely used by cloud storage
providers to eliminate the unnecessary data copies.

The commercial cloud storage services are in favor of the
cross-user client-side fixed-size-chunk-level data deduplication
to reach the highest deduplication gain. In particular, the cross-
user data deduplication sees the cloud storage as a virtually
single disk shared by all of the cloud users, deduplicating all of
the files from different users and consequently maximizing the
deduplication opportunity. The client-side data deduplication,
in contrast to server-side data deduplication, is featured by the
user that uploads the file hash as the duplication check request
(dc request). Due to the collision-resistance property of
cryptographic hash functions, the cloud may check the status
of file existence and then sends a binary duplication check

response (dc response) to the user, which may, in turn,
suppress the explicit uploading of the file in the case that the
deduplication occurs.

Unfortunately, dc response may be used as a side channel
for privacy violation. The design of the countermeasure for
the above side channel, in fact, introduces conflicting require-
ments; on the one hand, the user needs a deterministic response
from the cloud to know whether the further uploading of the
file is necessary, which is the fundamental idea behind the data
deduplication system. On the other hand, any deterministic
response can be seen as an indicator of privacy leakage.

A. Contribution

We propose RAndom REsponse (RARE) approach to elim-
inate the deduplication response-based side channel for cloud
storage services and at the same time preserve the dedupli-
cation benefit. The privacy leakage of side channel is due
to the deterministic relation between the dc request and
dc response. Therefore, our developed technique, random
response1, aims to reach the probabilistic relation by allowing
the cloud to randomize the dc response. The objective is to
keep the deduplication gain to the certain degree and eliminate
the leakage of chunk existence status. Since duplicate check
of single chunk does not give sufficient room for dc response
randomization, we perform the duplicate check on two chunks
at once (double chunking, see Sec. IV-A). Moreover, dirty
chunks, the chunks that have been queried but are not uploaded
eventually can be exploited to perform repeated duplicate
checks and receive independent dc responses. Dirty list for
marking dirty chunks are used to disable the deduplication
on dirty chunks. In summary, our proposed RARE has the
following characteristics.

• Parameterless Configuration. The proper choice of pa-
rameters in a system can be a huge burden for engineers.
Our RARE does not have parameters that need to be
determined manually.

• No Independent Server. While some existing solutions
achieve their privacy guarantee based on a particular
configuration of the independent server, our RARE only
involves the interactions between the user and cloud.

1Despite the similarity, our developed technique, random response, is in its
nature different from the randomized response [15], which is usually used to
preserve the individual privacy and at the same time extract the useful statistic
from crowd.



TABLE I: Comparisons Between Different Side Channel Defenses
(X: has this property, ×: does not have this property).

No Parameter No Indep. Server Two-Side Privacy

Mozy [12] × X ×
Harnik et al. [7] × X ×
Lee and Choi [11] × X ×
Heen et al. [6] X × X
Wang et al. [16] × X ×
Shin and Kim [14] X × X
Armknecht et al. [1] × X ×
ZEUS [19] X X ×
ZEUS+ [19] × X X

RARE (this paper) X X X

• Stronger Privacy. Most of the prior solutions still suffer
from information leakage. Our RARE reaches the mini-
mal information leakage.

A comparison table about privacy and assumptions made by
different side channel defenses is shown in Table I.

The remainder of the paper is structured as follows. We
review the related work in Sec. II. The system model is
reported in Sec. III. Sec. IV details our proposed solution de-
scription. The performance evaluation of the proposed solution
is reported in Sec. V. Finally, Sec. VI concludes our work.

II. RELATED WORK

In the following, we have a brief overview of the data
deduplication technique (in Sec. II-A), and then describe
the deduplication response-based side channel (in Sec. II-B).
Finally, we briefly review the state-of-the-art solutions and
their weaknesses (in Sec. II-C).

A. Data Deduplication

Data deduplication [17], [18] is an effective means widely
implemented by cloud storage providers to reduce the storage
and bandwidth requirements. The basic idea behind the data
deduplication is to avoid storing the same file twice, which
directly results in storage saving. The most aggressive imple-
mentation of data deduplication is the cross-user client-side
fixed-size-chunk-level data deduplication. The term “cross-
user” means that all of the cloud users share a single virtual
storage, so that all of the files, irrespective of the uploading
users, can be deduplicated. The term “client-side” means that
the user is able to detect whether the file to be uploaded has
already a copy in the cloud by sending out the deduplication
check request, so as to reduce the unnecessary bandwidth
waste. The term “fixed-size-chunk-level” means that the basic
unit for duplicate check and cloud storage backend is fixed-
size chunks. For example, Dropbox uses SHA-256 as the hash
function in their implementation and 4MB as their chunk size.

The implementation of the duplicate check is, in fact,
straightforward; for a chunk c to be uploaded, the user first
calculates and sends the hash (or say dc request) h(c) to the
cloud, where h(·) denotes the cryptographic hash function.
Once the cloud unable to find a copy of h(c) in the memory
(i.e., chunk existence), the user will receive a positive dc
response (i.e., a signal of deduplication triggered) and has
no need to upload c again. Otherwise, the user uploads c

and cloud keeps h(c) in the memory for subsequent duplicate
checks. Throughout the paper, the term “duplicate check”
refers to the procedures of exchanging dc request and dc
response.

B. Side Channel

The dc response exposes the file status. In particular, the
positive (negative) response, referring to as the file inexistence
(file existence), gives the uploading user information about the
status of file existence. This privacy leakage can serve as a
primitive that leads to the following potential attacks.

• File Confirmation. The expose of the file existence status
itself is the most straightforward privacy leakage.

• Learning Secret Content. The one-shot file confirmation
usually does not have the much negative impact. How-
ever, with the consideration that the file has only limited
min-entropy, the file confirmation threat, together with
the brute-force strategy, may lead the attacker to learn
the secret content of a file, which has the severe negative
impact in the real world.

• Covert Channel. Two parties agreeing upon a common
file can use the file existence status as a medium for
communications. In particular, one party virtually trans-
mits one bit to another by uploading or deleting the file,
because another party may see the negative (positive)
response as 1 (0).

C. Prior Defenses Against Side Channel

Harnik et al. [5] first identify the risk of side channel
in the deduplicated cloud storage. In particular, they find
the existence of the side channel in the deduplicated cloud
storage, because the cloud needs to deterministically return the
deduplication response according to the existence status of a
specific file. Addressing this weakness, Harnik et al. propose
a solution, random threshold (RT), to randomize the dedupli-
cation threshold. In particular, instead of associating a single
deduplication threshold to each file, a random deduplication
threshold only known by the cloud is associated with different
files in RT. Any user without the knowledge of deduplication
threshold cannot infer the status of file existence from the
dc response. However, RT in its nature has a limitation that
when the number of copies of the requested file exceeds the
deduplication threshold, because of the necessary deduplica-
tion gain, the deduplication response invariably suppresses the
explicit file uploading, exposing the privacy of file existence.
Despite the above weakness, a couple of works have been done
based on the same design philosophy. For example, Lee and
Choi [11] propose a method to randomize the deduplication
threshold on the fly, in contrast to determining deduplication
thresholds beforehand in RT. Armknecht et al [1] argue the
similarity between [5] and [11]. Wang et al. [16] determines
the deduplication thresholds in RT based on a game-theoretic
approach.

Another line of research that addresses the same problem
introduces an extra trusted hardware between the cloud and
users, so as to the obfuscate the network traffic. For example,



Heen et al. [6] consider a setting that a trusted gateway bridges
the cloud and users, so that a number of files are transmitted to
the gateway, which then forwards to the cloud. The gateway
in this sense can randomize the deduplication response. On
the other hand, Shin and Kim [14] have a design of the
deduplication protocol with differential privacy based on the
existence of an independent trusted server bridging the cloud
and users.

Despite the lack of theoretical foundation, Mozy [12] takes a
pragmatic approach; it setups a threshold θ for the size so that
only the file with size greater than θ needs to be deduplicated.
The rationale behind such a design is that the large-size
files such as music and movie are not sensitive. Only small-
size files such as document contain sensitive information.
If the cloud does not deduplicate the sensitive content, the
corresponding privacy concern can be eliminated.

Yu et al. [19] also identify the privacy weakness of RT
and propose ZEUS as an alternative to provide stronger
privacy guarantee. Moreover, Yu et al. further propose ZEUS+

to enhances the privacy; ZEUS+ achieves an even stronger
privacy, compared to ZEUS, by sacrificing the advantage of
parameterless configuration.

III. SYSTEM MODEL

This section first aims to provide an overview of the network
model. Then, we describe the threat model that we used in this
paper. Finally, we discuss the privacy notion.

A. Network Model

We consider a trusted cloud storage with cross-user client-
side data deduplication. Basically, in order to upload a file f
into the cloud S, first, the file should be divided into chunks c
with bit length φ. In principle, to upload a chunk c, one needs
to upload the deduplication check request h(c) and waits for
the binary deduplication check response, so as to determine
whether further explicit uploading of c is necessary.

However, the user, acting as the attacker ĉ in our consid-
eration, with the chunk c is aimed to determine the existence
status of c from the interactions between the user and cloud.

B. Threat Model

We assume that the user (including external attacker) cannot
verify the existence of chunk c unless the user uploads c.
Moreover, we suppose that the probability (P ) of the event that
an arbitrary chunk is in the cloud is quite small. The objective
of the external attacker ĉ is to know the existence status of the
chunk. Considering the conventional deduplication framework,
the attacker has to perform the duplicate check to learn
whether c̃, the chunk of attacker’s interest, has already a copy
in the storage system. As mentioned before, the duplicate
check carries out by exchanging dc request and dc response. In
our context, if the dc request is positive (negative), then ĉ will
conclude that the chunk (non)existence in the cloud storage.
In addition, it is not mandatory for the attacker to complete
the chunk uploading. Therefore, we supposed that they have
obligation to terminate transmission in the middle.

C. Privacy Notion

There are two privacy notions, existence privacy and inex-
istence privacy, which are described as follow.

Basically, the existence privacy definition is based on the
case that the attacker can not gain any information about the
chunks existence status in the cloud unless she uploads them.
More in detail, when a duplicate check protocol guarantees the
existence privacy, it means that its dc response does not leak
information on the existence status of c. We formally define
the notion of existence privacy as follow.

Definition 1. Let us define duplicate check protocol by
f(c, aux), where c is the attacker chunk’s interest and aux
is the required auxiliary data for the duplicate check. Assume
that C denotes the case that c is in the cloud. The attacker has
no prior knowledge of the existence status of c, and her aim is
to know the existence status of c. If P [C|f(c, aux)] = P [C],
regardless that f(c, aux) has clearly demonstrated the exis-
tence of c, f(c, aux) achieves existence privacy.

On the contrary, the inexistence privacy achieves when the
attacker cannot identify the chunk inexistence. Correspond-
ingly, the formal definition of inexistence privacy is as follow.

Definition 2. Let us define duplicate check protocol by
f(c, aux), where c is the attacker chunk’s interest and aux
is the required auxiliary data for the duplicate check. Assume
that C̄ denotes the case that c is not in the cloud. The attacker
has no prior knowledge of the existence status of c, and her
aim is to know the existence status of c. If P [C̄|f(c, aux)] =
P [C̄], regardless that f(c, aux) has clearly demonstrated the
inexistence of c, f(c, aux) achieves inexistence privacy.

In addition, if both existence privacy and inexistence privacy
are fulfilled we achieve two-side privacy.

We conclude that the meaning of a two-side private dedupli-
cate check protocol is that the dc response does not give us any
extra information about the existence status of a determined
chunk, in according to the Definition 1 and Definition 2.
Likewise, in the following, we describe a weaker version of
existence privacy.

Definition 3. Let us define duplicate check protocol by
f(c, aux), where c is the attacker chunk’s interest and aux
is the required auxiliary data for the duplicate check. Assume
that C denotes the case that c is in the cloud. The attacker has
no prior knowledge of the existence status of c, and her aim is
to know the existence status of c. If P [C|f(c, aux)] = 1/2, re-
gardless that f(c, aux) has clearly demonstrated the existence
of c, f(c, aux) achieves weaker existence privacy.

In the Definition 1, P [C|f(c, aux)] = P [C] = P , while in
Definition 3, P [C|f(c, aux)] = P [C] = 1/2. Clearly, however
numerical probability in Definition 1 is increased from P to
1/2 in Definition 3, but this increase does not have any effect
on the verification probability of the chunk existence status by
the attacker.



In our context, the two-side private deduplicate check proto-
col means that we succeed to have both weak existence privacy
and inexistence privacy, unless stated otherwise.

IV. PROPOSED SOLUTION

In this section, we first present the basic idea of the RARE
algorithm (Sec. IV-A). Then, we describe in more detail each
part of the RARE algorithm (Sec. IV-B). Finally, we analyze
the security of RARE algorithm (Sec. IV-C).

A. Basic Idea of RARE

There is a large number of deduplication techniques pro-
posed in the literature. However, they failed to meet two-
side privacy without using any extra hardware and depending
on heuristically chosen parameters. Before describing the
algorithm, we provide an overview of the basic idea behind
the design of RARE scheme. The rational behind the proposed
RARE scheme lies in two observations.

• Duplicate check of single chunk does not give sufficient
room for dc response randomization.

• Sybil attacker can perform a huge number of independent
duplicate checks on the same chunk, attempting to coun-
teract arbitrary randomization technique for duplicate
checks.

We introduce a novel design on the duplicate check; instead of
uploading a single chunk, duplicate check uploads two chunks
at once. Without a proper modification, the duplicate check
of two chunks is equivalent to performing ordinary duplicate
check twice. In order to hide the chunk existence status, we
carry out the encodings on both the dc response and the chunks
to be uploaded. Clearly, for the dc request 〈h(c1), h(c2)〉 in
double chunk uploading, the dc response consists of a single
number that indicates the number of chunks needed to be
uploaded, instead of a pair of ordinary dc responses. The final
design is the RARE table shown in Table II, which can be
interpreted as follows. If both the queried chunks (e.g., c1 and
c2) are not in S, c is indeed required to upload two individual
chunks. Otherwise, c is asked to upload either two individual
chunks or the exclusive-or (XOR) c1⊕c2 of two chunks, each
with probability 1/2. In such a design, S is able to derive
another chunk given a chunk in possession.

One can see from RARE that c gains no extra existence
status information if receiving 2 from S, and gains the only
extra information that at least one queried chunk has a copy
in S otherwise. However, such a RARE design is still flawed;
if always receiving 2 from the repeated duplicate check on
〈h(c1), h(c2)〉, ĉ confirms the nonexistence of c1 and c2. Given
the chunk c3 of ĉ’s interest, ĉ repeatedly performs duplicate
check on 〈h(c1), h(c3)〉. The attacker ĉ confirms the existence
of c3 if receiving at least one dc response 1, and confirms
the nonexistence otherwise. The root cause is the abuse of
duplicate check; ĉ performs duplicate check but does not
upload queried chunks or XORed chunk eventually. Here, we
propose to use the dirty bit to mark the chunks (i.e., dirty
chunks) that have been queried but are not uploaded eventually.
We can implement the previous policy by keeping all hashes of

TABLE II: RARE table.
c1 existence c2 existence dc response

0 0 2
0 1 1 or 2
1 0 1 or 2
1 1 1 or 2

Algorithm 1 RARE.
Input: file f with chunk size φ, dirty chunk list L;

1: user partitions f into chunks c1, . . . , cn;
2: user sets n̂ = n;
3: if bit length |cn| 6= φ then
4: user performs padding to cn;
5: end if
6: if n is odd then
7: user picks random chunk cn+1 and n̂ = n+ 1;
8: end if
9: for i ∈ {1, 3, . . . , n̂− 1} do

10: user performs duplicate check on 〈h(ci), h(ci+1)〉;
11: if h(ci) /∈ L and h(ci+1) /∈ L then
12: cloud replies 1 or 2 according to Table II;
13: else
14: cloud replies dc response 2;
15: end if
16: if user receives dc response 1 then
17: user uploads ci ⊕ ci+1 or ci and ci+1 to the cloud;
18: if cloud does not receive ci ⊕ ci+1 then
19: L = L ∪ {ci, ci+1};
20: end if
21: else
22: user uploads ci and ci+1 to the cloud;
23: if cloud does not receive ci and ci+1 then
24: L = L ∪ {ci, ci+1};
25: end if
26: end if
27: end for

dirty chunks in a list (termed as dirty chunk list, L). Therefore,
the cloud is able to check if the receiving dc request is on the
dirty list or not. If either one in duplicate check 〈h(c1), h(c2)〉
is in L, S always returns 2.

B. RARE Description

Algorithm 1 reports the description of RARE, where the
user attempts to upload a file f to the cloud. First of all,
the file f is divided into chunks (line 1). Since we have
double chunk uploading in RARE, then the users have to
check whether the chunks number is even and whether the
size of the last chunk is equal to the predefined chunk size.
If not, we need to generate a sequence of bit depending on
adequate length and concatenate it to the file f (lines 3-8).
Now, the user carries out duplicate check on chunks pairs,
〈h(ci), h(ci+1)〉, i ∈ [1, 3, . . . , n̂ − 1] (line 10). When cloud
receives 〈h(ci), h(ci+1)〉, it checks if the involved chunks are
dirty (line 11). More in detail, if the current chunks are on
the dirty, the cloud always returns 2 to the user. Otherwise,
cloud decides to return either 1 or 2 based on Table II (line
12). According to the received dc response, the user either
uploads c1 ⊕ c2 or uploads c1 and c2 explicitly to the cloud
(lines 16-27).
C. Security Analysis of RARE

Duplicate check is the only way for the attacker to breach
the privacy existence status of a specific chunk. However,



RARE table and dirty chunk list work as the side channel
defense with the inexistence privacy and weak existence
privacy. The privacy evaluation of RARE (see Table II) is as
follow.

Theorem 1. RARE achieves weak existence privacy and
inexistence privacy.

Proof. If both c1 and c2 in the dc request 〈h(c1), h(c2)〉 are not
controlled by the attacker, where c2 is the chunk of attacker’s
interest, the attacker can confirm the nonexistence of c1 and
c2 if always receiving 2. Moreover, if attacker receives at least
one dc request 1, then attacker confirms the existence of c2.
These privacy leakages are because of the duplicate check
abuse, due to the fact that attacker performs duplicate check
but does not upload the requested chunks. As we discussed this
problem in the previous section, we can handle this problem
by using dirty chunk list. The RARE table along with the dirty
bit policy ensure the privacy of chunk existence status.

The only time that attacker is able to find the existence of
the certain chunk in the cloud is when receiving dc response
1. Given chunk c2 of ĉ’s interest and the dc response 1, the
probability of c2 in the cloud is formulated as follows:

Pr[C2|R1] (1.1)

=
Pr[R1|C2]Pr[C2]

Pr[R1|C2]Pr[C2] + Pr[R1|C̄2]Pr[C̄2]
(1.2)

=
1/2× Pr[C2]

1/2× Pr[C2] + Pr[R1|C̄2](1− Pr[C2])
(1.3)

=
1/2× Pr[C2]

1/2× Pr[C2] + (Z1 + Z2)(1− Pr[C2])
(1.4)

=
1/2× P

1/2× P + (0× (1− P ) + 1/2× P )(1− P )
=

P

2P − P 2
.

(1.5)

Z1 , Pr[R1|C̄2 ∩ C̄1]Pr[C̄1] and Z2 , Pr[R1|C̄2 ∩
C1]Pr[C1] refer to law of total probability. Where C2 and
C̄2 represent the event when chunk c2 is in the cloud or is
not, respectively. We used R1 to show the event when the
cloud response is equal to 1. Eq. (1.2) refers to conditional
probability. In Eq. (1.3), P [R1|C1] = 1/2 . In Eq. (1.5), P
denotes the probability that an arbitrary chunk is in S. As P
is usually rather small, the attacker still cannot make sure c2
is in the cloud even when seeing dc response 1.

V. PERFORMANCE EVALUATION

We first describe the scenario under investigation (Sec. V-A)
and then the obtained results (Sec. V-B).

A. Scenario Description

In the following, we first detail the metric we used for vali-
dating our algorithm in different chunk sizes, then, we describe
the dataset used in our evaluation. The metric we adopted our
algorithm is a communication cost. The communication cost
is defined as the number of bits required during the entire
chunk uploading process, including the duplicate check (i.e.,
dc request and dc response) and explicit chunk uploading (i.e.,
the chunk c, if necessary). Moreover, we consider dirty chunk

as the case that no deduplication is applied on chunks and
all of the dc requests relevant to dirty chunks will not trigger
deduplication. In other words, this criteria is used to prevent
the attacker from gaining existence status information by
iteratively performing dc requests on the same chunks. Thus,
the use of dirty chunks actually compromises the deduplication
benefit. Hence, the same set of evaluations applies to different
ratios of dirty chunks.

We used Enron Email Dataset for our evaluation in which
the traces are presented in Fig. 1. In Enron Email dataset [4],
as the real application, ordinary users can backup the email to
the cloud storage. The carried out test is done on Apple Mac
64 bit OS Sierra version 10.12 on Intel Core i5 2.9 GHz and
8GB of RAM. The simulations are carried out by exploiting
the numerical software of the Python 3.7.6 platform. In order
to implement the method, we use the hash function SHA-256
from OpenSSL library. We deleted all of the files smaller than
5KB from Enron dataset. Then, we picked 1000 files uniformly
at random and uploaded them to the cloud. Finally, we chose
200 files uniformly at random to perform duplicate checks and
explicit chunk uploading, if necessary.
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Fig. 1: The statistics of Enron email dataset [4].

B. Simulation Results

In this subsection, we run the RARE scheme and evaluate
the resulting average communication cost under an Enron
Email dataset input arrival sequence with various values of
chunk size. Figs. 2(a), 2(b), and 2(c), report the communi-
cation cost vs. chunk size between original data deduplica-
tion, RARE and without data deduplication methods without
considering dirty chunks, with considering 10% dirty chunks
and with considering 25% dirty chunks, respectively. In these
figures, the number of dirty chunks would grow with the
increasing number of dc requests. We randomly select a fixed
percentage of chunks as dirty chunks to test the impact of the
number of dirty chunks on the communication cost. Obviously,
more dirty chunks are used, more communication costs are
consumed. Because, when the cloud finds either chunk in the
dc request dirty, it cancels the deduplication functionality for
the dc request and imply more communication costs.

We conclude that: if no dirty chunk is applied, it means that,
benign users infrequently have the abnormal disconnection,
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(a) No dirty chunk.
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(b) 10% dirty chunks.
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(c) 25% dirty chunks.

Fig. 2: Communication cost (bits) for different chunk sizes.

the vulnerability is much higher and the attacker may be
unwilling to create the deduplication-based side channel. As
a result, there would be very few percentages of dirty chunks
in the cloud. From the figure, it is clear that the original data
deduplication has the lowest communication cost compared to
the other method. This is due to the fact that this method
finds the maximum opportunity for the data deduplication
and could decrease the communication cost much higher that
RARE and without data deduplication. Although this method
has lowest communication cost, our algorithm, RARE supports
the weak existence privacy and inexistence privacy (according
to Theorem 1). Moreover, the gap between the communication
costs of original data deduplication and RARE actually is
dependent on the dataset characteristic.

VI. CONCLUSIONS

Due to the prevalent use of client-side data deduplication in
commercial cloud storage services, data deduplication-based
side channel creates a realistic and significant privacy threat.
In this paper, we develop a solution, RARE, based on the
framework of random response, preventing the attacker from
gaining the existence status information from duplicate checks.
The implementation of RARE requires minimal modification
of the ordinary deduplication mechanism, incurring minimal
engineering effort, in addition to its privacy and performance
guarantee.
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